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Decompositions of suspensions of spaces
involving polyhedral products

KOUYEMON IRIYE

DAISUKE KISHIMOTO

Two homotopy decompositions of suspensions of spaces involving polyhedral prod-
ucts are given. The first decomposition is motivated by the decomposition of sus-
pensions of polyhedral products by Bahri, Bendersky, Cohen and Gitler, and is a
generalization of a retractile argument of James. The second decomposition is on the
union of an arrangement of subspaces called diagonal subspaces, and generalizes a
result of Labassi.

55P15; 55U10, 52C35

1 Introduction

A polyhedral product is a space constructed from a collection of pairs of spaces in
accordance with the combinatorial information of a given abstract simplicial complex,
where the collection is labeled by vertices of the given simplicial complex. By definition,
polyhedral products are related to fundamental objects in combinatorics, geometry, and
topology such as Stanley–Reisner rings and their derived algebras, graph products of
groups (eg right-angled Artin and Coxeter groups), quasitoric manifolds, coordinate
subspace arrangements, higher-order Whitehead products, and so on. The aim of this
paper is to provide two kinds of homotopy decompositions of suspensions of spaces
involving polyhedral products: one is a generalization of the decompositions of Bahri,
Bendersky, Cohen and Gitler [5] and Adem, Bahri, Bendersky, Cohen and Gitler [1],
and the other is a decomposition of the union of arrangements of special subspaces
called diagonal subspaces which include polyhedral products as subspaces. We briefly
explain the backgrounds of these decompositions.

An important property of polyhedral products is the existence of retractions onto certain
“sub”polyhedral products, where this type of retraction property also appears in other
contexts; see Adem and Cohen [2], Adem, Cohen and Gómez [3], Adem, Cohen and
Torres Giese [4] and Kamiyama and Tsukuda [15]. By using this retraction property,
Bahri, Bendersky, Cohen, and Gitler [5] gave a decomposition of suspensions of
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polyhedral products, and we aim to generalize this decomposition. It is actually obtained
by the retractile argument due to James [13], which provides a decomposition of
suspensions of spaces satisfying a certain retraction property, and we will generalize the
retractile argument in our first decomposition. Our decomposition has a naturality which
cannot be obtained by the retractile argument, and recovers, of course, a decomposition
of suspensions of polyhedral products by Bahri, Bendersky, Cohen, and Gitler [5] and
also the decomposition of suspensions of simplicial spaces by Adem, Bahri, Bendersky,
Cohen, and Gitler [1]. We here note that in [1] it is pointed out that the decomposition
of suspensions of polyhedral products can be obtained from the decomposition of
suspensions of simplicial spaces, but polyhedral products do not seem to fit into the
context of simplicial spaces.

The second space which we decompose is the union of an arrangement of special
subspaces called diagonal subspaces, which includes important subspace arrangements
such as braid arrangements, where we abbreviate this union as a diagonal arrangement.
The decomposition of a suspension of diagonal arrangements was formerly studied
by Labassi [18] in a special case, and Sadok Kallel posed a question whether the
result of Labassi can be generalized to general diagonal arrangements under a certain
dimensional condition imposed on the special case of Labassi. We give an affirmative
answer to this question with our second decomposition. These diagonal arrangements
include special polyhedral products as subspaces, though in general we cannot describe
properties of these polyhedral products as subspaces of the diagonal arrangements,
ie properties of the inclusion. But under a certain dimensional condition, we can
describe properties of the inclusion which enable us to prove the decomposition.

Acknowledgements The authors are grateful to the referees for useful advises and
helpful comments, where they pointed out that it is sufficient to assume retractability of
†X instead of X in Theorem 2.3 and showed a generalization mentioned in Remark 2.4.
The first author is supported by JSPS KAKENHI (number 26400094), and the second
author is supported by JSPS KAKENHI (number 25400087).

2 Retractile spaces over posets

In this section we consider a space over a poset with natural retractions, and prove a
decomposition of a suspension of its certain colimit. To explain what we are going to
do, we start with a simple example. Consider the diagram

X // X �Y

�

OO

// Y

OO
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of spaces. Then we see that every arrow has a retraction, and it induces a filtration

� �X _Y �X �Y:

By the above retractions, the filtration splits after a suspension to yield the decomposition

†.X �Y /'†.X _Y /_†.X ^Y /

which is natural with respect to X and Y . The aim of this section is to generalize this
situation. Let P be a poset. We regard P as a category by pointing upward, that is, for
p; q 2P , p! q in the category means p � q in the poset. We assume two conditions
on P :

(1) P is graded, ie P D
ǹ�0

Pn as sets and for p 2Pn and q 2Pm , p < q implies
n<m.

(2) P is a lower semilattice, ie any p; q 2 P have the greatest lower bound p^ q .

Let X be a space over P which is a functor from P to the category of pointed
topological spaces. A map between spaces over P is a natural transformation as usual.
The grading of P defines a filtration

X 0
�X 1

� � � � �X n
�X nC1

� � � � ;

where X nD colim X jP�n for the restriction X jP�n of X to the subcategory P�n WD`
0�k�n Pk . We say that X is n–cofibrant if the canonical map X i ! X iC1 is a

cofibration for i D 0; : : : ; n� 1. There is a sufficient condition for the n–cofibrancy.

Lemma 2.1 (cf [19]) If all arrows of X jP�n are cofibrations, X is n–cofibrant.

We now define natural retractions in the diagram X , and state the main result of this
section.

Definition 2.2 We say that X is retractile if every arrow �q;pW Xp ! Xq admits a
retraction �p;q satisfying

�p;r ı �r;q D �p;q and �p;r D �p;q ı �q;r for p < q < r:

Let X;Y be retractile spaces over P . We say that a map f W X ! Y of spaces over
P preserves retractions if �Y

p;q ı fq D fp ı �
X
p;q for any p < q 2 P , where �X

p;q and
�Y

p;q are the retractions of X and Y , respectively. Put X.p/ WDXp=colim X jP<p
for

p 2 P , where P<p WD fq 2 P j q < pg.

Algebraic & Geometric Topology, Volume 16 (2016)
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Theorem 2.3 Let X be a space over a graded lower semilattice P . If X is n–cofibrant
and †X is retractile, then there is a homotopy equivalence

†X n
'†

_
p2P�n

X.p/

which is natural with respect to maps of spaces over P preserving retractions.

Remark 2.4 We can generalize Theorem 2.3 by weakening the condition to that there
are maps x�p;qW †Xq!†X.p/ for any q > p 2 P such that the composite

†Xp

†�q;p

����!†Xq

x�p;q

���!†X.p/

is the quotient map and x�p;q ı†�q;r D x�p;r for p < r < q 2P , where �p;q is an arrow
in X . Indeed, we can construct a quotient map x�m

p W X
m! X.p/ for p 2 Pk with

k � m satisfying a property analogous to Lemma 2.5, so the proof of Theorem 2.3
works for this situation.

The rest of this section is devoted to the proof of this theorem, and we prepare two
lemmas.

Lemma 2.5 For p 2 Pk with k � m, there is a retraction �m
p W X

m ! Xp of the
canonical map Xp!X m satisfying

�m
p ı i D �`p

for k � `�m and the canonical map i W X `!X m .

Proof Let �r;qW Xq ! Xr be the arrow in X for q < r 2 P . Fix p 2 Pk . Since P

is a lower semilattice, we can define a space Y over P by putting Yq D Xp^q and
the arrow Yq ! Yr to be �p^r;p^q . Then the map �q WD �q;p^qW Yq D Xp^q ! Xq

defines a map � W Y !X of spaces over P . Indeed for q < r , we have

�r ı �p^r;p^q D �r;p^r ı �p^r;p^q D �r;p^q D �r;q ı �q;p^q D �r;q ı �q:

The map �q WD �p^q;qW Xq ! Xp^q D Yq also defines a map � W X ! Y of spaces
over P since for q < r , we have

�r ı �r;q D �p^r;r ı �r;q D �p^r;p^q ı �p^q;q D �p^r;p^q ı �q:

By definition, we have � ı � D 1Y and Y n D Xp for n � k . Thus the induced map
X m! Y m DXp from � is the desired retraction.

Algebraic & Geometric Topology, Volume 16 (2016)



Decompositions of suspensions of spaces involving polyhedral products 829

Lemma 2.6 [10, Theorem 4.2] If there is a homotopy retraction r of the suspension
†f of a cofibration f W A! B , then the map

r C†� W †B!†A_†.B=A/

is a homotopy equivalence, where � W B! B=A is the projection.

Proof of Theorem 2.3 We show that the mapX
p2P�n

†�p ı �
n
pW †X n

!†
_

p2P�n

X.p/

is a homotopy equivalence, which implies the desired naturality, where �n
p is as in

Lemma 2.5 for †X and �pW Xp!X.p/ is the projection. Let �n denote the map in
the statement. We induct on n. For nD 0, the theorem is trivial. Suppose that �n�1

is a homotopy equivalence. Since the restriction �nj†X n�1 is homotopic to �n�1 by
Lemma 2.5, the map

.�n�1/�1
ı

X
p2P�n�1

†�p ı �
n
pW †X n

!†X n�1

is a left homotopy inverse of the canonical map †X n�1!†X n . Then it follows from
Lemma 2.6 that the map

x� C
X

p2P�n�1

†�p ı �
n
pW †X n

!†.X n=X n�1/_†
_

p2P�n�1

X.p/

is a homotopy equivalence, where x� W †X n! †.X n=X n�1/ is the projection. It is
obvious that †.X n=X n�1/ D

W
p2Pn X.p/ and the projection x� is homotopic toP

p2Pn †�p ı �
n
p , completing the proof.

3 Applications of Theorem 2.3

This section shows three applications of Theorem 2.3 which recover the results of [5]
and [1].

3.1 Product spaces

We consider the product space X1 � � � � �Xm . Let Œm� denote a finite set f1; : : : ;mg.
We define a space X over a lattice 2Œm� , the power set of Œm�, by

XI WD

Y
i2I

Xi

Algebraic & Geometric Topology, Volume 16 (2016)
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for I � Œm�. Then it is obvious that X is retractile. By definition, we have X n is the
generalized fat wedge

f.x1; : : : ;xm/ 2X1 � � � � �Xm j at least m� n of the xi are basepointsg;

and X.I/D
V
i2I

Xi for I � Œm�. By Theorem 2.3 we get the standard decomposition

†.X1 � � � � �Xm/'†
_

I�Œm�

^
i2I

Xi :

The case mD 2 is the above mentioned decomposition of a product of two spaces. This
decomposition of product spaces is generalized to that of polyhedral products below.

3.2 Polyhedral products

Let K be an abstract simplicial complex on the vertex set Œm�, and let .X ;A/ WD
f.Xi ;Ai/gi2Œm� be a collection of pairs of pointed spaces indexed by the vertex set of
K . The polyhedral product ZK .X ;A/ is defined by

ZK .X ;A/ WD
[
�2K

.X ;A/� .�X1 � � � � �Xm/;

where .X ;A/� D Y1 � � � � � Ym , where Yi D Xi if i 2 � and Yi D Ai otherwise.
Polyhedral products are connected with several areas of mathematics as mentioned in
Section 1, and this connection is actually made through homotopy invariants in many
cases. So it is particularly important to describe the homotopy types of polyhedral
products. In studying the homotopy types of polyhedral products, the decomposition of
suspensions of polyhedral products due to Bahri, Bendersky, Cohen, and Gitler [5] is
fundamental as in [8; 11; 12], and we here recover this decomposition from Theorem 2.3.
For I � Œm�, put KI WD f� � I j � 2Kg and .XI ;AI / WD f.Xi ;Ai/gi2I . Then we
get a polyhedral product ZKI

.XI ;AI / that admits an inclusion

�J ;I W ZKI
.XI ;AI /! ZKJ

.X J ;AJ /

for I � J � Œm� by using the basepoints, where we assume ZK∅.X∅;A∅/ is a point.
For I � J � Œm�, the projection

Q
j2J Xj !

Q
i2I Xi induces a map

�I;J W ZKJ
.X J ;AJ /! ZKI

.XI ;AI /

which is a retraction of the inclusion �J ;I . This retraction obviously satisfies the
following property.

Lemma 3.1 For I;J � Œm�, we have

�I\J ;I ı �I;I[J D �I\J ;J ı �J ;I[J :
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The assignment
I 7! ZKI

.XI ;AI /

defines a space over a lattice 2Œm� which we denote by Z . We define the grading of
2Œm� by the cardinality of subsets. Then the associated filtration

� DZ0
�Z1

� � � � �Zm
D ZK .X ;A/

is the fat wedge filtration which plays the fundamental role in describing the homotopy
type of the special polyhedral product ZK .C X ;X / as in [12]. We can define a spacebZK .X ;A/ by replacing the direct product with the smash product in the definition of
the polyhedral product ZK .X ;A/ above. Then for I � Œm�, we have

Z.I/D bZKI
.XI ;AI /:

Note that by Lemma 2.1, if each .Xi ;Ai/ is an NDR pair, then Z is m–cofibrant. By
Lemma 3.1, Z is also retractile, so by Theorem 2.3 we obtain:

Theorem 3.2 (Bahri, Bendersky, Cohen, and Gitler [5]) If .X ;A/ is a collection of
NDR pairs, there is a homotopy equivalence

†ZK .X ;A/'†
_

∅¤I�Œm�

bZKI
.XI ;AI /

which is natural with respect to .X ;A/.

Example 3.3 Let .X ;�/ denote n–copies of a pair of a space and its basepoint .X;�/.
Note that bZKI

.X ;�/ is either a point or bX jI j a depending on whether I 62K or I 2K ,
where bX n denotes the smash product of n–copies of X . Then by Theorem 3.2 we have

†ZK .X ;�/'†
_
�2K

bX j� j
which is natural with respect to X . This will be used below.

3.3 Simplicial spaces

Recall that a simplicial space X is a sequence of spaces X0;X1; : : : equipped with
face maps d0; : : : ; dnW Xn!Xn�1 and degeneracy maps s0; : : : ; snW Xn!XnC1 for
all n which satisfy the well-known simplicial identity. We construct a space X over
a graded lattice 2Œn� for fixed n from a simplicial space X , where the grading of the
lattice 2Œn� is given by the cardinality of subsets as above. For I � Œn�, we put

XI WDXjI j:
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For i 62 I , we define �I[i;I W XI !XI[i to be the degeneracy map sj , where I [ i D

fi1 < � � � < ijI jC1g and ij�1 D i . Then we easily see that this generates a space X

over 2Œn� . Moreover, by the simplicial identity, dj is a retraction of sj which makes X

retractile too by the simplicial identity. We next describe X m in terms of the degeneracy
maps. We set

Sk.Xn/ WD fx 2Xn j x D si1
� � � sik

.y/ for some y 2Xn�k and i1 > � � �> ikg

for k � 0 and S�1.Xn/ to be a point. By the simplicial identity disi D 1, the map
si W Xm! si.Xm/ is a homeomorphism, so we have

X n�k
Š Sk.Xn/:

Then we get

Sk.Xn/=S
kC1.Xn/ŠX n�k=X n�k�1

D

_
I�Œn�;jI jDn�k

X .I/;

which was observed in [1]. Thus we obtain:

Theorem 3.4 Let X be a space over 2Œn� associated with a simplicial space X . If X

is n–cofibrant, then

†X n
'†

n_
kD0

Sk.Xn/=S
kC1.Xn/ and Sk.Xn/=S

kC1.Xn/Š
_

I�Œn�;jI jDn�k

X .I/;

which are natural with respect to simplicial maps.

Example 3.5 Regard Œn� as a discrete space, and consider the standard cosimplicial
structure on fŒn�gn�1 , where the indexing differs from the usual case by one. For a
space X , we define a simplicial space X by

X n�1 WDmap.Œn�;X / .DX n/:

Then we have X n�1 DX n and Sk.X n�1/ is

f.x1; : : : ;xn/2X n
jxi1
Dxi1C1; : : : ;xik

DxikC1
for some 1� i1< � � �< ik �n�1g;

which is the union of a special diagonal arrangement investigated below. Thus
Theorem 3.4 gives a decomposition of †.X n/ which is not the standard one in
Section 3.1. This type of construction applies to the spaces of commuting elements in
a Lie group as in [1].
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4 Diagonal arrangements

Homotopy decompositions are fundamental powerful tools in studying the topology
of subspace arrangements and their complements. Here are two examples: Ziegler
and Z̆ivaljević [23] decomposed the one-point compactification of affine subspace
arrangements, from which one can deduce the well known Goresky–MacPherson
formula [7] on the (co)homology of the complements of affine subspace arrangements,
and Bahri, Bendersky, Cohen, and Gitler [5] decompose suspensions of polyhedral
products including coordinate subspace arrangements and their complements, from
which one can deduce Hochster’s formula on related Stanley–Reisner rings, whereas
Grbić and Theriault [8] and the authors [11; 12] studied the desuspension of the
decomposition of †ZK .C X ;X /, where .C X ;X / is the sequence of cones and their
bases. In this section we consider a decomposition of the union of an arrangement of
the following special subspaces. Fix a space X . For a subset � � Œm�, the subspace of
X m defined by

�� .X / WD f.x1; : : : ;xm/ 2X m
j xi1
D � � � D xik

for fi1; : : : ; ikg D Œm�� �g

is called the diagonal subspace of X m associated with � . The arrangement of diagonal
subspaces

��1
.X /; : : : ; ��k

.X / for �1; : : : ; �k � Œm�

is called the diagonal arrangement, where it is sometimes called the hypergraph ar-
rangement since it is determined by the hypergraph whose vertex set is Œm� and edges
are �1; : : : ; �k . One can regard diagonal arrangements as a generalization of the braid
arrangement which corresponds to the diagonal arrangement defined by all subsets of
Œm� with cardinality m� 2. The topology and combinatorics of diagonal arrangements
have been studied in several directions; see [17; 22; 16; 14; 18; 21; 20] for example. In
this paper, we are interested in the topology of the union ��1

.X /[ � � � [��k
.X /.

We set convention and notation on diagonal arrangements. By removing the inessential
part, we may assume that �1[ � � �[�k D Œm� for the above diagonal arrangement, and
it is useful to consider all diagonal subspaces included in ��1

.X /; : : : ; ��k
.X /, for

example, to express the union as a colimit, that is, we consider all diagonal subspaces
�� .X / for � 2K , where K is a simplicial complex generated by �1; : : : ; �k . Then
we assume that all diagonal arrangements have the form

f�� .X / j � 2Kg

for a simplicial complex K on the vertex set Œm�. For example, the braid arrangement
is the case when K is the .m� 3/–skeleton of the .m� 1/–dimensional full simplex.
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We put
�K .X / WD

[
�2K

�� .X /:

Observe that the polyhedral product ZK .X ;�/ is a subspace of �K .X /, where .X ;�/
denotes m–copies of .X;�/.

Labassi [18] shows that the suspension †�K .X / decomposes into a wedge of smash
products of copies of X when K is the .m�d � 1/–skeleton of the .m� 1/–simplex
and 2d >m, in which case �K .X / consists of all .x1; : : : ;xm/ 2 X m such that at
least d –tuple of the xi are identical. The proof for this decomposition in [18] heavily
depends on the symmetry of the skeleta of simplices, and so it cannot apply to general
K . However, Sadok Kallel posed the following problem to the authors: is there a
homotopy decomposition of †�K .X / for 2.dim KC1/<m which includes Labassi’s
decomposition? We give an affirmative answer to this question in the following:

Theorem 4.1 If X has the homotopy type of a connected CW–complex and we have
2.dim KC 1/ <m, then

†�K .X /'†

�_
�2K

bX j� j _ bX j� jC1

�
;

where bX k is the smash product of k –copies of X for k > 0 and bX 0 is a point.

As a corollary, we calculate the Euler characteristic of the complement of the diagonal
arrangement MK .X /DX m��K .X /.

Corollary 4.2 Let X be a closed connected n–manifold. If 2.dim KC 1/ <m, the
Euler characteristic of MK .X / is given by

�.MK .X //D �.X /
m
� .�1/mn�.X /

�
1C

X
∅¤�2K

.�.X /� 1/j� j
�
:

Proof Since X is a compact manifold, �K .X / is a compact, locally contractible sub-
set of an mn–manifold X m . Then by Poincaré–Alexander duality [9, Proposition 3.46],
there is an isomorphism

Hi.X
m;MK .X /IZ=2/ŠH mn�i.�K .X /IZ=2/;

implying that �.X m;MK .X //D .�1/mn�.�K .X //. Since �. bX k
/D .�.X /�1/kC1

for k � 1, it follows from Theorem 4.1 that

�.X m;MK .X //D .�1/mn�.X /

�
1C

X
∅¤�2K

.�.X /� 1/j� j
�
:
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Therefore the proof is completed by the equality

�.X m/D �.X m;MK .X //C�.MK .X //:

Remark 4.3 Corollary 4.2 does not hold without compactness of X . For example,
if X DR (hence nD 1) and K is the .m� 3/–skeleton of the full .m� 1/–simplex,
MK .X / is homotopy equivalent to m! points, implying �.MK .X // D m! which
differs from Corollary 4.2.

5 Proof of Theorem 4.1

The outline of the proof of Theorem 4.1 is as follows. As mentioned above, the
polyhedral product ZK .X ;�/ is a subspace of �K .X /. In general the inclusion
ZK .X ;�/ ! �K .X / is not a fiber inclusion of a homotopy fibration, so we can-
not connect properties of polyhedral products to those of �K .X /. But under the
condition 2.dim KC 1/ < m, we can describe the inclusion to some extent, which
enables us to apply the decomposition of polyhedral products from Example 3.3 to
obtain Theorem 4.1.

We abbreviate ZK .X ;�/ by X K . We start the proof of Theorem 4.1 by showing that
the inclusion X K !�K .X / is a fiber inclusion of a homotopy fibration. For this, we
apply the following result of Puppe.

Lemma 5.1 (cf [6, Proposition, page 180]) Let fFi!Ei!Bgi2I be an I–diagram
of homotopy fibrations over a fixed connected base B . Then

hocolim
I

Fi! hocolim
I

Ei! B

is a homotopy fibration.

Proposition 5.2 If X is connected and 2.dim KC 1/ <m, then there is a homotopy
fibration

X K
!�K .X /

�
�!X:

Proof Let � be a subset of Œm� satisfying j� j<m=2. For each point .x1; : : : ;xm/ 2

�� .X /, there is unique x 2 X such that more than m=2 of the xi are equal to x .
Then by assigning such a point x to .x1; : : : ;xm/ 2�� .X /, we get a map

�� .X /!X

which is identified with the coordinate projection through a homeomorphism �� .X /Š

X j� jC1 . Hence this map is a fibration with fiber .X ;�/� , and yields a diagram of
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fibrations f.X ;�/�!�� .X /!X g�2K . Thus, by Lemma 5.1, we obtain a homotopy
fibration

hocolim
�2K

.X ;�/� ! hocolim
�2K

�� .X /!X:

For any � � � � Œm�, the inclusions .X ;�/� ! .X ;�/� and �� .X /! ��.X / are
cofibrations, implying that there are natural homotopy equivalences

hocolim
K

.X ;�/� ' colim
K

.X ;�/� DX K ;

hocolim
K

�� .X /' colim
K

�� .X /D�K .X /;

completing the proof.

We next show that the fibration of Proposition 5.2 splits after a suspension. To this end,
we use the following.

Lemma 5.3 Consider a homotopy fibration F
j
�! E

�
�! B of spaces that have the

homotopy types of connected CW–complexes. If †j W †F ! †E has a homotopy
retraction, then

†E '†B _†F _†.B ^F /:

Remark 5.4 If we assume further that F is of finite type in Lemma 5.3, it immediately
follows from the Leray–Hirsch theorem that the map � in the proof of Lemma 5.3
is an isomorphism in cohomology with any field coefficient, implying that � is an
isomorphism in the integral homology by [9, Corollary 3A.7].

Proof Let r W †E!†F be a homotopy retraction of †j , and let � be the composite

†E!†E _†E _†E
†�_r_�
������!†B _†F _†.E ^E/

1_1_.�^r/
��������!†B_;

where A_DA_F_.A^F / for a space A. Since †E and †B_†F_†.B^F / have
the homotopy types of simply connected CW–complexes, it is sufficient to show that �
is an isomorphism in homology by the J H C Whitehead theorem. We first consider the
special case when there is a fiberwise homotopy equivalence � W B �F !E over B .
Then it is straightforward to see that

�� ı ��.b �f /D b � y��.f /C
X
jbi j<jbj

bi �fi

for singular chains b; bi in B and f; fi in F , where we omit writing the suspension
isomorphism of homology and y� is a self-homotopy equivalence of F given by the
composite

†F
j
�!†.B �F /

�
�!†E

r
�!†F:
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This readily implies that the map � ı � is an isomorphism in homology, and then so
is � . For nonconnected B , the above is also true if we assume that r is a homotopy
retraction of the suspension of the fiber inclusion on each component of B . We next
consider the general case. Let Bn be the n–skeleton of B , and let En D �

�1.Bn/.
We prove that the restriction �j†En

W †En! †B_n is an isomorphism in homology
by induction on n. Since B is connected, j is homotopic to the composite

F ' ��1.b/
incl
��!E

for any b 2B . Then �j†E0
W †E0!†B_

0
is an isomorphism in homology. Consider

the following commutative diagram of homology exact sequences:

(5-1)

� � � // H�.En�1/ //

.�j†En�1
/�

��

H�.En/ //

.�j†En /�
��

H�.En;En�1/ //

.�j†En /�
��

� � �

� � � // H�. LBn�1/ // H�. LBn/ // H�. LBn; LBn�1/ // � � �

By the induction hypothesis, .�j†En�1
/� is an isomorphism. Since Bn�1 is a sub-

complex of Bn , there is a neighborhood U � Bn of Bn�1 which deforms onto Bn�1 .
Then there is a commutative diagram

(5-2)

H�.En;En�1/
Š
//

.�j†En /�
��

H�.En; �
�1.U //

.�j†En /�
��

H�.B
_
n ;B

_
n�1

/
Š
// H�.B

_
n ;U

_/

where the basepoint is taken in Bn�1 . On the other hand, by the excision isomorphism,
there is a commutative diagram

(5-3)

H�.En; �
�1.U //

.�j†En /�
��

H�.En�En�1; �
�1.U /�En�1/

.�j†.En�En�1//�

��

Š
oo

H�.B
_
n ;U

_/ H�..Bn�Bn�1/
_; .U �Bn�1/

_/
Š

oo

where the basepoint is taken in U �Bn�1 and is connected by a path to the former
basepoint in Bn�1 . Since each connected component of Bn �Bn�1 is contractible,
En �En�1 is fiberwise homotopy equivalent to .Bn �Bn�1/�F over Bn �Bn�1 ,
and then so is also ��1.U /�En�1 to .U �Bn�1/�F over U �Bn�1 . As in the
0–skeleton case, we see that r restricts to a homotopy retraction of the suspension
of the fiber inclusion on each component of Bn �Bn�1 . Then by the above trivial
fibration case, we obtain that the map .�j†.En�En�1//� in (5-3) is an isomorphism.
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Although the basepoints used in (5-2) and (5-3) are distinct, they are connected by a
path. In particular, we can juxtapose (5-2) and (5-3) to obtain that the right .�j†En

/�
in (5-1) is an isomorphism. Thus by the five-lemma, the middle .�j†En

/� in (5-1) is
an isomorphism. We finally take the colimit to get that the map � is an isomorphism
in homology as desired, completing the proof.

To apply Lemma 5.3 to the fibration of Proposition 5.2, we construct a homotopy
retraction of a suspension of the fiber inclusion j W X K !�K .X /. We first consider
a special case.

Proposition 5.5 If X is an H–space that has the homotopy type of a CW–complex
and 2.dim KC 1/ <m, then the fibration of Proposition 5.2 is trivial.

Proof Consider the map

'W X �X K
!�K .X /; .x; .x1; : : : ;xm// 7! .xx1; : : : ;xxm/:

Then ' satisfies a homotopy commutative diagram

X K // X �X K //

'

��

X

X K // �K .X / // X

in which two rows are homotopy fibrations. Then it follows from the homotopy exact
sequence that ' is a weak homotopy equivalence, hence a homotopy equivalence by
the J H C Whitehead theorem.

We set notation. Put bX K D
W
�2K

bX j� j , and let �W †X K '
�! † bX K denote the

homotopy equivalence of Example 3.3. Then a map f W X ! Y induces maps
f K W X K ! Y K and yf K W bX K ! bY K which satisfy a commutative diagram

†X K �
//

†fK

��

†bX K

† yfK

��

†Y K �
// †bY K :

Proposition 5.6 If X has the homotopy type of a connected CW–complex and
2.dim KC 1/ <m, then the inclusion j W X K !�K .X / has a homotopy retraction
after a suspension.
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Proof Let EW X ! �†X be the suspension map. Since †E has a retraction, we
easily see that the induced map †bEK W †bX K ! †1�†X K has a retraction, say r .
Then we get a homotopy commutative diagram

†bX K †bX K ��1
//

†bEK

��

†X K †j
//

†EK

��

†�K .X /

†�K .E/

��

†.�†X /K
†j
// †�K .�†X /

†bX K †1�†X Kr
oo †.�†X /K

�
oo †�K .�†X /

†r 0
oo

where �K .E/W �K .X / ! �K .�†X / is induced from E and r 0 is obtained by
Proposition 5.5. Thus the composite

†�K .X /
†�K .E/
������!†�K .�†X /

†r 0

��!†.�†X /K
�
�!†1�†X K r

�!† bX K ��1

��!†X K

is the desired homotopy retraction.

Proof of Theorem 4.1 Combine Example 3.3, Proposition 5.2, Lemma 5.3 and
Proposition 5.6.
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