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Intersection homology of linkage spaces
in odd-dimensional Euclidean space

DIRK SCHÜTZ

We consider the moduli spaces Md .`/ of a closed linkage with n links and prescribed
lengths ` 2 Rn in d–dimensional Euclidean space. For d > 3 these spaces are no
longer manifolds generically, but they have the structure of a pseudomanifold.

We use intersection homology to assign a ring to these spaces that can be used to
distinguish the homeomorphism types of Md .`/ for a large class of length vectors.
These rings behave rather differently depending on whether d is even or odd, with
the even case having been treated in an earlier paper. The main difference in the odd
case comes from an extra generator in the ring, which can be thought of as an Euler
class of a stratified bundle.

55R80; 55N33, 55N45

1 Introduction

We continue our studies of the moduli spaces of closed n–gon linkages in high-
dimensional Euclidean space. These spaces are determined by a length vector ` 2Rn

such that all entries are positive. More precisely, the moduli space we are interested
in is

Md .`/D

�
.x1; : : : ;xn/ 2 .S

d�1/n
ˇ̌̌̌ nX

iD1

`ixi D 0

��
SO.d/;

where SO.d/ acts diagonally on the product of spheres. A natural question is how
the topology of Md .`/ depends on `, and one of the first observations is that Rn

is divided into finitely many chambers such that length vectors in the same chamber
lead to homeomorphic moduli spaces. One may then ask whether length vectors from
different chambers (up to permutation of coordinates) have different moduli spaces.

In the planar case d D 2, Walker [16] conjectured that the cohomology ring of these
spaces is enough to distinguish them, which was then confirmed by Farber, Hausmann
and the author [4; 13]. Furthermore, in [4] this was also shown for d D 3, with the
single exception of nD 4, where for two different chambers the moduli space is the
2–sphere. Indeed, it follows from the work of Schoenberg [12] that for nD dC1 each
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484 Dirk Schütz

non-empty moduli space is a sphere and for n� d the non-empty ones are discs. The
homology calculations of Schütz [14] indicate that for n � d C 2 the topology does
depend on `, but they also show that homology and cohomology are not enough to
distinguish them. In [15] the author used intersection homology to distinguish moduli
spaces of a large class of length vectors for d � 4 even. Here we show that this
approach also works for d � 5 odd.

The main theorem we thus get for the topology of moduli spaces is the following:

Theorem 1.1 Let d � 2 and let `, `0 2 Rn be generic, d–normal length vectors. If
Md .`/ and Md .`

0/ are homeomorphic, then ` and `0 are in the same chamber up to a
permutation.

For the precise definition of generic and d–normal we refer the reader to Section 2.
As mentioned above, the remaining case is when d � 5 is odd. For d � 4 the moduli
spaces are no longer manifolds, so in Schütz [15] a substitute for the cohomology
ring using intersection homology was defined. For d even, specific generators were
found and it was shown that this ring is an exterior face ring similar to the situation
when d D 2.

For odd d this ring has an extra generator, which makes the determination of the ring
more difficult. However, this is the same situation as in the case d D 3, where the
cohomology ring was calculated by Hausmann and Knutson [11]. While we do not
determine the ring completely, we do obtain enough information to mimick the proof
used in [4] to get the result for d D 3, which relied on the cohomology description of
[11]. A crucial observation is that the extra generator can be thought of as an Euler
class of a certain stratified bundle over Md .`/, from which its multiplication with the
other generators can be deduced.

Similar results to Theorem 1.1 have been obtained by Farber, Hausmann and Schütz [5]
and Farber and Fromm [3] for chain spaces and free polygon spaces, respectively.
These spaces are closed manifolds for generic ` and all d � 2, and the proofs do not
rely on distinguishing between even and odd d . It may be possible to give a unified
proof of Theorem 1.1 by using Z=2 coefficients throughout.

One could ask whether the condition of d–normality is necessary for n> d C 1, as it
is not necessary for d D 2, 3. It seems unlikely though that this can be attacked using
intersection homology.
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2 Basic properties of linkage spaces

We define the chain space of a length vector ` as

Cd .`/D

�
.x1; : : : ;xn�1/ 2 .S

d�1/n�1

ˇ̌̌̌ n�1X
iD1

`ixi D�`ne1

�
;

where e1 D .1; 0; : : : ; 0/ 2Rd is the usual first coordinate vector. If we let SO.d � 1/

act on Sd�1 by fixing the first coordinate, we see that SO.d � 1/ acts diagonally
on Cd .`/ and

Md .`/Š Cd .`/=SO.d � 1/:

We also define

Nd .`/D

�
.x1; : : : ;xn/ 2 .S

d�1/n
ˇ̌̌̌ nX

iD1

`ixi D 0

��
O.d/;

so that Nd .`/ŠMd .`/=.Z=2/.

Definition 2.1 Let ` 2 Rn be a length vector. A subset J � f1; : : : ; ng is called
`–short if X

j2J

j̀ <
X
i 62J

`i :

It is called `–long if the complement is `–short. If every such subset is either `–short
or `–long, the length vector is called generic.

A length vector `D .`1; : : : ; `n/ is called ordered if `1 � `2 � � � � � `n .

After permuting the coordinates we can always assume that ` is ordered.

If ` 2Rn is ordered and k � n� 3, we write

Sk.`/D fJ � f1; : : : ; ng j n 2 J; jJ j D kC 1; J is `–shortg:

The cardinality of these sets is denoted by

ak.`/D jSk.`/j;

and we write S�.`/ for the simplicial complex which is the collection of all Sk.`/.

If J � f1; : : : ; ng, we define the hyperplane

HJ D

�
.x1; : : : ;xn/ 2Rn

ˇ̌̌̌ X
j2J

xj D

X
j 62J

xj

�
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486 Dirk Schütz

and let
HDRn

>0�

[
J�f1;:::;ng

HJ ;

where Rn
>0
D f.x1; : : : ;xn/ 2 Rn j xi > 0g. Then H has finitely many components,

which we call chambers. It is clear that a length vector ` is generic if and only if `2H .

Hausmann [10] shows that if ` and `0 are in the same chamber, then Cd .`/ and Cd .`
0/

are O.d�1/–equivariantly diffeomorphic. In particular, Md .`/ and Md .`
0/ are

homeomorphic.

It is easy to see that two ordered generic length vectors ` and `0 are in the same
chamber if and only if Sk.`/D Sk.`

0/ for all k D 0; : : : ; n� 3.

Definition 2.2 Let `2Rn be a length vector and d � 2. Then ` is called d–normal if\
J2Ld .`/

J 6D∅;

where Ld .`/ are the subsets J � f1; : : : ; ng with d � 1 elements that are `–long. If
Ld .`/D∅, we let the intersection above be f1; : : : ; ng. We call a chamber d–normal
if its length vectors are d–normal.

So, for a length vector to be not d–normal, we need a long subset J � f1; : : : ; ng with
d � 1 elements such that J does not contain an element m with `m maximal, because
then we can replace any element of J with m to get another `–long subset with d � 1

elements, and the intersection of these sets will be empty.

If ` is ordered, then ` is d–normal if and only if fn� d C 1; n� d C 2; : : : ; n� 1g is
not `–long. For a generic length vector this is equivalent to Sn�d .`/D∅.

It follows from the definition that every length vector with n� 2 is 2–normal. Further-
more, there is only one chamber up to permutation which is not 3–normal, namely the
one containing1 `D .0; : : : ; 0; 1; 1; 1/. In [5], 4–normal was called normal.

In the case d D n� 1, there are only two generic d–normal length vectors ` 2 Rn

up to permutation, namely `D .1; : : : ; 1; n� 2/ and `0 D .0; : : : ; 0; 1/. If n is large
compared to d , d–normality gets more common, and we would expect the ratio of all
d–normal chambers in Rn by all chambers in Rn to converge to 1.

For d D 2, 3 and ` generic, the spaces Md .`/ are obtained as a quotient space
from Cd .`/ using a free action, so they are closed manifolds. For d � 4 this is no

1Technically, this ` is not a length vector because of 0–entries. We interpret a 0–entry in a length
vector as " > 0 so small that decreasing it does not change the chamber.
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longer the case and we get different orbit types. Let x 2Md .`/ be represented by
.x1; : : : ;xn/ 2 .S

d�1/n. If we think of this as a d � n matrix, the rank of this matrix
does not depend on the representative of x .

Definition 2.3 Let ` 2 Rn
>0

be a generic length vector and x 2Md .`/. Then the
rank of x , rank x , is the rank of a d � n matrix representing x .

For k < d we have an inclusion Nk.`/!Md .`/ and Nk.`/ are exactly those points
with rank at most k . It was shown in [15] that these subsets form a stratification
of Md .`/ and Md .`/ is a pseudomanifold for n� d C 1. Note that SO.d � 1/ acts
freely on points of rank d � 1 in Cd .`/, so that the regular set is Md .`/�Nd�2.`/.

The stratification we will look at is therefore given by

∅DN1 �N2.`/�N3.`/� � � � �Nd�2.`/�Md .`/:

The singular strata are therefore given by Nk.`/�Nk�1.`/ for k D 2; : : : ; d � 2 and
they are easily seen to be connected. The dimension of Md .`/ (and Nd .`/) for n� d

is given by
dn

d D .n� 3/.d � 1/� 1
2
.d � 2/.d � 3/I

see [14].

We need to recall a few basic facts about intersection homology.

Definition 2.4 Let X be a stratified pseudomanifold, a (general) perversity is a func-
tion

pW fsingular strata of X g ! Z:

For our purposes, this mainly means functions pW f2; : : : ; d � 2g ! Z, where k in
f2; : : : ; d�2g corresponds to the stratum Nd�k.`/�Nd�k�1.`/. Also, we are mostly
interested in Goresky–MacPherson perversities, which for us means that

p.2/� 2.n� d/� 1;

p.kC 1/�p.k/� n� d C kI

compare [15]. The top perversity tn D t is then given by

t.k/D cn
d;k � 2

for all k 2 f2; : : : ; d � 2g, where cn
d;k

denotes the codimension of the stratum
Nd�k.`/�Nd�k�1.`/ and is given by

cn
d;k D k.n� d/C 1

2
k.k � 1/:
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The perversities we need for Md .`/ are given by pj for j D 0; : : : ; n�d � 1 via the
formula

(1) pj .k/D j � k:

It is easy to check that these perversities are Goresky–MacPherson and that piCpj D

piCj for i C j � n� d � 1.

Given a perversity p , we denote the resulting intersection homology by

IpH�.X /;

where the definition is as in [7]. Furthermore, Goresky and MacPherson [7; 8] define
the intersection pairing

\W IpHi.X /� IqHj .X /! IrHiCj�n.X /;

where p , q and r are perversities such that pC q � r , and show that it does not
depend on the stratification of X . Also, I0Hn.X / contains a fundamental class ŒX �,
which serves as a unit.

Now let k , m> 0 and assume that p0; : : : ;pk is a sequence of perversities such that
for all i , j � 0 with i C j � k we have pi C pj � piCj . We can then form the
intersection ring of X with respect to p� and m by

IR�.X /D
kM

rD0

IprHn�rm.X /;

which is a graded ring with unit, where we treat products with gradings rCs>k as zero.
We are mainly interested in the subring generated by the elements of Ip1Hn�m.X /,
called the reduced intersection ring. We denote it by

IR�.X /:

This is a graded ring whose generators have degree m and, if the perversities are
Goresky–MacPherson, it is a homeomorphism invariant by [8].

The sequence of perversities we are usually interested in is the one given by (1), the
intersection homology group we mainly need is

IpjH
d

n�j

d

.Md .`//

and the coefficient ring is given by Z.

Note that p0 is the zero perversity, so this group contains the fundamental class
of Md .`/ for j D 0. Similarly, if we form a length vector `J 2 Rn�jJ j from an
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ordered length vector ` using a subset J � f1; : : : ; n � 1g by linking together the
elements of J with n, the group IpjHd

n�j

d
.Md .`// contains the fundamental class

of Md .`J / for j D jJ j. Note that we need jJ j � n� d � 1 in order for Md .`J / to
be a pseudomanifold. The condition of d–normality of ` implies that Md .`J /D∅
for each J � f1; : : : ; n� 1g with jJ j � n� d .

Proposition 2.5 [15] Let d � 5 be odd, n � d C 2 and ` 2 Rn a generic length
vector with Md .`/ 6D∅. Then

Ip1Hd n�1
d

.Md .`//Š Z1Ca1.`/:

If, for every j 2 f1; : : : ; n� 1g with fj ; ng `–short, we set

`
j
C D .`1; : : : ; ỳj ; : : : ; `nC j̀ / 2Rn�1;

then the fundamental classes ŒMd .`
j
C/�2 Ip1Hd n�1

d
.Md .`// are linearly independent

(assuming that ` is ordered), as shown in [15]. The notation ỳj indicates that this entry
is omitted. It remains to find one more generator for this group.

3 Stratified bundles over linkage spaces

Recall that Md .`/ can be viewed as Cd .`/=SO.d�1/, where SO.d�1/ acts diagonally
on the left of .Sd�1/n , fixing the first coordinate in Rd. We now form the space

Md .`/D Cd .`/�SO.d�1/ Rd�1;

which is the quotient space of Cd .`/�Rd�1 using the equivalence relation given by
.x; v/ � .Ax;Av/ for A 2 SO.d � 1/, x 2 Cd .`/ and v 2 Rd�1 with the standard
action of SO.d � 1/ on Rd�1.

There is a projection pWMd .`/!Md .`/ given by p.Œx; v�/ D Œx�, which can be
viewed as a stratified fibre bundle; see Remark 3.2 below. For now it will be good
enough that Md .`/ is a pseudomanifold, so we begin by finding the right stratification.

For k D 2; : : : ; d � 2, let

N d�k.`/D p�1.Nd�k.`//:

Note that, if Œx; v� 2N d�k.`/, then there is A 2 SO.d � 1/ with Ax 2 Cd�k.`/ and
Av 2Rd�k , where Rd�k �Rd�1 with the last k � 1 coordinates 0. Let

N d�k�1
d�k .`/D fŒx; v� 2Md .`/ j x 2 Cd�k.`/; v 2Rd�k�1

g:
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Then
N d�k�1

d�k .`/�N d�k.`/�N d�k
d�kC1.`/

for k D 3; : : : ; d � 2 and

N d�3
d�2.`/�N d�2.`/�Md .`/:

Also, pjWMd .`/�N d�2.`/!Md .`/�Nd�2.`/ is a vector bundle, because SO.d�1/

acts freely on points of rank d�1 in Cd .`/. Note that, if Œx; v�2N d�k.`/�N d�k�1
d�k

.`/

or Œx; v� 2N d�k�1
d�k .`/�N d�k�1.`/, then rank x D d �k . In the latter case v varies

through Rd�k�1 and in the former case v varies through Rd�k �Rd�k�1. One now
checks easily that Md .`/ is a pseudomanifold with the stratification

∅�N 1
2.`/�N 2.`/�N 2

3.`/� � � � �N d�3
d�2.`/�N d�2.`/�Md .`/:

The codimensions of the strata are

codim.N d�k.`/�N d�k�1
d�k .`//D cn

d;k C k � 1;

codim.N d�k�1
d�k .`/�N d�k�1.`//D cn

d;k C k

for k D 2; : : : ; d � 2.

Recall the perversities pr for Md .`/ and 0� r � n� d � 1 given by

pr .Nd�k.`/�Nd�k�1.`//D k � r;

k D 2; : : : ; d � 2. Similarly, we define the perversities qr for Md .`/ by

qr .N d�k.`/�N d�k�1
d�k .`//D r � k � 1;

qr .N d�k�1
d�k .`/�N d�k�1.`//D r � k:

The inclusion i WMd .`/!Md .`/ given by i.Œx�/D Œx; 0� is stratum-preserving as
i.Nd�k.`/�Nd�k�1.`//�N d�k�1

d�k
.`/�N d�k�1.`/ and, since

pr .Nd�k.`/�Nd�k�1.`//� codim.Nd�k.`/�Nd�k�1.`//

D k � r � cn
d�k

D k.r C 1/� cn
d;k � k

D qrC1.N d�k�1
d�k .`/�N d�k�1.`//� codim.N d�k�1

d�k .`/�N d�k�1.`//;

the inclusion induces a map on intersection homology

i�W I
prH�.Md .`//! IqrC1H�.Md .`//

by [15, Lemma 5.2].
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Lemma 3.1 The map i�W I
prH�.Md .`//! IqrC1H�.Md .`// induces an isomor-

phism with inverse coming from the projection pWMd .`/!Md .`/.

Proof The projection pWMd .`/!Md .`/ satisfies

p.N d�k�1
d�k .`/�N d�k�1.`//�Nd�k.`/�Nd�k�1.`/;

p.N d�k.`/�N d�k�1
d�k .`//DNd�k.`/�Nd�k�1.`/;

with

qrC1.N d�k.`/�N d�k�1
d�k .`//� codim.N d�k.`/�N d�k�1

d�k .`//

D .r C 1/k � 1� cn
d;k � kC 1

D r � k � cn
d;k

D pr .Nd�k.`/�Nd�k�1.`//� codim.Nd�k.`/�Nd�k�1.`//;

so projection induces a homomorphism

p�W I
qrC1H�.Md .`//! IprH�.Md .`//;

which is seen to be the inverse of i� as the straight-line homotopy between i ıp and
the identity on Md .`/ is stratum-preserving and therefore induces the required chain
homotopy.

The pseudomanifold Md .`/ is non-compact, but we can form a similar compact
pseudomanifold by letting

�Md .`/D Cd .`/�SO.d�1/ Dd�1;

@ �Md .`/D Cd .`/�SO.d�1/ Sd�2;�Md .`/D �Md .`/=@ �Md .`/;

with extra stratum � corresponding to @ �Md .`/. If we extend the perversity qr by
defining

qr .�/D r.d � 2/;

we then have

(2) IqrH
d

nC1�r
d

. �Md .`//Š IqrH
d

nC1�r
d

.Md .`//

for r > 1, since allowable k –chains in �Md .`/ with k � dnC1�r
d

C 1 cannot intersect
the extra stratum �. For r D 1 this does not work, as the generator of Iq1Hd n

d
.Md .`//
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bounds in �Md .`/ in an allowable way. We can solve this by resorting to non-Goresky–
MacPherson perversities, setting

q1.�/D 0:

Now (2) also holds for r D 1 and we can form the intersection ring for �Md .`/ given by

IR�. �Md .`//D

n�dM
rD0

IqrH
d

nC1�r
d

. �Md .`//

with the intersection product coming from Friedman [6, Theorem 5.3]. Note that
products involving r1C r2 > n� d are considered 0.

Define an element
R 2 Ip1Hd n�1

d
.Md .`//

as follows. The fundamental class ŒMd .`/� 2 Ip0Hd n
d
.Md .`// represents a gener-

ator X 2 Iq1Hd n
d
. �Md .`//, which we can intersect with itself to obtain an element

X 2 2 Iq2Hd n�1
d

. �Md .`//. We then let RD p�.X
2/.

We want to represent R more directly. For this, define

ij WMd .`/!Md .`/

for each j 2 f1; : : : ; n� 1g by

ij .Œx1; : : : ;xn�1�/D Œx1; : : : ;xn�1; �.xj /�;

where � W Sd�1! Rd�1 is projection to the last d � 1 coordinates of Sd�1 � Rd.
Then

ij .Nd�k.`/�Nd�k�1.`//�N d�k�1
d�k .`/�N d�k�1.`/

and, as ij is stratum-preserving homotopic to i� , we get

.ij /� D i�W I
prH�.Md .`//! IqrC1H�.Md .`//:

Let `D .`1; : : : ; `n/ be a generic, ordered length vector. For j D 1; : : : ; n� 1, recall
the length vector `j

C 2Rn�1 given by

`
j
C D .`1; : : : ; ỳj ; : : : ; `n�1; `nC j̀ /:

If we replace the last coordinate by `n� j̀ , we get a length vector that we call `j
�2Rn�1.

As in [15], we now get elements

ŒMd .`
1
C/�; : : : ; ŒMd .`

n�1
C /�; ŒMd .`

1
�/�; : : : ; ŒMd .`

n�1
� /� 2 Ip1Hd n�1

d
.Md .`//:
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For the moment, there is still some ambiguity about the orientations of these elements.
To resolve this, note that we can think of Md .`

j
˙
/ as a subset of Md .`/ using the

standard zero section. Then

Md .`/\ ij .Md .`//D fŒx1; : : : ;xn�1; 0� j xj 2 S0
g DMd .`

j
C/tMd .`

j
�/:

Choosing an orientation of Md .`/ then induces an orientation on Md .`/\ ij .Md .`//

for all j D 1; : : : ; n� 1. In particular, we get

(3) RD ŒMd .`
j
C/�C ŒMd .`

j
�/�

for all j D 1; : : : ; n� 1. As RD p�.X
2/ we see that

2.ŒMd .`
j
C/�C ŒMd .`

j
�/�/D 0

for even d , which differs slightly from [15, Lemma 7.5] because of different orientation
conventions.

To simplify notation, let us write

Xj D ŒMd .`
j
C/� 2 Ip1Hd n�1

d
.Md .`//;

X�j D ŒMd .`
j
�/� 2 Ip1Hd n�1

d
.Md .`//:

Remark 3.2 The space Md .`/ is a stratified bundle, in the sense of Baues and
Ferrario [1]. To see this, let M be a compact smooth G–manifold, where G is a
compact Lie group. If F denotes the orbit category of G, that is, the category with
objects G=H for H a closed subgroup of G, whose morphisms are G–equivariant
maps G=H !G=H 0, then M !M=G is an F–stratified bundle by [1, Example 4.6];
see also Davis [2]. Now let V be a vector space and �W G!GL.V / a representation.
Define the category V as a subcategory of topological spaces where the objects are
the quotient spaces V =H for H a closed subgroup of G. There is an obvious functor
'V W F ! V and one can check that M �G V agrees with the coend construction
M ı˝F 'V described in [1, Section 6]. In particular, pW M �G V !M=G is a V–
stratified fibre bundle in the sense of [1]. Notice however that it is not a stratified vector
bundle in general.

We can now think of the element R above as an Euler class, in that it represents an
obstruction for the existence of a stratified non-zero section � WMd .`/!Md .`/. One
would expect that the above constructions can extend to M �G V !M=G and one
may ask how far this can be generalized to the setting of stratified fibre bundles.
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4 The reduced intersection ring of Md.`/

For the next lemma, we also use the notation

XK D

Y
i2K

Xi

for K � f1; : : : ; n� 1g.

Lemma 4.1 Fix d�4, ` a generic, ordered d–normal length vector, J �f1; : : : ; n�1g

such that J [fng is `–short, and K� f1; : : : ; n�1g with jKj D jJ j. Then there exists
YJ 2 I0HjJ j.d�1/.Md .`// with

XK �YJ D

�
1 if K D J;

0 else,
and R �YJ D 0:

Proof In [15, Lemma 8.1] explicit duals YJ for XJ were constructed by defining
appropriate embeddings of .Sd�1/jJ j into Md .`/. The relation YJ �XK D0 for K 6DJ

was a consequence of being able to avoid letting the k th coordinate xk of the element
in Md .`/ point in the same direction as xn .

To do this, the robot arm consisting of those links which were not part of J [fng had
to trace the area in Rd that could be reached by the robot arm consisting of the links
in J and which started at `ne1 2 Rd. To do this, the first robot arm has to trace a
straight line and then reach all other points using appropriate rotations, where not all
links would rotate the same way. For the first link (the one connected to the origin),
one can avoid completely this latter rotation, so one just has to avoid the points ˙e1

during the trace of the straight line, which can easily be done. Note that even for d D 4

we have n� 6 to avoid trivial cases, so that the first robot arm has at least four links.

Such a dual will then also satisfy YJ �X
�
k
D 0 and therefore

R �Yj D .Xk CX�k / �Yj D 0;

where we use (3).

Let p0
1

be the dual perversity to p1 , that is, the perversity with p0
1
Cp1 D t.

Lemma 4.2 Let d � 5 be odd and ` 2 Rn be a generic, d–normal, ordered length
vector with n� d C 3. Then there exists an element Y 2 Ip0

1Hd�1.Md .`// with

Xn�1 �Y D 0;

X�n�1 �Y D 1:
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Remark 4.3 The proof of Lemma 4.2 relies on a delicate geometric construction that
we postpone to Section 5. In the case d D 5 this construction simplifies significantly,
which we give here as it already contains some of the ideas required in the general
case. We will assume that ` is ordered. By the equivariant Morse–Bott function on
C5.`/ constructed in [14], we get an SO.4/–equivariant embedding C5.`

n�1
� /�D4 into

C5.`/, where SO.4/ acts diagonally on C5.`
n�1
� /�D4 and C5.`

n�1
� /�f0g corresponds

to the obvious embedding C5.`
n�1
� /� C5.`/.

Pick an element p 2 C5.`
n�1
� / of rank 5 (or 4). Now define f W S3 ! C5.`

n�1
� /

by f .q/ D q � p , where we think of S3 as a subgroup of SO.4/ via quaternion
multiplication. Now observe that C5.`

n�1
� / is 3–connected. Firstly, the Morse–Bott

function in [14, Section 3] can be modified to a Morse function which has critical
points only of index 4.n� 3� k/ or 4.n� 3� k/C 3 for k 2 f0; : : : ; n� 3g, which
makes C5.`

n�1
� / simply connected. Furthermore, the cohomology calculation in [5,

Theorem 2.1] shows that the first non-trivial homology group of C5.`
n�1
� / has at least

degree 4, which means this space is 3–connected. Note that we require `n�1
� to be

3–normal, which is implied by ` being 5–normal, to ensure the vanishing of the third
homology group.

We can therefore extend f to a map F W D4 ! C5.`
n�1
� /, which can even be an

embedding. Also, this embedding can be made transverse to the map

gW C3.`
n�1
� /�SO.4/! C5.`

n�1
� /

given by g.x;A/ D Ax . For dimension reasons, this means that F misses g, so
that all F.x/ have rank at least 4. Finally, the map zF W D4! C5.`

n�1
� /�D4 given

by zF .x/ D .F.x/;x/ induces a map F W S4!M5.`/ with F .S4/\M5.`
n�1
� / D

fŒp�g. By letting F be constant in a neighbourhood of 0 (which lets F no longer
be an embedding, but lets zF remain an embedding) this intersection is transverse.
Furthermore, F .S4/ \M5.`

n�1
� / D ∅. Therefore F .S4/ represents the required

element Y and, since all points in F .S4/ have rank at least 4, we even get an element
Y 2 I0H4.Md .`//. Also, note that we only require n� dC 2D 7 here; if nD 6, the
element X�

n�1
equals 0.

A similar construction can be done in the case d D 9 using octonian multiplication;
however, it is not clear how this construction could generalize to the other cases of
odd d .

Proposition 4.4 Let d � 5 be odd and ` 2Rn be a d–normal, ordered, generic length
vector with n � d C 2. Let k D a1.`/. Then the intersection ring IR�.Md .`// is
generated by elements R, X1; : : : ;Xk which satisfy the following relations:
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(1) RXi DX 2
i for all i D 1; : : : ; k .

(2) Xi1
� � �Xim

if fi1; : : : ; im; ng is `–long.

For n� d C 3 we can choose R to be the Euler class of the stratified bundle Md .`/.

This is not a complete list of relations; for example we have RmD0 for m large enough
simply by the construction of the intersection ring. Notice also that for nD d C 2 we
cannot have non-trivial products, for degree reasons.

Proof Let nD d C 2. Then we just choose the elements R;X1; : : : ;Xk so that they
form a basis of Ip1Hd n�1

d
.Md .`//; compare Proposition 2.5. Any products among

these elements are zero for degree reasons, so the relations are trivially satisfied.

Now let n > d C 2. We now choose R and Xi as in Section 3. By Lemmas 4.1
and 4.2 these elements are linearly independent and form a basis of Ip1Hd n�1

d
.Md .`//

because of Proposition 2.5.

We get R D Xj C X�j for all j D 1; : : : ; n � 1 by (3) of Section 3, so RXi D

XiXi C X�i Xi . Now X�i Xi is represented by Md .`
i
�/ \Md .`

i
C/ D ∅, so (1)

follows. Also, Xi1
� � �Xim

is represented by Md .`
i1
C/ \ � � � \Md .`

im

C /, which is
empty by the condition that fi1; : : : ; im; ng is `–long. Therefore (2) holds.

Remark 4.5 We want to compare the previous result to the cohomology ring of M3.`/

determined in [11]. For a generic, ordered length vector ` 2 Rn , their Theorem 6.4
states that

H�.M3.`//Š ZŒR;V1; : : : ;Vm�1�=I`;

where R and Vi are of degree 2 and I` is the ideal generated by the three families

V 2
i CRVi for i D 1; : : : ; n� 1;Y

i2L

Vi for L� f1; : : : ; n� 1g with L[fng `–long;

X
S�L; S2S�.`/

�Y
i2S

Vi

�
RjL�S j�1 for L� f1; : : : ; n� 1g `–long:

The first two families correspond to the relations in Proposition 4.4 after a change of
sign. The third family is more complicated and we will not try to find the corresponding
relations for the intersection ring. We note however that if L�f1; : : : ; n�1g is `–long
and S � L is `–short then either jL�S j > 1 or S [ fng is `–long. Therefore the
relations in the third family are of the form RW with W 2ZŒR;V1; : : : ;Vm�1�. This
was already observed in [4, Lemma 5].
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In the case d D 3 the stratified bundle pWM3.`/!M3.`/ can be viewed as a complex
line bundle, and it is shown in [11, Proposition 7.3] that the negative Chern class agrees
with R. Note that our R would correspond to the positive Chern (Euler) class, which
is consistent with the change of sign in the first relation of the next lemma.

Lemma 4.6 Let d � 5 be odd and ` 2 Rn be a d–normal, ordered, generic length
vector with n � d C 2 and let k D a1.`/. Let I` be the kernel of the surjection
ˆW ZŒR;X1; : : : ;Xk �! IR�.Md .`// induced by Proposition 4.4. Then there exist
elements W1; : : : ;Wl 2ZŒR;X1; : : : ;Xk � for some l � 1 such that I` is generated by
relations

(1) RXi �X 2
i for all i D 1; : : : ; k ,

(2) Xi1
� � �Xim

if fi1; : : : ; im; ng is `–long,

(3) RWi for i D 1; : : : ; l .

Proof By the Hilbert basis theorem we know that I` is finitely generated. Since the
elements of the form (1) and (2) are in I` by Proposition 4.4, we can simply add them
to any finite generating set. So these elements together with finitely many elements
V1; : : : ;Vl 2 ZŒR;X1; : : : ;Xk � form a generating set. Let us write each Vi as a linear
combination of monomials Vi D

Pji

jD1
aij Vij with aij 2Z�f0g. We can first assume

that no monomial Vij contains more than one factor of any Xv , for we could replace
this monomial with the corresponding monomial having Ru�1Xv in place of X u

v

using a relation from (1). Now, if a monomial Vij has no factor R, we can write it as
Vij DXu1

� � �Xuv
with J D fu1; : : : ;uvg and jJ j D v . If J [fng is `–long, we can

remove Vij using a relation of the form (2). If J [fng is `–short we get a Poincaré
dual YJ to Vij from Lemma 4.1 with R � YJ D 0. Then Vi � YJ D aij 6D 0, which
contradicts Vi 2 I` . Therefore such a monomial cannot appear in Vi . It follows that
Vi DRWi for some Wi 2 ZŒR;X1; : : : ;Xk �.

Let us now consider Z=2 coefficients. To simplify our discussion, we will simply
tensor the integral intersection ring with Z=2 to obtain a new ring that we denote by

IR�Z=2.Md .`//D IR�.Md .`//˝Z=2:

Corollary 4.7 Let d � 5 be odd and ` 2 Rn be a d–normal, generic length vector
with d � d C 3. Let R be the Euler class of the stratified bundle Md .`/ with Z=2
coefficients. Then

IR�Z=2.Md .`//=hRi ŠƒZ=2ŒS�.`/�:
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Proof We have the relations from Proposition 4.4, which reduce to X 2
i for all

i D 1; : : : ; k and Xi1
� � �Xim

if fi1; : : : ; im; ng is `–long. Over Z=2 this reduces
to the exterior face ring of the short subsets.

We now need to find a way to detect R in terms of intersection products. This is
similar to the argument used in [4]; however, since we have worse information about
the intersection ring, the argument is a bit more involved. As a start, we need the
following result:

Lemma 4.8 Let d � 5 be odd and ` 2 Rn be a d–normal, generic length vec-
tor with n � d C 3 and Md .`/ 6D ∅. Let i , j 2 f1; : : : ; n � 1g with i < j

and let `ij
C� D .`

j
�/

i
C 2 Rn�2 . Then I0Hd n�2

d
.Md .`

ij
C�// is a direct summand of

Ip1Hd n�2
d

.Md .`
j
�//, which is a direct summand of Ip2Hd n�2

d
.Md .`//.

Proof Both statements have essentially the same proof; we will therefore focus on
the second statement. Note that the inclusion Md .`

j
�/ � Md .`/ induces a map

Ip1Hd n�2
d

.Md .`
j
�//! Ip2Hd n�2

d
.Md .`// by [15, Lemma 5.2]. To see that this map

is split-injective, we use the Morse argument used in [15, Section 7]. There is an
SO.d�1/–invariant Morse–Bott function on Cd .`/!R whose absolute minimum is
Md .`

j
�/ and whose other critical manifolds are spheres of dimension d � 2 and index

k.d � 1/ for k 2 f1; : : : ; n� 3g. This gives rise to a filtration of Md .`/

∅�M0
�M1

� � � � �Mm
DMd .`/;

where M0 contains Md .`
j
�/ as a deformation retract in a stratification preserv-

ing way, so that Ip1Hd n�2
d

.Md .`
j
�// Š Ip2Hd n�2

d
.M0/. We need to show that

Ip2Hd n�2
d

.Ml�1/! Ip2Hd n�2
d

.Ml/ is split-injective for all l D 1; : : : ;m. We have
the long exact sequence

� � � �! Ip2Hd n�2
d
C1.M

l ;Ml�1/ �! Ip2Hd n�2
d

.Ml�1/

�! Ip2Hd n�2
d

.Ml/ �! Ip2Hd n�2
d

.Ml ;Ml�1/ �! � � �

The proof is going to be along the lines of the proof of [15, Lemma 7.1]. We remark
that Ip2Hd n�2

d
.M0/ is torsion-free by Proposition 2.5. We will see in the proof below

that Ip2Hd n�2
d

.Ml ;Ml�1/ is also torsion-free, which will give rise to the splitting,
and a torsion-free group Ip2Hd n�2

d
.Ml/ by induction.

Recall notation from [15, Section 6], namely for non-negative integers m and k with
m� k let

Nm;k
D ..Dd�1/k � .Dd�1/m�k/=SO.d � 2/;

@�Nm;k
D .@..Dd�1/k/� .Dd�1/m�k/=SO.d � 2/:
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Then Ip2Hr .Ml ;Ml�1/ Š Ip2Hr .N n�3;kl ; @�N n�3;kl /, where kl is the index of
the critical point contained in Ml �Ml�1 ; that is, the corresponding critical sphere
Sd�2 is of index kl.d � 1/.

Assume that kl � n� 5. Then

Ip2Hr .N n�3;kl ; @�N n�3;kl /Š I0Hr .N n�5;kl ; @�N n�5;kl /

by [15, Lemma 6.1]. For kl D n� 5 this has only one non-vanishing group in degree
r D dn�2

d
by [15, Section 5], which is Z. For kl < n� 5 we can use Poincaré duality

(taking torsion into account, using [6, Corollary 4.4.3]),

I0Hr .N n�5;kl ; @�N n�5;kl /Š I tHd n�2
d
�r .N

n�5;kl ; @CN n�5;kl /

and the latter is just ordinary homology, which vanishes for r D dn�2
d

, dn�2
d
C 1, as

@CN n�5;kl 6D∅ for kl < n� 5. Therefore the map

Ip2Hd n�2
d

.Ml�1/! Ip2Hd n�2
d

.Ml/

is split-injective if kl � n� 5.

If kl D n� 4, we get

Ip2Hr .N n�3;n�4; @�N n�3;n�4/Š Ip1Hr .N n�4;n�4; @�N n�4;n�4/

and the latter is Z=2 for r D dn�2
d
C 1 and 0 for r D dn�2

d
by [15, Proposition 6.3].

Therefore our map is again split-injective.

To calculate Ip2Hr .N n�3;n�3; @�N n�3;n�3/, a cellular chain complex is identified in
[15, Section 6] and the lowest dimensional cell is of dimension dn�2

d
C 2; compare

[15, Lemma 6.2]. Therefore the homology groups in degree dn�2
d

are not affected,
and the result follows.

Corollary 4.9 Let d � 5 be odd and ` 2 Rn be a d–normal, generic length vector
with n� d C 3. Let i , j 2 f1; : : : ; n� 1g with i < j . If Xi is a non-zero element of
Ip1Hd n�1

d
.Md .`// then XiX

�
j is a non-zero element of Ip2Hd n�2

d
.Md .`//˝Z=2.

Proof Observe that XiX
�

j is represented by Md .`
i
C/\Md .`

j
�/ and, since Xi 6D 0

implies fi; ng is `–short, this set is non-empty. Therefore XiX
�

j is the image of the
fundamental class in I0Hd n�2

d
.Md .`

i
C/\Md .`

j
�//. By Lemma 4.8 it follows that

0 6DXiX
�

j 2 Ip2Hd n�2
d

.Md .`//˝Z=2.

Proof of Theorem 1.1 The cases nD 2, 3 were covered in [4; 13], while d � 4 even
is in [15]. It remains to consider d � 5 odd. That ` is d–normal implies n� d C 1.
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If nD d C 1, there is only one chamber up to permutation, so there is nothing to show.
Similarly, if nD dC2, then a2.`/D 0 and the chamber is determined by a1.`/, which
is recovered from Ip1Hd n�1

d
.Md .`//, a homeomorphism invariant.

We can therefore assume that n� d C 3. Assume also that ` is ordered. We want to
say that R is the unique element of Ip1Hd n�1

d
.Md .`//˝Z=2 such that multiplication

by R induces the squaring homomorphism

SqW Ip1Hd n�1
d

.Md .`//˝Z=2! Ip2Hd n�2
d

.Md .`//˝Z=2:

By Proposition 4.4, R certainly has this property. To get uniqueness, let us also assume
that a2.`/ > 0, so that there exist i 6D j with XiXj 6D 0 (we can use i D 1 and j D 2

since ` is ordered). Now let

R0 D "RCXi1
C � � �CXiu

2 Ip1Hd n�1
d

.Md .`//˝Z=2

satisfy R0X DX 2 for all X 2Ip1Hd n�1
d

.Md .`//˝Z=2 and some u�1. In particular,

X 2
j D "X

2
j CXi1

Xj C � � �CXiu
Xj

for all j D 1; : : : ; n� 1. If any Xiv
Xj were non-zero for j 6D iv , then by Lemma 4.1

X 2
j � Yiv;j 6D 0 for the dual Yiv;j . But, since X 2

j � Yiv;j D Xj �R � Yiv;j D 0, we get
Xiv

Xj D 0 for all iv 6D j. In particular, iv 6D 1 or 2 by the assumption X1X2 6D 0. By
using j D iv (assuming that u� 1) we also get

X 2
iv
D "X 2

iv
CX 2

iv

by multiplication with R0 , but we also have

X 2
iv
D .X1CX�1 /Xiv

DX�1 Xiv

by multiplication with R D X1CX�
1

. Therefore X 2
iv
6D 0 by Corollary 4.9, which

means "D 0 2 Z=2. Now

X 2
1 D .Xi1

C � � �CXiu
/X1 D 0;

contradicting X 2
1
D .Xiu

CX�iu
/X1 DX�iu

�X1 6D 0.

So under the extra condition that a2.`/ > 0 we get that R is the only element in
Ip1Hd n�1

d
.Md .`//˝Z=2 such that multiplication by R gives Sq.

Let `, `0 2 Rn be generic, d–normal length vectors with Md .`/ homeomorphic
to Md .`

0/. By [8] there is an isomorphism of intersection rings IR�.Md .`// Š

IR�.Md .`
0//. If the Euler class R` of Md .`/ would not be unique with the squaring

property (after tensoring with Z=2), then neither would R`0 be and we would get
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a2.`/D 0D a2.`
0/. But, up to permutation, the chamber of any ` with a2.`/D 0 is de-

termined by a1.`/, which we can obtain from the dimension of Ip1Hd n�1
d

.M`/˝Z=2.
So ` and `0 are in the same chamber up to permutation.

We can therefore assume that both R` and R`0 are unique with the squaring property,
so the isomorphism of intersection rings induces an isomorphism of exterior face
rings ƒZ=2ŒS�.`/�ŠƒZ=2ŒS�.`0/� by Corollary 4.7, which induces an isomorphism
of simplicial complexes S�.`/Š S�.`0/ by [9]. This implies that ` and `0 are in the
same chamber up to permutation, as in [4].

5 Proof of Lemma 4.2

Let us begin with the strategy of the proof. From the equivariant Morse–Bott func-
tion in [14] we get an equivariant neighbourhood of Cd .`

n�1
� / in Cd .`/ of the form

Cd .`
n�1
� /�Dd�1, where SO.d � 1/ acts diagonally on the factors. As d � 5 is odd,

there is k � 2 with d �1D 2k and we can write Rd DR�Ck. We can let S1 be the
subgroup of U.k/� SO.2k/D SO.d �1/ which rotates each complex coordinate. We
now want to construct an S1–equivariant map f W Sd�2! Cd .`

n�1
� / which extends

(non-equivariantly) to f W Dd�1! Cd .`
n�1
� / and is constant near 0 2Dd�1, so that

f .0/ has rank at least d � 1. Then f induces a map from complex projective space
F W CPk !Md .`/ via F.z/D q.f .z/; z/, where qW Cd .`

n�1
� /�Dd�1!Md .`/ is

inclusion followed by the quotient map. Since f is constant near 0 and has rank d�1,
we get that F is an embedding near the point corresponding to 0 and F.CPk/ intersects
Md .`

n�1
� / transversely in exactly one point, while F.CPk/\Md .`

n�1
C /D∅. The

required element is then Y D F�ŒCPk �.

To get the S1–equivariant map f we will actually construct an .S1/k –equivariant
map, where each factor S1 acts on its respective coordinate in Ck. As a result, the
map F will hit several singular strata in Md .`/. The next lemma gives a criterion for
F to induce an element of Ip0

1Hd�1.Md .`//.

Lemma 5.1 Let F W CPk !Md .`/ be a stratum-preserving map for some stratifica-
tion of CPk that has only even-dimensional strata. Assume that for l D 0; : : : ; k � 2

the strata contained in F�1.N3C2l.`/�N2C2l.`// have dimension at most 2l and that
F�1.N2C2l.`/�N1C2l.`//D∅. Then F induces a homomorphism

F�W I
0Hd�1.CPk/! Ip0

1Hd�1.Md .`//:

Proof Note that the condition of the lemma states that a stratum S which is sent to
Nd�2.k�l�1/.`/�Nd�1�2.k�l�1/.`/ has codimension at least 2.k � l/. As

p01.Nd�2.k�l�1/.`/�Nd�1�2.k�l�1/.`//D cn
d;2.k�l�1/� 2.k � l/;
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Figure 1: The configuration x .

we see that [15, Lemma 5.2] applies.

Let
�k�1

D f.t1; : : : ; tk/ 2Rk
j ti 2 Œ0; 1�; t1C � � �C tk D 1g

be the standard .k�1/–simplex. Then �k�1 Š Sd�2=.S1/k and we can split the
quotient map via j W �k�1! Sd�2, given by j .t1; : : : ; tk/D .

p
t1; : : : ;

p
tk/ 2Ck.

So, in order to get an .S1/k –equivariant map f W Sd�2! Cd .`
n�1
� / it is enough to

define f on �k�1. Let us start with a point x 2 Cd .`
n�1
� /. Then x D .x1; : : : ;xn/

with xn D e0 , xn�1 D �e0 , where we think of xj 2 Rd D R�Ck and we think of
the R–coordinate as the 0th coordinate.

Since ` is d–normal and ordered, we get that fn� .d � 1/; : : : ; n� 1g is `–short. Let
K � f1; : : : ; n� dg be such that K [ fn� .d � 1/; : : : ; n� 1g is long but removing
any element of K would make it short.

Define .x1; : : : ;xn/ 2 Cd .`
n�1
� / as follows. If j 62 K [ fn � .d � 1/; : : : ; n � 1g,

let xj D e0 . If j 2K[fn� .d � 1/; : : : ; n� 4; n� 1g, let xj D e0 .

Also, let xn�3 D .xn�3;0;xn�3;1; 0; : : : ; 0/ and xn�2 D .xn�2;0;xn�2;1; 0; : : : ; 0/

with xn�3;0 , xn�2;0 2 .�1; 0/ � R and xn�3;1 , xn�2;1 2 C be imaginary, so that
.x1; : : : ;xn/ 2 Cd .`

n�1
� /. Note that these values can be chosen by the way K was

defined; compare Figure 1. The values xn�3;1 and xn�2;1 are chosen imaginary so
that e0 , e1 and xn�2 have rank 3. Note that e1 2 Sd�2 �Ck corresponds to xn�1 ,
once Cd .`

n�1
� /�Dd�1 is embedded in Cd .`/.

We start defining f by setting f .1; 0; : : : ; 0/ D .x0; : : : ;xn/. To extend f , for
j D 2; : : : k � 1 and t 2�k�1 let2

xn�2j .t/D .�
p

1� .tj"/
2
� .tk"/

2; 0; : : : ; 0; tj"; 0 : : : ; 0; tk"/;

xn�2j�1.t/D .�
p

1� .tj"/
2
� .tk"/

2; 0; : : : ; 0; i tj"; 0 : : : ; 0; i tk"/;

xn�.d�1/.t/D .�
p

1� .tk"/
2; 0; : : : ; 0; i tk"/;

2The letter i now stands for the complex unit i 2C ; it will no longer be used as an index.
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where "> 0 is small and the non-zero entry is in the j th complex coordinate of R�Ck.

If " is small enough, we can define xn�3.t/ 2 S1 � f0g � Sd�1 and xn�2.t/ 2 Sd�1

so that

.x1; : : : ;xn�d ;xn�.d�1/.t/; : : : ;xn�4.t/;xn�3.t/;xn�2.t/;xn�1;xn/ 2 Cd .`
n�1
� /

with t 2 �k�1. Note that xn�2j and xn�2j�1 depend on tj for j D 2; : : : ; k � 1

and tk . Basically, we let xn�2 compensate for the non-zero entries in the other complex
variables, thus requiring that the absolute values of the zeroth and first coordinate in
xn�3 and xn�2 will be slightly less. We can make this depend continuously on t , thus
giving us a map �k�1! Cd .`

n�1
� /.

We still need to slightly change this map. As j .�k�1/ is a contractible subset
of Sd�2, there is a map AW �k�1 ! U.k/ with A.t/ � e1 D j .t/. Let fn�3.t/ D

A.t/ �xn�3.t/ and fn�j .t/D xn�j .t/ for j D 4; : : : ; n� 1. Choose fn�2.t/ so that
.f1; : : : ; fn�2;�e0; e0/ 2 Cd .`

n�1
� /; that is, we have a map f W �k�1! Cd .`

n�1
� /.

In the next lemma we think of .f .t/; j .t// as an element of Cd .`/ via the embedding
Cd .`

n�1
� /�Dd�1. We also set n.t/ to be the number of coordinates j with tj D 0 for

any t 2�k�1.

Lemma 5.2 We have rank.f .t/; j .t// D d � 1 if n.t/ D 0 and rank.f .t/; j .t// D
d�2n.t/ if n.t/�1. Furthermore, if tD .t1; : : : ; tk/ satisfies tj D0 for j 2f1; : : : ; kg,
then the j th complex coordinate of fm.t/ is 0 for mD 1; : : : ; n.

Proof Let us write .f .t/; j .t// D .f1; : : : ; fn�2; fn�1/ 2 Cd .`/, wherefn�1 only
depends on j .t/. We ignore the nth coordinate, as it is e0 2 S0.

Since fj 2 S0 for j � n � d and j � n � 1, and fn�2 is a linear combination
of the other elements, the rank can be at most d � 1. Now assume that tj D 0 for
j 2 f1; : : : ; kg. None of the elements fj has a non-zero entry in the j th complex
coordinate, so again the rank can be at most d � 2n.t/.

Let n.k/ D 0. Then fn�1 and fn�3 are the only elements (apart from fn�2 ) with
non-zero entries in the first complex coordinate, and these two elements are linearly
independent, as fn�1 is only in the real part, while fn�3 is only in the imaginary part.
Apart from fn�1 , fn�2 and fn�3 , only fn�4 and fn�5 have non-zero entry in the
second complex coordinate. Continuing, we see that fn�2j and fn�2j�1 increase the
rank by two for each j D 2; : : : ; k � 1. Finally, fn�.d�1/ and xn increase the rank
to d � 1, as required.

If n.k/>0 let us distinguish the cases t1D0 and t1>0. If t1>0, then fn�1 and fn�3

are the only elements with non-zero entries in the first complex coordinate. If tk D 0,
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then each j 2 f2; : : : ; k � 1g with tj > 0 produces two elements fn�2j and fn�2j�1

with only the j th complex coordinate non-zero. Together with the elements in S0, we
see the rank is d � 2n.t/.

If t1>0 and tk >0, there is a j 2f2; : : : ; k�1g with tj D0. Then fn�2j and fn�2j�1

only have something non-zero in the k –th complex coordinate, so they increase the
rank by 2. All other j 2 f2; : : : ; k � 1g with tj > 0 have fn�2j and fn�2j�1 as the
only remaining elements with j th complex coordinate non-zero, so they also increase
the rank by 2. Together with the elements in S0, the rank is again d � 2n.t/.

We thus have a map xf W �k�1! Cd .`/ given by xf .t/D .f .t/; j .t//, which we can
extend to an .S1/k –equivariant map zf W .S1/k ��k�1! Cd .`/, where .S1/k acts
on Ck (on both sides) by coordinate-wise multiplication. Furthermore, there is a
surjection pW .S1/k ��k�1 ! Sd�2, which is also .S1/k –equivariant, and which
induces the required .S1/k –equivariant map

f W Sd�2
! Cd .`/

by Lemma 5.2.

For every subset L�f1; : : : ; kg we get a subsphere SL�Sd�2 of dimension 2jLj�1,
whose entries are those points .z1; : : : ; zk/ 2 Sd�2 with zj D 0 for j 62L. It follows
from Lemma 5.2 that f followed by the quotient map from Cd .`/ to Md .`/ is a
stratified map if we stratify Sd�2 by the SL .

We need to extend f to Dd�1. The basic idea is to stretch the robot arm made up of
the points fn�1; : : : ; fn�.d�1/ into a straight line, pointing in the direction of �e0 .
Recall we write

f .z1; : : : ; zk/D .f1; : : : ; fn�2; fn�1/ 2 Cd .`
n�1
� /�Dd�1;

so that each fj 2Sd�1 for j D1; : : : ; n�2, with fn�1 2Dd�1�Sd�1 in a small disc
centred at �e0 . In fact, f1; : : : ; fn�d 2 S0 and the 0th coordinate (the real coordinate
in Rd DR�Ck ) is negative for all fn�1; : : : ; fn�.d�1/ .

We can ignore the last coordinate and simply think of .f1; : : : ; fn�2/ 2 Cd .`
n�1
� /.

Denote by g the composition of f with the projection pW Cd .`/! .Sd�1/d�2 to the co-
ordinates .fn�.d�1/; : : : ; fn�2/. Note that `n�.d�1/fn�.d�1/C� � �C`n�2fn�2D�ce0

for some fixed c > 0. We can think of these d � 2 coordinates as a robot arm starting
at the origin and ending at �ce0 . We want to stretch out this robot arm until all
coordinates point to �e0 . To do this we use the flow ˆ of the standard gradient of
the height function on Sd�1 which has �e0 as its maximum and e0 as its minimum.
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Consider GW Sd�2 ! Œ0;1/! .Sd�1/d�3 given by projecting g down to the co-
ordinates .fn�.d�1/; : : : ; fn�3/ and then applying the flow ˆ to each of the d � 3

coordinates. As we continue to flow, each coordinate approaches �e0 . We thus get
an induced map GW Dd�1! .Sd�1/d�3 such that G.0/D .�e0; : : : ;�e0/. Denote
by Gj .z/ 2 Sd�1 the j th coordinate of G.z/ for z 2Dd�1. Then there is a unique
element Gd�2.z/ 2 Sd�1 whose 0–coordinate is negative and which ensures that

`n�dC1G1.z/C � � �C `n�3Gd�3.z/C `n�2Gd�2.z/D�c.jzj/e0;

where cW Œ0; 1�! .0;1/ is a monotonically decreasing function. Note that Gd�2.z/

exists by elementary geometry and, by the implicit function theorem, it depends
smoothly on z . As the flow can be chosen to be invariant under the SO.d�1/–action
on Sd�1, the function c only depends on jzj.

We may think of the points .G1.z/; : : : ;Gd�2.z// 2 .S
d�1/d�2 as a robot arm, de-

pending on z 2Dd�1 , which starts at the origin and has endpoint on the negative real
axis in R�Ck. Also, on Sd�2 this agrees with g . We need to extend this robot arm
to a map f W Dd�1! Cd .`

n�1
� /. To do this, note that the coordinates .f1; : : : ; fn�d /

are all in S0. Note that n�d � 3 and there is at least one element fm with fmD�e0

(this is an element of the set K ). Recall that K[fn�.d�1/; : : : ; n�1g is `–long, but
removing any element of K makes this set `–short. Now let 
 W Œ0; 1�! .Sd�1/n�d

with 
 .0/ D .f1; : : : ; fn�d /, so that in the mth coordinate the point �e0 is rotated
into e0 along S1 � Sd�1 and

`1
1.t/C � � �C `n�d
n�d .t/D d.t/e0

with d W Œ0; 1�! .0;1/ a strictly monotone increasing map. Note that we only have to
modify two extra coordinates beside m, so this is easily done. We can also do this so
that

p.
1.t//; : : : ;p.
n�d .t//

have rank at least 3 for all t 2 .0; 1/ for any projection pW R�Ck!R�C to one of
the C–coordinates of Ck (and keeping the R–coordinate). For this we should rotate
the mth coordinate diagonally through Ck rather than through C � f0g, and similarly
with the other coordinates.

We want to combine 
 and G to obtain the map f W Dd�1 ! Cd .`
n�1
� /, using the

formula
f .z/D .
 .s.jzj//;G1.z/; : : : ;Gd�2.z//

for some map sW Œ0; 1�! Œ0; 1� with s.1/D 0. Note that both 
 and G both end up
on R� f0g when adding up the coordinates, so we need to choose s.jzj/ with

`n� `n�1C c.jzj/C d.s.jzj//D 0:

Algebraic & Geometric Topology, Volume 16 (2016)



506 Dirk Schütz

Since d is invertible on its image and `n�1� c.jzj/� `n in this image by the choice
of the set K , we can find this s .

Because of the .S1/k –equivariance of f on Sd�2 (note that G is still equivariant on
the interior of Dd�1, but 
 is not), we get the induced map F W CPk !Md .`/ after
restricting to the S1 –diagonal-action. We clearly have F.CPk/\Md .`

n�1
� /DfF.0/g,

where 0 2CPk corresponds to 0 2Dd�1. Note however that, due to our construction,
the rank of F.0/ is 3, so it does not represent a regular point of Md .`/. In order to
fix this, let us analyze ranks of images in more detail.

Consider the restriction f jW Sd�2! Cd .`
n�1
� /, which induces a map

F jW CPk�1
!Md .`

n�1
� /:

For any nonempty subset A� f1; : : : ; kg we have a natural subspace CPAŠCPjAj�1

consisting of those elements Œz1 W � � � W zk � with zi D 0 if i 62A. These subspaces form
a natural stratification of CPk�1,

CPk�1
0 �CPk�1

2 � � � � �CPk�1
2k�4 �CPk�1

2k�2 DCPk�1;

and, by the construction of f j, the restriction F j is a stratified map

F jW CPk�1
!Md .`

n�1
� /

with

F j.CPk�1
2i �CPk�1

2i�2/�N2iC3.`
n�1
� /�N2iC2.`

n�1
� / for i � k � 2

and
F j.CPk�1

�CPk�1
2k�4/�Md .`

n�1
� /�Nd�2.`

n�1
� /:

Note that CPk has a similar stratification to CPk�1 using A�f1; : : : ; kC1g with A 6D

∅ and, by the choice of 
 , we also have a stratified map F W CPk !Md .`/ with

F.CPk
2i �CPk

2i�2/�N2iC3.`
n�1
� /�N2iC2.`

n�1
� / for i � k � 1

and
F.CPk

�CPk
2k�2/�Md .`

n�1
� /�Nd�2.`

n�1
� /:

Note that we think of CPk as a quotient space Dd�1=�, and the image of F is
contained in a quotient space .Dd�1 � Cd .`

n�1
� //=� which is a subset of Md .`/. In

terms of these quotient spaces, F is given by F.Œy�/D Œy; f .y/�.

Now take a diffeomorphism ' of Dd�1 which sends 0 to a point y0 near 0 that is
sent to a point of rank d �1 under f and is the identity outside a small neighbourhood
of 0 2Dd�1. Let us alter F to the map F.Œy�/D Œ'�1.y/; f .y/�. This map still has
exactly one point in the intersection with Md .`

n�1
� /, namely F.Œy0�/, but this time
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the rank is d � 1. We can alter f to make it constant near y0 , thus ensuring that the
intersection is also transverse. To ensure that F is still strata-preserving, simply alter
the stratification of CPk using ' .

By Lemma 5.1 we get our element Y D F�ŒCPk � 2 Ip0
1Hd�1.Md .`// and it satisfies

the conditions required in Lemma 4.2.
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