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Bridge number and integral Dehn surgery
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In a 3–manifold M , let K be a knot and yR be an annulus which meets K trans-
versely. We define the notion of the pair . yR;K/ being caught by a surface Q in the
exterior of the link K [ @ yR . For a caught pair . yR;K/ , we consider the knot Kn

gotten by twisting K n times along yR and give a lower bound on the bridge number
of Kn with respect to Heegaard splittings of M; as a function of n , the genus of the
splitting, and the catching surface Q . As a result, the bridge number of Kn tends to
infinity with n . In application, we look at a family of knots fKng found by Teragaito
that live in a small Seifert fiber space M and where each Kn admits a Dehn surgery
giving S3 . We show that the bridge number of Kn with respect to any genus-2

Heegaard splitting of M tends to infinity with n . This contrasts with other work of
the authors as well as with the conjectured picture for knots in lens spaces that admit
Dehn surgeries giving S3 .

57M25, 57M27

1 Introduction

One may produce a family fKng of knots in an orientable 3–manifold M by Dehn
twisting a knot KDK0 along an annulus yR that it intersects transversely. If yR lies in
a genus-g Heegaard surface for M then bg.K

n/, the minimal bridge number of Kn

among genus-g Heegaard splittings of M , is bounded. We give sufficient conditions to
guarantee a converse to this statement. This allows us to give examples of knots in the 3–
sphere whose integral Dehn surgeries contrast with our results in [2; 1] on non-integral
Dehn surgeries. Specifically, when performing a Dehn surgery on a knot K0 in S3 ,
the core of the attached solid torus becomes a knot K in the resulting manifold M .
We refer to K0 � S3 and K �M as surgery-duals. We show that there is a family
of hyperbolic knots in the 3–sphere for which an integral surgery is the same genus-2
manifold M and whose surgery-duals have unbounded bridge numbers with respect to
any genus-2 Heegaard splitting of M .
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The converse mentioned above, that an upper bound on bg.K
n/ implies that the

annulus yR lies in a genus-g Heegaard surface for M , requires us to find a lower
bound on the bridge number of Kn that otherwise increases with n. In general, it is
difficult to obtain good lower bounds on bridge number. The engine of this paper is
Theorem 1.3 (and in particular its supporting Lemma 2.8) which gives such a lower
bound when the knot comes from twisting along an annulus.

As noted above, if yR lies in a genus-g Heegaard surface for M then bg.K
n/ is

bounded. It is easy to see that the same conclusion holds if @yR bounds an annulus
in the exterior of K with the same framing at @yR as yR. The following shows that
if . yR;K/ is caught (defined below) then these are the only conditions under which
bg.K

n/ is bounded.

Corollary 1.1 Let M be a compact, orientable 3–manifold with (possibly empty)
boundary. Let yR be an annulus and K be a knot in M such that the pair . yR;K/ in M

is caught. Fixing an orientation on M , let Kn be K twisted n times along yR. Assume
M has a genus-g Heegaard splitting. Then one of the following holds:

(1) There is a genus-g Heegaard surface of M containing yR.

(2) There is another annulus yA in M that is disjoint from K with @ yAD @yR, such
that yA and yR induce the same framing on @yR.

(3) bg.K
n/!1 as n!1.

Furthermore, if either .1/ or .2/ hold, then fbg.K
n/g is a finite set.

Definition 1.2 (Twisting along an annulus) Let yR be an annulus embedded in M

with @yR the link L1[L2 in M . Let RD yR\.M �N .L1[L2//. Fix an orientation
on M and yR. This induces an orientation on Li and its meridian �i . Let yR� Œ0; 1�
be a product neighborhood of yR in M so that the corresponding interval orientation
on R� Œ0; 1� corresponds to the meridian orientation of L1 . Pick coordinates yRD
e2�i� � Œ0; 1�, with � 2 Œ0; 1�, so that e2�i� �f0g; � 2 Œ0; 1�, is the oriented L1 . Define
the homeomorphism

fnW
yR� Œ0; 1�! yR� Œ0; 1�; .e2�i� ; s; t/ 7! .e2�i.�Cnt/; s; t/:

Note that fn restricted to yR� f0; 1g is the identity. Assume that the knot K in M

intersects yR� Œ0; 1� in Œ0; 1� fibers. Let Kn be the knot in M gotten by applying fn

to K\ . yR� Œ0; 1�/ (and the identity on K outside this region). We refer to Kn as K

twisted n times along yR. Furthermore, note that fn induces a homeomorphism

hnWM �N .L1[L2/!M �N .L1[L2/
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by applying fn in R� Œ0; 1� along with the identity outside this neighborhood. We refer
to this homeomorphism hn of M �N .L1[L2/ as n Dehn-twists along the properly
embedded annulus R. Note that Kn only depends on the isotopy class of K in the
complement of L1[L2 . Furthermore, one can check that fn;K

n; hn are independent
of the orientation chosen on yR.

For an annulus yR and knot K in M , we say the pair . yR;K/ is caught if some oriented
surface Q properly embedded in the exterior X DM �N .K [ @yR/ intersects both
components of @N .@yR/ in slopes (ie unoriented isotopy classes) different than the
framing induced by yR and with non-trivial homology on each of those components
(Definition 2.1). Lemma 2.5 shows that it is often the case that . yR;K/ is caught.

When H1[ yF
H2 is a Heegaard splitting of M and J is a knot in M we denote by

b yF .J / the bridge number of J with respect to this splitting (see Section 2.3). Here we
allow Heegaard splittings in a manifold with boundary given by a union of compression
bodies (see Section 2.2). The distance between two simple closed curves on a 2–torus
is the minimal geometric intersection number of the curves up to isotopy (Section 2.1).
In Section 2.6, we prove the following Theorem 1.3 and its corollaries Corollary 1.1
above and Corollary 1.4 below.

Theorem 1.3 Let M be a compact, orientable 3–manifold with (possibly empty)
boundary and K[L1[L2 a link in M . Let yR be an annulus in M with @yRDL1[L2 .
Assume . yR;K/ in M is caught by the surface Q in X DM �N .K[L1[L2/. Let
TK ;T1;T2 be the components of @X corresponding to K;L1;L2 respectively. Fixing
an orientation on M , let �i be a meridian of Li on Ti and �i be a framing curve
coming from yR. Express the first homology class of a component of @Q on Ti as
pi Œ�i �C qi Œ�i �. Let �K be the distance on TK between a component of @Q and a
meridian of K (setting �K D 0 when Q is disjoint from K ). Let Kn be K twisted n

times along yR (Definition 1.2).

Let H1[ yF
H2 be a genus-g Heegaard splitting of M .

Then one of the following holds:

(1) yR can be isotoped to lie in yF .

(2) There is an essential annulus A properly embedded in X with a boundary
component in each of T1 and T2 , and furthermore the slope of @A on each Ti is
neither that of the meridian of N .Li/ nor that of @Q.

(3) For each n,

b yF .K
n/�

min.jq1C np1j; jq2� np2j/=max.�36�.Q/; 6/� 2gC 1

2 max.�K ; 1/
:

Algebraic & Geometric Topology, Volume 16 (2016)
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To be able to use the bound in Theorem 1.3(3), one needs to know that conclusions
(1) and (2) do not hold. If (1) holds then fb yF .K

n/g is a finite set. So assume (1)
does not hold. If (2) holds and @A is not isotopic to @yR on T1 [ T2 , then A can
be used as a catching surface for . yR;K/. Applying Theorem 1.3 with Q D A will
force conclusion (3) or exhibit a new annulus in X whose boundary is isotopic to
@yR on T1 [ T2 (see Lemma 2.14 and the proof of Corollary 1.1). The first gives a
lower bound in n on b yF .K

n/ in terms of the slopes of @A. On the other hand, if
there is an annulus in X whose boundary is isotopic on T1[T2 to @yR then fbg.K

n/g

will be finite (though fb yF .K
n/g is not necessarily finite). Focusing on fbg.K

n/g,
Theorem 1.3 then leads to Corollary 1.1 above, for which a more detailed argument is
given in Section 2.6.

Applying Corollary 1.1 to manifolds M with small-genus Heegaard splittings, we have
the following.

Corollary 1.4 Assume that M is closed and orientable and let K [L1 [L2 be a
link in M . Let yR be an annulus in M with @yRDL1[L2 , and let R be the annulus
yR \ .M � N .L1 [ L2// properly embedded in M � N .L1 [ L2/. Assume that
. yR;K/ in M is caught. Assume there is no properly embedded, essential annulus A

in X DM �N .K[L1[L2/ such that @A\ .T1[T2/ is isotopic to @R\ .T1[T2/

on T1[T2 . Fixing an orientation on M , let Kn be K twisted n times along yR.

If M D S3 and L1[L2 is not the trivial link, then b0.K
n/!1 as n!1.

If M is a lens space and L1[L2 is not a lens space torus link, then b1.K
n/!1 as

n!1.

If M has Heegaard genus at most 2, then either b2.K
n/!1 as n!1 or one of

the following holds:

(a) L1 has tunnel number one in M (or bounds a disk in M ).

(b) L1 is a cable of a tunnel number one knot in M where the slope of the cabling
annulus is that of @R.

(c) 0–surgery (as framed by R) on L1 contains an essential torus.

As L1 and L2 are isotopic in M , if any of (a)–(c) holds for L1, then it also holds for L2.

Beginning with an annulus yR and banding @yR together in a sufficiently complicated
manner, Osoinach [14] produced infinite families of distinct knots in S3 for which the
same integral surgery produces the same manifold M . The knots in such a family are
related by twisting along yR, and the surgery-duals are related by twisting along an
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annulus in M . Teragaito [17] adapted this construction to develop an infinite family of
distinct knots for which C4–surgery produces the same small Seifert fiber space M .
In Section 3, we apply Corollary 1.4 to prove the following.

Theorem 1.5 Let fK0ng be the Teragaito family of knots in S3 . For each n, let
Kn �M be the C4–surgery-dual to K0n with respect to the Seifert framing on K0n .
Then b0.K

0n/!1 and b2.K
n/!1 as n!1.

Remark 1.6 This is in sharp contrast to what occurs for non-integral surgeries. Corol-
lary 1.1 of [2] shows that if a non-integral surgery on a hyperbolic knot in S3 produces
a small Seifert fiber space then the genus-2 bridge number of the surgery-dual is at most
10975. Theorem 2.4 of [1] shows that if p=q–surgery, with jqj> 2, on a hyperbolic
knot in S3 produces a manifold M with Heegaard genus 2, and M contains no
Dyck’s surface, then the genus-2 bridge number of the surgery-dual is at most 1. To
further contrast the results of [2] and [1], in Section 3 we generalize the Teragaito
family to give other families of knots in the 3–sphere, where each knot in a family
admits a surgery giving the same genus-2 manifold M and where the surgery-duals
to that family have arbitrarily large genus-2 bridge numbers in M (Theorem 3.2).
Generically these M are hyperbolic manifolds, whereas for the Teragaito family M is
Seifert fibered. In Lemma 3.10 we show that infinitely many of these hyperbolic M

do not contain Dyck’s surfaces, to support the contrast with [1, Theorem 2.4].

Remark 1.7 A conjecture of Berge says that if a knot K0 in S3 admits a Dehn surgery
which is a lens space M then the bridge number of the surgery-dual K �M with
respect to a minimal-genus Heegaard splitting of M is one, ie b1.K/ D 1. Thus
Theorem 1.5 contrasts the expected picture for lens space and small Seifert fiber space
surgeries on knots in S3 .

Remark 1.8 Question 3.1 of Mattman, Miyazaki and Motegi [12] asks: If an integral
surgery on a hyperbolic knot in S3 produces a small Seifert fibered space M , then
does the dual knot embed in a genus-2 Heegaard surface for M ? Teragaito showed
that the dual knots to his examples answered this question in the negative; that the dual
knots do not lie on a genus-2 Heegaard surface. Theorem 1.5 shows that in fact these
knots have arbitrarily large bridge number with respect to genus-2 splittings of M .

Remark 1.9 Teragaito [17] also describes a related second infinite family of distinct
knots for which C4–surgery always produces a certain small Seifert fibered space. We
conclude Section 3 by showing that the set of genus-2 bridge numbers of the knots
surgery-dual to Teragaito’s second family is bounded (Theorem 3.8).
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2 Bounding bridge numbers

2.1 Slopes and surgeries

A slope is an isotopy class of unoriented simple closed curves on a torus. We also say
the slope of a collection of isotopic simple closed curves on a torus is the slope of any
individual curve. The distance of two slopes ˛; ˇ is the minimal geometric intersection
number among curves representing these classes and is denoted �.˛; ˇ/. Let � be
the meridional slope of a knot K in a manifold M . Dehn surgery on a K along a
slope 
 is integral or longitudinal if �.�; 
 /D 1, non-integral if �.�; 
 / > 1, and
trivial if �.�; 
 /D 0. In the surgered manifold, the core of the attached solid torus is
the surgery-dual of K .

2.2 Spines and core curves of handlebodies and compression bodies

A spine � of a handlebody H is a properly embedded graph such that H � � Š

@H � .�1; 0�. For a compression body H with @H partitioned as @CH [ @�H with
@CH connected, a spine � of H is a properly embedded graph disjoint from @CH

such that H � .� [ @�H /Š @CH � .�1; 0�.

An embedded closed curve C in the interior of a handlebody or compression body H

is a core curve (or just core) if there is a spine � of H such that C may be isotoped
into � . For a core C of H , H �N .C / is a compression body. When H is a solid
torus, we usually speak of the core since all core curves are isotopic.

2.3 Heegaard splittings, thin position, and bridge position

In this paper, a Heegaard splitting will always be a 2–sided Heegaard splitting. In
particular, a Heegaard splitting of a 3–manifold with boundary, Y , is the writing of Y

as the union of two compression bodies H1 and H2 along their boundary components
@CH1 and @CH2 . The shared boundary of these compression bodies is the Heegaard
surface of the splitting. Given such a Heegaard surface S of Y there is a product
S �R � Y so that S D S � f0g and the complement of the product is the union of
a pair of spines of the two compression bodies along with @Y . This defines a height
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function on the complement in Y of @Y and the spines of the compression bodies.
Consider all the circles C embedded in the product that are Morse with respect to the
height function and represent the knot type of a particular knot J . The following terms
are all understood to be taken with respect to the Heegaard splitting.

Following [5] (see also [15]), the width of an embedded circle C is the sum of the
number of intersections jC \S � fyigj where one regular value yi is chosen between
each pair of consecutive critical values of C . The width of a knot J is the minimum
width of all such embeddings. An embedding realizing the width of J is a thin position
of J , and J is said to be thin.

The minimal number of local maxima among Morse embeddings is the bridge number
of J , and denoted bS .J /, or, if S is understood, b.J /. An embedding realizing the
bridge number of J may be ambiently isotoped so that all local maxima lie above all
local minima, without introducing any more extrema. The resulting embedding is a
bridge position of J , and J is said to be bridge. For a fixed genus g of Heegaard
splittings of Y , let bg.J / be the minimum bridge number of J among genus-g
Heegaard splittings of Y .

By definition, bridge numbers are positive. It is common to say that if J can be
isotoped to lie on S then bS .J /D 0. We will not use that terminology in this paper;
for such a knot we take bS .J /D 1. That is, bridge and thin presentations of a knot or
link will always be Morse with respect to the given height function.

The definition of thin position extends to links. If K is a sublink of the link J , then a
K–thin position of J (with respect to the Heegaard splitting) is a thinnest (least width)
position of J among those that restrict to a thin position of K .

2.4 Q catches . yR; K /

Let yR be an annulus embedded in the interior of an orientable 3–manifold M with
@yRD L1 [L2 . Let K be a knot in M disjoint from L1 [L2 and transverse to yR.
Write L D K [ L1 [ L2 , let X D M � N .L/ be the exterior of the link L, and
set R D yR\ .M �N .L1 [L2//. Let TK ;T1;T2 be the torus components of @X
corresponding to K;L1;L2 , respectively.

Definition 2.1 Let Q be an oriented (possibly disconnected) surface, properly embed-
ded in X with no disk components or closed components. Furthermore, assume that if
Q has annular components then Q is a single annulus. We say that Q catches the pair
. yR;K/ if
� @Q\Ti is a non-empty collection of coherently oriented parallel curves on Ti

for each i 2 f1; 2g; and
� @Q intersects both T1 and T2 in slopes different than @R.
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We say the pair . yR;K/ is caught if it has a catching surface.

Remark 2.2 Let Q be a catching surface for .K; yR/. By discarding components, we
may assume that each component of Q has some boundary component in T1 [ T2 .
We may in fact assume that Q has at most two components, and when Q has two then
one of these components is disjoint from T1 and the other disjoint from T2 . Note that
if there were a disk in X with boundary on T1[T2 then its boundary would have to
be parallel to a component of the boundary of yR. If there were an annulus in X with
only one boundary component on T1[T2 , then the existence of yR implies that the
other must be on TK . If there were two such annuli, one with a boundary component
on T1 , the other with a boundary component on T2 , these annuli could be used to
construct a single annulus with boundary in T1[T2 .

Remark 2.3 When M is closed, the half lives/half dies lemma says that the image of
@�WH2.X; @X /!H1.@X / has half the rank of H1.@X /; see eg [7, Lemma 3.5]. This
guarantees that there is a Q such that
� the components of @Q are coherently oriented parallel curves on the components

of @X , and
� Œ@Q� is not a multiple of Œ@R� in H1.@X /.

Definition 2.4 Given a knot K in a closed 3–manifold M , we say an orientable
surface † with boundary that is properly embedded in M �N .K/ is a generalized
Seifert surface for K if @† is a collection of coherently oriented parallel curves on
@N .K/ once † is oriented. By the half lives/half dies lemma, every such knot K has
a generalized Seifert surface. Note that the boundary of a generalized Seifert surface
may be a collection of meridional curves.

Lemma 2.5 A pair . yR;K/ in a closed 3–manifold M is not caught if and only if L1

has a generalized Seifert surface disjoint from L2 and K has a generalized Seifert
surface disjoint from either L1 or L2 .

Proof If L1 does not have a generalized Seifert surface disjoint from L2 , then there
exists one, say †1 , which is transverse to L2 and K and such that, when oriented,
†1 \ @N .L2/ is a non-empty collection of coherently oriented meridians of L2 .
Since the boundary slope of †1 on @N .L1/ is necessarily different than that of R,
QD†1\X catches . yR;K/.

If K does not have a generalized Seifert surface disjoint from either L1 or L2 , then
there exists one, say †K , which is transverse to L1[L2 and such that, when oriented,
†K \ @N .Li/ is a non-empty collection of coherently oriented meridians of Li ,
i D 1; 2. Thus QD†K \X catches . yR;K/.
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Now assume †1 is a generalized Seifert surface for L1 that is disjoint from L2 and
transversely intersects K and †K is a generalized Seifert surface for K that is disjoint
from L1[L2 . Set †0

1
D†1\X . Recall that yR is an annulus with boundary L1[L2

that K transversely intersects. Let �2 DR\T2 .

Observe that Œ@†0
1
�, Œ@†K �, and Œ@R� together generate a rank-3 subgroup of H1.@X /

whose intersection with H1.T2/ is generated by Œ�2�. If a surface Q � X were to
catch . yR;K/ then together ŒQ\T2� and Œ�2� would generate a rank-2 subgroup of
H1.T2/. But then Œ@Q� with Œ@†0

1
�, Œ@†K �, and Œ@R� would generate a subgroup of

H1.@X / of rank at least 4. This contradicts the half lives/half dies lemma. Hence
. yR;K/ cannot be caught.

Remark 2.6 Notice that L1 has a generalized Seifert surface disjoint from L2 if and
only if its boundary slope on @N .L1/ agrees with the boundary slope of R. If †1 is
a generalized Seifert surface for L1 that is disjoint from L2 , then we may use copies
of yR to extend †1 to a generalized Seifert surface for L2 which an isotopy will make
disjoint from L1 . Hence L1 has a generalized Seifert surface disjoint from L2 if and
only if L2 has a generalized Seifert surface disjoint from L1 .

2.5 Combinatorics

Let LDK[L1[L2 be a link in a compact, orientable 3–manifold M (possibly with
boundary) and X DM �N .L/ its exterior. Let TK ;T1;T2 be the torus components
of @X corresponding to K;L1;L2 . In this section we assume that Q is a properly
embedded, orientable surface in X such that @Q\Ti is non-empty and non-meridional
for i 2 f1; 2g.

Recall from Section 2.3 that a genus-g Heegaard splitting H1[ yF
H2 of M gives a

height function in the complement of the compression body spines and @M . With L in
K–thin position with respect to this Heegaard splitting, isotope Q so that, in a neigh-
borhood of any local maximum or minimum of L, Q is below or above L, respectively,
and @Q is transverse to the foliation by level curves on the rest of T1[T2[TK (if
the components of @Q\TK are meridional, we take each of these components to be
level). Near components of @M we may take Q transverse to the level surfaces. We
take Q transverse to the compression body spines. We may then further isotope Q,
away from @Q and away from the compression body spines, to be transverse to the
level surfaces except at a finite number of points which all occur at distinct levels,
distinct from the extrema of L too.

Given any level surface yP of this height function away from a critical level of Q, set
P D X \ yP . By the above isotopy of Q, @Q intersects @P minimally on @X . For

Algebraic & Geometric Topology, Volume 16 (2016)
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Figure 1: An example of a portion of the graph GP arising from the intersec-
tion of Q with yP and, say, j@Q\T1j D 3 with �1 D 4 and j@Q\T2j D 4

with �2 D 2 . Vertices of GP are marked according to their corresponding
component of @X .

such a level surface yP , form the corresponding pair of labeled fat vertexed graphs of
intersection GP and GQ , as follows. Define yQ to be Q with disks attached along the
components of @Q\.TK [T1[T2/ when @Q\TK are not meridians of K , and along
the components of @Q\ .T1[T2/ when @Q\TK is meridional. Then GP and GQ

are the graphs on the surfaces yP and yQ, respectively, consisting of the fat vertices
that are the disks N .L/\ yP on yP and the disks that cap off @Q in yQ, and the edges
that are the arcs of P \Q. Note that N .K/\ yP become vertices of valence 0 when
@Q\TK is meridional on K . Label the endpoint of an edge in one graph with the
vertex of the other graph whose boundary contains the endpoint. Figure 1 gives an
example of how the graph GP arises.

Fix orientations of yP and yQ. Two vertices on the same graph and on the same
component of @X are parallel if their corresponding oriented components of @P or @Q
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are coherently oriented on @X ; they are anti-parallel otherwise. The orientability of
P , Q and X gives the parity rule: an edge connecting parallel vertices on one graph
must connect anti-parallel vertices on the other graph.

Let �K , �1 , �2 be the distances between the slopes of @P and @Q on TK ;T1;T2 ,
respectively. If @Q or @P is disjoint from TK , we set �K D 0. Note that if @Q\TK

is meridional on K , then �K D 0. By assumption, �1; �2 are non-zero. Set

mK D j
yP \Kj � 2b yF .K/; m1 D j

yP \L1j; m2 D j
yP \L2jI

these are the numbers of vertices in GP corresponding to K , L1 , L2 , respectively.
Number the components of @P on a component of @X in sequence 1; : : : ;mi .

Let VK , V1 , V2 be the sets of vertices of GQ corresponding to K , L1 , L2 , respectively
(VK is empty when @Q\TK is meridional). The vertices in each of these sets may
also be numbered in the order they appear around their component of @X . Observe
that a vertex v 2 Vi has valence mi�i for i DK; 1; 2; in particular, the mi labels of
corresponding vertices in GP appear in order �i times around v .

Note that P \Q has an arc component which is boundary-parallel in Q if and only if
GQ has a monogon face, ie a face bounded by a fat vertex and single edge of GQ .

Lemma 2.7 Given a Heegaard splitting H1[ yF
H2 of M , there is a K–thin presenta-

tion for L such that one of the following holds:

(A) There is a level surface yP transverse to Q and with non-empty intersection with
L1[L2 such that there is no monogon of GQ at any vertex of V1[V2 . If the
components of @Q\TK are meridional on K , then yP is disjoint from @Q\TK .

(B) There is a level surface yP transverse to Q such that for some choice of fi; j g D
f1; 2g, mi �mj D 2 and there is no monogon of GQ at any vertex of Vi . If the
components of @Q\TK are meridional on K , then yP is disjoint from @Q\TK .

(C) L1[L2 can be isotoped disjointly from K (keeping K fixed) so that L1 and L2

lie on disjoint copies of yF .

Proof Take a K–thin presentation of L with respect to the given splitting. In this
Morse presentation of L, let I be a middle slab, ie an interval of level surfaces without
critical points of L in its interior whose upper and lower levels contain a maximum
and minimum of L, respectively.

We choose I so that the intersection of L1[L2 with any level surface in I is non-
empty. If there is a level surface yP in I , transverse to Q, giving rise to no monogons
in GQ at each of V1 and V2 , then (A) is satisfied and we are done. (Possibly yP is
disjoint from K or one, but not both, of L1;L2 .)
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So assume for each transverse level surface in this slab I there is a high or low disk
in GQ associated to L1 [L2 . (A monogon of GQ is a high or low disk if a collar
of its boundary lies above or below the level surface yP in M , respectively.) Apply
Gabai’s argument (in [5, Lemma 4.4]) to the high and low disks coming from these
monogons of GQ . Note that near the maximum of I such a disk must be high, and
near the minimum it must be low. Gabai’s argument in this context shows that there
must be a level surface yP that intersects some Lj twice, for some j 2 f1; 2g, and
gives rise to high and low disks in GQ guiding Lj onto yP disjointly from the other
two components of L. Then Q cannot also give rise to either a high or low disk at yP
for another component of L since otherwise L could be thinned without increasing
the width of K . Taking fi; j g D f1; 2g, yP satisfies (B) unless yP is disjoint from Li ,
which we now assume.

To the side of yP containing Li we may find a new middle slab such that each level
surface intersects Li but is disjoint from Lj . Otherwise by isotoping Lj onto yP we
could thin. Now apply the same argument. Either we find a level surface satisfying (A)
or Li can be isotoped disjointly from K [Lj onto a level surface yP 0 in this slab.
Therefore, assuming (A) does not occur for a level surface in this new middle slab, we
may isotope L1[L2 disjointly from K onto distinct level surfaces yP and yP 0 so that
L1 lies in one and L2 in the other, giving conclusion (C).

Lemma 2.8 Let M be an orientable, compact 3–manifold and let K[L1[L2 �M

be a link. Let X DM �N .K[L1[L2/ and TK ;T1;T2 be the components of @X
corresponding to K;L1;L2 . Let Q � X be a properly embedded, oriented surface
such that Ti \ @Q is a non-empty collection of coherently oriented curves on Ti for
each i 2 f1; 2g. Let H1 [ yF

H2 be a genus-g Heegaard splitting of M . Assume
that L1 [L2 cannot be isotoped so that L1 and L2 lie on disjoint copies of yF . Let
�K , �1 , �2 be the distance between the slopes of @Q and the meridian slopes of
K;L1;L2 on the TK ;T1;T2 . If

min.�1; �2/ >max.�36�.Q/; 6/
�
2b yF .K/max.�K ; 1/C 2g� 1

�
(where �K D 0 includes the case that @Q is disjoint from @N .K/) then either

(a) there exists a Möbius band in X whose boundary is a meridian in T1 or T2 ; or

(b) there exists an annulus in X with one boundary component essential on T1 and
the other essential on T2 , and furthermore the slope of this annulus on Ti is
neither meridional nor that of @Q\Ti , for each i 2 f1; 2g.

Proof Recall that when �K D 0 the components of @Q \ TK , if non-empty, are
included in the boundary of yQ (the abstract surface in which GQ sits) and VK is
empty. Also note that by convention b yF .K/ > 0.
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Applying Lemma 2.7 to the given LDK[L1[L2 , Q, and Heegaard splitting, gives
a level surface yP of the splitting for which we assume that conclusion (A) or (B) holds.
Then mi �mj and, say, i D 1 so that GQ has no monogons based at a vertex of V1 .

Let GQ.V1/ be the subgraph in a subsurface of GQ consisting of all edges of GQ that
are incident to V1 and all the vertices of GQ to which these edges are incident. We
think of GQ.V1/ as a graph in the surface gotten by attaching disks to Q along those
components of @Q corresponding to vertices of GQ.V1/ (thus if a vertex of GQ is not
connected by edges to V1 then it will give rise to a boundary component of GQ.V1/).
Let zGQ.V1/ be the reduced graph obtained from GQ.V1/ by amalgamating parallel
edges. The graphs GQ , GQ.V1/ and zGQ.V1/ are illustrated in Figure 2.

Claim 2.9 Assume Q is an orientable surface with no disk components and such that
each component has non-empty boundary. Furthermore assume that if Q has annular
components then Q is a single annulus. Let E be a collection of disjoint, properly
embedded arcs in Q such that no arc is parallel to the boundary and no two arcs are
parallel to each other. Then jEj �max.�3�.Q/; 1/.

Proof If Q is an annulus then jEj � 1, verifying the inequality. So assume no
component of Q is an annulus. Since no arc of E is boundary parallel and no two are
parallel, E can be completed to an ideal triangulation of (the interior of) Q by adding
more edges between the components of @Q as needed. If E0 is the resulting collection
of edges and F is the collection of ideal triangles, then we have both 3jF j D 2jE0j

and �.Q/D�jE0jC jF j. Thus jEj � jE0j D �3�.Q/. This gives the claim.

Since each vertex of V1 has valence m1�1 , Claim 2.9 applied to zGQ.V1/ shows that
there must be at least m1�1=max.�6�.Q/; 1/ mutually parallel edges of GQ.V1/.
Let E be one of these sets of edges. Since the valence of a vertex of VK is

mK�K � 2b yF .K/�K

(the presentation is K–thin) which is in turn less than

m1�1=max.�6�.Q/; 1/

by hypothesis, the edges in E cannot have an endpoint on a vertex of VK in GQ .
Therefore the edges in E either (a) join two vertices of V1 (perhaps the same vertex)
or (b) join a vertex of V1 to a vertex of V2 (note that this must be the case if Q is an
annulus).

Now we show that there is a pair of edges of E bounding a disk on yP �N .K/. Let
GP .E/ be the subgraph of GP on yP �N .K/ consisting of the edges in E and the
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Figure 2: An example of the graphs GQ , GQ.V1/ , and zGQ.V1/ . Vertices
are marked according to which of the sets V1;V2;VK they belong.

vertices from yP \ .L1 [L2/ to which these edges are incident. For case (a), these
vertices are all the m1 vertices of yP \L1 (min.�1; �2/ > max.�6�.Q/; 1/). For
case (b), notice that though the edges of E are parallel in GQ.V1/, in GQ these edges
may have monogons interspersed between them at the V2 vertex. However, if there
are such monogons then we are under conclusion (B) of Lemma 2.7. Then m2 D 2

and each of the two vertices of yP \L2 appears jEj=2 times as a label at the V2 end
of E . Whether we are working under conclusion (A) or (B) of Lemma 2.7 then, the
hypotheses min.�1; �2/ > max.�6�.Q/; 1/ and m1 � m2 tell us that in case (b)
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the vertices of GP .E/ are all the m1 vertices of yP \L1 with all the m2 vertices
of yP \L2 . In both cases (a) and (b), the vertices of GP .E/ have valence at least
�1=max.�6�.Q/; 1/. (Each label of GQ at the vertices of V1 or V2 appears at least
this many times at the endpoints of E . For (b) we use that m1 �m2 .)

Claim 2.10 Let G be a graph in a surface P with �.P /D k . If G has no monogons
and each vertex has valence greater than 6 max.1� k; 1/ then G has parallel edges.

Proof Assume there are no parallel edges in G . Then we may add edges to G so that
all faces are either m–gons with m� 3 or annuli with one boundary component being
a component of @P and the other consisting of a single edge and vertex of G . We
may then count �.P / as V �ECF D k , where V;E;F are the numbers of vertices,
edges and disk faces. Because every edge is on the boundary of the faces (including
the annuli) twice, 2E � 3FCj@P j. Let C D 6 max.1�k; 1/. The valence assumption
implies C V < 2E and thus both that V < 2E=C and C=2<E .

Therefore
k D V �ECF < 2E=C �EC 2E=3� j@P j=3:

Hence C k <E.2�C=3/�j@P jC=3. Then, since C � 6, k < 0. That is, C D 6.1�k/.
Thus

3.1� k/ > .1� 1=k/j@P jCE �E:

This contradicts that C=2<E .

Remark 2.11 When k > 0 or j@P j ¤ 0, this proof shows that if G has no monogons
and each vertex has valence at least 6 max.1�k; 1/ then G has parallel edges. Change
the strict inequalities in the last four lines to �;�. We conclude that k � 0 and
3.1� k/ � .1� 1=k/j@P j CE > E , the latter contradicting that C=2 � E . In the
application below, that j@P j D 0 means that K is disjoint from the level surface yP .

Observe that GP .E/ has no monogons: in case (a) by the parity rule due to the coherency
of orientations of @Q on the components of @N .L1[L2/� @X , and in case (b) due
to the endpoints of the edges being on vertices coming from different components of
L1[L2 . Note that in case (a) the vertices of V2 are forgotten, so two edges that are
parallel in GP .E/ may not be parallel in GP . Also each vertex of GP .E/ has valence
at least

min.�1; �2/

max.�6�.Q/; 1/
> 6

�
2b yF .K/max.�K ; 1/C 2g� 1

�
� 6 max.1��. yP �N .K//; 1/
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because yP has genus g , j yP\Kj � 2b yF .K/. Therefore Claim 2.10 implies that GP .E/
has parallel edges. Hence there is a pair of edges e; e0 2 E that bound a disk DQ in GQ

and a disk DP in GP .E/. We may assume DQ\DP D e[ e0 .

In case (a), DQ [DP is a Möbius band in M �N .K [L1/ with boundary on T1

that is a meridian. This follows from the proof of [6, Lemma 2.1]. To see that the
boundary is a meridian, one notes that its slope is the same as the slope of @P since
the rectangle DP connects anti-parallel vertices in P (DQ connects parallel vertices
in Q).

In case (b), DQ[DP is an annulus in X with a boundary component on each of T1

and T2 . Each boundary component of this annulus must intersect a component of @P
and of @Q algebraically a non-zero number of times on T1 [ T2 . Thus a boundary
component of this annulus is essential and isotopic to neither a component of @P , a
meridian, nor @Q. This is conclusion (b) of the lemma.

To finish the proof we need to show that the Möbius band of case (a) can be taken to
be disjoint from L2 .

Claim 2.12 Either

� there is a Möbius band in X whose boundary is a meridian on T1 or T2 ; or

� there is an annulus in X with a boundary component on each of T1 and T2 both
of which are essential in T1;T2 and neither of which is isotopic to a meridian or
to a component of @Q.

Proof By the above, we may assume there is a Möbius band S in M �N .K[L1/

with meridional boundary in T1 . We assume there is no such S disjoint from L2

and take S to intersect L2 minimally. Let S 0 D S \X . Isotope @Q; @S 0 to intersect
minimally in @X . Then no arc of Q\ S 0 is boundary parallel in Q into @Q\ T2 .
Let A be the punctured annulus coming from the boundary of a regular neighborhood
of S 0 in X . Then no arc of Q\A is boundary parallel in Q into @Q\T2 as there
was no such for Q\S 0 . Consider the graphs of intersection GA;G

0
Q

coming from the
arcs of Q\A (as done for GP ;GQ ). Then G0

Q
has no monogons based at the vertices

corresponding to T2 . The parity rule shows that GA has no monogons. We now apply
the argument above to GA;G

0
Q

(in place of GP ;GQ ) to find a Möbius band, disk, or
annulus in X .

To fit that argument (despite the slight awkwardness of indices), set

V1 D j@Q\T2j; V2 D j@Q\T1j; m1 D j@A\T2j � 2; m2 D jA\T1j D 2:
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Then m1�m2 and there are no monogons of G0
Q

at any vertex of V1 . This corresponds
to the situation in the above argument coming from conclusion (B) of Lemma 2.7
(with A taking the role of P ). Each vertex of V1 in G0

Q
has valence m1�2 . Let

G0
Q
.V1/ be the subgraph of G0

Q
consisting of all edges of G0

Q
that are incident to V1

and all the vertices of G0
Q

to which these edges are incident. Again G0
Q
.V1/ is a

graph in the surface gotten by attaching disks to Q along those components of @Q
corresponding to vertices of G0

Q
.V1/. Let zG0

Q
.V1/ be the reduced graph obtained

from G0
Q
.V1/ by amalgamating parallel edges. By Claim 2.9, there must be at least

m1�2=max.�6�.Q/; 1/ mutually parallel edges of G0
Q
.V1/. Let E be one of these

sets of edges. Since A is disjoint from K , the edges in E either (a) join two vertices
of V1 (perhaps the same vertex) or (b) join a vertex of V1 to a vertex of V2 . Let GA.E/
be the subgraph of GA consisting of the edges in E and the vertices to which these
edges are incident. For case (a), these vertices are all the m1 vertices corresponding
to A\T2 (�2 >max.�6�.Q/; 1/). In this case we think of GA.E/ as a graph in the
annulus yA gotten by abstractly capping off the components of A\T2 with disks (ie
V2 corresponds to the boundary of yA). For case (b), since �2 >max.�6�.Q/; 1/ and
m1 �m2 , the vertices of GA.E/ are all the m1 vertices corresponding to A\T2 with
both vertices of A\T1 . In case (b), we consider GA.E/ as a graph in the 2–sphere yA
we get by abstractly capping off all of the boundary of A with disks. In both cases (a)
and (b) the vertices of GA.E/ have valence at least �2=max.�6�.Q/; 1/. (Each label
of G0

Q
at the vertices of V1 or V2 appears at least this many times at the endpoints

of E . For (b) we use that m1 �m2 .)

GA.E/ has no monogons since GA has none. Also each vertex of GA.E/ has valence
at least

min.�1; �2/=max.�6�.Q/; 1/ > 6.2b yF .K/max.�K ; 1/C 2g� 1/� 6:

Therefore Claim 2.10 (with G D GA.E/ and yA playing the role of P ) implies that
GA.E/ has parallel edges. Hence there is a pair of edges e; e0 2 E that bounds a
disk DQ in G0

Q
and a disk DA in GA.E/. We may assume DQ\DA D e[ e0 .

Then, as above, we have two possibilities. In case (a), DQ [DA is a Möbius band
in X with boundary a meridian on T2 [6, Lemma 2.1]. In case (b), DQ[DA is an
annulus in X with a boundary component on each of T1 and T2 both of which are
essential in T1;T2 and neither of which is isotopic to a component of @Q or @A. As
@A is meridional on each of T1 and T2 , this completes the proof of the claim.

Claim 2.12 finishes the proof of Lemma 2.8.
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2.6 Proof of main theorems

In this section we prove Theorem 1.3, Corollary 1.1 and Corollary 1.4.

Theorem 1.3 Let M be a compact, orientable 3–manifold with (possibly empty)
boundary and K[L1[L2 a link in M . Let yR be an annulus in M with @yRDL1[L2 .
Assume . yR;K/ in M is caught by the surface Q in X DM �N .K[L1[L2/. Let
TK ;T1;T2 be the components of @X corresponding to K;L1;L2 respectively. Fixing
an orientation on M , let �i be a meridian of Li on Ti and �i be a framing curve
coming from yR. Express the first homology class of a component of @Q on Ti as
pi Œ�i �C qi Œ�i �. Let �K be the distance on TK between a component of @Q and a
meridian of K (setting �K D 0 when Q is disjoint from K ). Let Kn be K twisted n

times along yR (Definition 1.2).

Let H1[ yF
H2 be a genus-g Heegaard splitting of M .

Then one of the following holds:

(1) yR can be isotoped to lie in yF .

(2) There is an essential annulus A properly embedded in X with a boundary
component in each of T1 and T2 . Furthermore, the slope of @A on each Ti is
neither that of the meridian of N .Li/ nor that of @Q.

(3) For each n,

b yF .K
n/�

min.jq1C np1j; jq2� np2j/=max.�36�.Q/; 6/� 2gC 1

2 max.�K ; 1/

Proof Let H1[ yF
H2 be the given genus-g Heegaard splitting of M . Let K;Kn;L1 ,

L2; yR;X , and Q be as stated. Let R be the annulus yR\ .M �N .L1[L2//. If R is
compressible in M �N .L1 [L2/, then yR can be isotoped onto yF . We hereafter
assume that R is incompressible.

Dehn twists along the annulus R provide homeomorphisms of M �N .L1[L2/ in
which the meridians of L1 and L2 are spun with opposite handedness around @yR.
In particular, let hnWM �N .L1[L2/!M �N .L1[L2/ be the homeomorphism
of Definition 1.2 obtained by twisting n times along R. Define Ln to be the link
Kn[L1[L2 and let Xn be its exterior in M . Then hn induces a homeomorphism
h0nWX !Xn . Define Qn D h0n.Q/.

Use the meridian, longitude coordinates to express the first homology class of a
component of @Q on @N .Li/ as pi Œ�i �Cqi Œ�i �. As Q catches . yR;K/, pi ¤ 0. With
these same coordinates, the first homology class of a component of @Qn on @N .Li/
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is pi Œ�i �C.qiC.�1/iC1npi/Œ�i �. In particular, the distance, �n
i , between a component

of @Qn and the meridian �i on @N .Li/ is jqi C .�1/iC1npi j. Furthermore, the
components of @Qn are coherently oriented on @N .Li/ since those of Q are. In other
words, Qn catches the pair . yR;Kn/ in M .

Lemma 2.13 If L1 [L2 can be isotoped so that L1 and L2 lie on disjoint copies
of yF of M then yR can be isotoped to lie in yF .

Proof Isotope L1;L2 to lie in yF1; yF2 , disjoint copies of yF . We may take yF to lie
between them. Isotope yR so that it intersects yF transversely. Then some curve c of
yR\ yF will be a core curve of yR. Hence yR can be isotoped to a neighborhood of c

and then into yF .

Thus we assume L1 [L2 cannot be isotoped so that L1;L2 lie on disjoint copies
of yF . We apply Lemma 2.8 to Kn;L1;L2;Q

n . Note that conclusion (a) cannot
hold because of the annulus R between in M �N .L1 [L2/ (see eg Lemma 2.14
below). If conclusion (b) holds, then the annulus in X must be essential in X by the
incompressibility of R in M �N .L1[L2/ (a compressing disk for the annulus in
X would give rise to one for R). Thus conclusion (b) gives conclusion (2), and we
may assume (b) does not hold. Thus we must conclude that

min.jq1Cnp1j; jq2�np2j/Dmin.�n
1; �

n
2/

�max.�36�.Qn/; 6/
�
2b yF .K

n/max.�K n ; 1/C2g�1
�
:

As �K n D�K and �.Qn/D �.Q/ we may rewrite this as

b yF .K
n/�

min.jq1C np1j; jq2� np2j/=max.�36�.Q/; 6/� 2gC 1

2 max.�K ; 1/

as desired.

This completes the proof of Theorem 1.3.

We need the following for the proof of Corollary 1.1.

Lemma 2.14 Let N be an orientable 3–manifold with toral boundary components
T1;T2 (@N may contain other components). Let A be an incompressible annulus
in N with a boundary component on each of T1 and T2 . Let B be a @–incompressible
annulus or a Möbius band in N , in either case with essential boundary on T1 [ T2 .
Then either:

� Each component of @B must be isotopic on T1[T2 to one of @A.
� @B has a component on each of T1 and T2 and N is either T 2 � Œ0; 1� or has

T 2 � Œ0; 1� as a connected summand, where T 2 � f0; 1g is T1[T2 .
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Proof Since A is incompressible there is no essential disk in N with boundary on
T1[T2 .

First, assume @B lies on Ti and no component is isotopic to @A\Ti . Isotope @B to
intersect @A minimally on Ti . After possibly surgering B along trivial simple closed
curves of intersection with A, a disk in A bounded by an outermost arc of A\B gives
a @–compressing disk for B . Then B must be a Möbius band and @–compressing B

gives an essential disk in N with boundary on T1[T2 , a contradiction.

So we assume that @B has one component on T1 and another on T2 . Note that B must
be incompressible in N (else there is an essential disk at T1 or T2 in N ). Isotope
@B; @A on T1 [ T2 to intersect minimally. Surger A;B so that no closed curves of
intersection are trivial in either A or B . By orientability (the parity rule), each arc of
A\B must connect different components of @A and different components of @B . Thus
A\B is a collection of parallel spanning arcs in A and in B . Take a pair that cobound
a disk D1 of A�B . These arcs in B then cobound a disk D2 in B . Then D1[D2

gives an annulus C between T1 [T2 such that @C can be isotoped to intersect @B
once on each of T1 and T2 . Indeed, we may isotope C so that it intersects B in
a single arc. Then N .C [B [ T1 [ T2/ has a 2–sphere boundary component that
displays N as a connected sum with T1 � Œ0; 1� as claimed.

In terms of genus-g bridge numbers, Theorem 1.3 has a partial converse. (In the
statement below we have added some explanatory notation to the version of Corollary 1.1
stated in the introduction.)

Corollary 1.1 Let M be a compact, orientable 3–manifold with (possibly empty)
boundary and K [ L1 [ L2 be a link in M . Let yR be an annulus in M with
@yRDL1[L2 , and let R be the annulus yR\ .M �N .L1[L2// properly embedded
in M �N .L1[L2/. Assume . yR;K/ in M is caught. Let X DM �N .K[L1[L2/

and TK ;T1;T2 be the components of @X corresponding to K;L1;L2 respectively.
Fixing an orientation on M , let Kn be K twisted n times along yR.

Assume M has a genus-g Heegaard splitting.

Then one of the following holds:

(1) There is a genus-g Heegaard surface of M containing yR.

(2) There is an essential annulus A in X with one component of @A on T1 and the
other on T2 such that @A and @R are isotopic on T1[T2 .

(3) bg.K
n/!1 as n!1.

Furthermore, if either .1/ or .2/ holds, then fbg.K
n/g is a finite set.
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Proof Assume that conclusion (3) above does not hold. Then there is genus-g Hee-
gaard surface yF of M that fails inequality (3) of Theorem 1.3. Then Theorem 1.3 proves
the corollary unless there is an essential annulus A in X with one component of @A
on T1 and the other on T2 . We may also assume that R is essential in M�N .L1[L2/,
as otherwise conclusion (1) of the corollary will hold. We show that @A must have the
same slopes as @R on T1 and T2 , giving conclusion (2). Assume not. Then @A must
have different slopes on both T1 and T2 from @R. Thus we may apply Theorem 1.3
using A as the catching surface for yR. Again, this proves the corollary unless there is
another essential annulus A0 in X whose boundary has different slopes on T1 and T2

from @A. Applying Lemma 2.14 to X shows that X has T 2 � Œ0; 1� as a connected
summand, where T 2�f0; 1g is T1[T2 . Thus there is a 2–sphere in X separating TK

from T1[T2 and we may surger R\X along this 2–sphere to obtained an essential
annulus in X with the same boundary as R, as desired.

We must show that if (1) or (2) hold, then fbg.K
n/g is a finite set. Assume (1) holds,

and let S be a genus-g Heegaard surface containing yR. Now isotope K , keeping yR
fixed, so that it is bridge with respect to S . Then fbg.K

n/g will be finite since each
element is bounded above by the bridge number of this representative of K .

Assume that (2) holds. Let M n DM.�1
n
; 1

n
/ be the result of .�1

n
; 1

n
/–Dehn surgery

on L1;L2 in M using the framings given by R. As in Definition 1.2, there is
a homeomorphism hn of M � N .L1 [ L2/ to itself that induces h0nWM

n ! M .
Furthermore, h0n identifies the pair .M n;K/ with the pair .M;Kn/. In the same
way, twisting along A induces a homeomorphism f 0nWM

n!M identifying the pair
.M n;K/ with .M;K/. Thus bg.K

n/D bg.K/ for each n.

Remark 2.15 Assume that conclusions (1) and (2) of Corollary 1.1 do not hold. The
proof of Corollary 1.1 shows that either:

(A) For each n,

bg.K
n/�

min.jq1C np1j; jq2� np2j/=max.�36�.Q/; 6/� 2gC 1

2 max.�K ; 1/
;

where .pi ; qi/ are the coordinates of @Q on Ti (framed by R as above) and
�K is the distance on TK between a component of @Q and a meridian of K

(setting �K D 0 when Q is disjoint from K ).

(B) There is an annular catching surface Q0 for yR in M . Let .ri ; si/ be the
coordinates of @Q0 on Ti (framed by R). Then, for each n,

bg.K
n/� 1

12
min.js1C nr1j; js2� nr2j/�gC 1

2
:

We finish with the proof of the following.
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Corollary 1.4 Assume that M is closed and orientable and let K [L1 [L2 be a
link in M . Let yR be an annulus in M with @yRDL1[L2 , and let R be the annulus
yR \ .M � N .L1 [ L2// properly embedded in M � N .L1 [ L2/. Assume that
. yR;K/ in M is caught. Assume there is no properly embedded, essential annulus A

in X DM �N .K[L1[L2/ such that @A\ .T1[T2/ is isotopic to @R\ .T1[T2/

on T1[T2 . Fixing an orientation on M , let Kn be K twisted n times along yR.

If M D S3 and L1[L2 is not the trivial link, then b0.K
n/!1 as n!1.

If M is a lens space and L1[L2 is not a lens space torus link, then b1.K
n/!1 as

n!1.

If M has Heegaard genus at most 2, then either b2.K
n/!1 as n!1 or one of

the following holds:

(a) L1 has tunnel number one in M (or bounds a disk in M ).

(b) L1 is a cable of a tunnel number one knot in M where the slope of the cabling
annulus is that of @R.

(c) 0–surgery (as framed by R) on L1 contains an essential torus.

As L1 and L2 are isotopic in M , if any of (a)–(c) holds for L1, then it also holds for L2.

Proof Under the hypotheses given, Corollary 1.1 implies that if bg.K
n/ does not

tend to infinity with n then yR lies on a genus-g Heegaard splitting H1[ yF
H2 of M .

The conclusions for g D 0 and g D 1 are then immediate. So assume g D 2.

If F D yF �N .L1/ is compressible in the complement of L1 , then such a compression
shows that L1 is a cable of a core of either H1 or H2 . In this case either L1 has
tunnel number one or is the cable of a tunnel number one knot. If on the other hand
F is incompressible then the handle addition lemma [4, Lemma 2.1.1] implies that
surgery on L1 along the slope induced by F is toroidal.

3 Application to Teragaito’s example and some generaliza-
tions

Osoinach describes a construction producing infinitely many distinct knots in S3 (or
some other manifold) for which the same integral surgery on each knot yields the
same new manifold M [14]. Dually, this may be viewed as infinitely many distinct
knots in a manifold M (that is, no homeomorphism of M takes one knot to the other)
for which the same integral surgery yields S3 . Teragaito gives a specific example
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K0

L1
L2

K0

L1
L2

K0

L1
L2

Figure 3: The link L0 DK0[L1[L2 shown with the green annulus A , the
red pair of pants R , and the blue disk yQ .

of this construction in which the manifold M is a small Seifert fiber space [17].
We produce a two-parameter generalization of Teragaito’s examples in which the
resulting manifolds M have Heegaard genus 2 and are typically hyperbolic. We apply
Corollary 1.4 to show that Teragaito’s family of knots and our generalizations (for large
parameter values) have genus-2 bridge numbers in M that tend to infinity. Let us first
review Teragaito’s example.

Teragaito describes a 3–component link L0 DK0[L1[L2 in S3 where L1[L2 is
the boundary of an annulus A and there is a pair of pants R (that intersects the interior
of A) expressing K0 as a banding of L1[L2 and meeting L1[L2 with the same
framing as A, as shown in Figure 3. Frame the components of the link L0 with R.
Then, as Teragaito shows, 0–surgery on K0 (that is, a C4–surgery with respect to the
Seifert framing) produces a small Seifert fiber space M containing the knot K dual to
the surgery and an annulus yR with boundary L1 [L2 . The annulus yR is obtained
after surgery by capping off the K0 component of @R with a disk. Indeed, the interior
of yR is pierced once by K in M .

We generalize Teragaito’s example by inserting extra twists in two regions. Figure 4 is
the same as Figure 3 except that two (unlinked) unknots J0 and J1 have been added
and the full twist on the right-hand side of the link L0 has been undone (which may be
restored by a �1–surgery along J1 ). Produce the link

L0j0;j1
DK0j0;j1

[ .L1/j0;j1
[ .L2/j0;j1

in S3
j0;j1
Š S3

by performing �1=j0–surgery on J0 and �1=j1–surgery on J1 . The link L0
0;1
DL0 is

the one used by Teragaito. As one may conclude from Figure 4, .L1/j0;j1
[ .L2/j0;j1

cobound a green annulus Aj0;j1
and there is a red pair of pants Rj0;j1

(intersecting
the interior of Aj0;j1

) expressing K0j0;j1
as a banding of .L1/j0;j1

[ .L2/j0;j1
and
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meeting .L1/j0;j1
[.L2/j0;j1

in the same framing as Aj0;j1
. The component J0 links

the banding so that �1=j0–surgery on J0 inserts j0 full twists into the band.

Frame the components of the link L0j0;j1
with Rj0;j1

. (Observe that each of the link
components of Figure 4 is an unknot and the framing induced by R is the standard
Seifert framing. Twisting along J0 and J1 will twist these framings.) Then 0–surgery
on K0j0;j1

produces a manifold Mj0;j1
containing the knot Kj0;j1

dual to the surgery
and an annulus yRj0;j1

�Mj0;j1
with boundary .L1/j0;j1

[ .L2/j0;j1
. The annulus

yRj0;j1
is obtained after surgery by capping off the K0j0;j1

component of @Rj0;j1
; the

interior of yRj0;j1
is pierced once by Kj0;j1

in Mj0;j1
.

As .L1/j0;j1
is an unknot in S3 , it bounds a disk yQj0;j1

. This disk is punctured
2jj1j times by K0j0;j1

and jj1j times by .L2/j0;j1
. Let Xj0;j1

be the exterior of the
link L0j0;j1

in S3 . Let Qj0;j1
D yQj0;j1

\Xj0;j1
be this 3jj1j–punctured disk properly

embedded in Xj0;j1
, suggested in blue by the right-hand picture in Figure 4. The blue

3–punctured disk Q0;1 is shown in Figure 3.

Let us now drop the subscripts j0; j1 from our notation except when needed. Thus,
hereafter K0;L1;L2;A;R;M;X correspond to those with subscripts j0; j1 .

A is an annulus in S3 with @ADL1[L2 and yR is an annulus in M with @yRDL1[L2 .
Twisting K0 along A produces the family of knots fK0ng in S3 , and twisting K

along yR produces the family fKng in M . Let Mn (resp. S3
n ) be the manifold

obtained from M (resp. S3 ) by �1=n–surgery on L1 and 1=n–surgery on L2 . In
both Mn and S3

n we continue to use the names L1 and L2 for the knots dual to
these Dehn surgeries. As in Definition 1.2, there are homeomorphisms identifying the
pair .Mn;K[L1[L2/ with .M;Kn[L1[L2/ and the pair .S3

n ;K
0[L1[L2/

with .S3;K0n [ L1 [ L2/. Use the framing on K0 (by R) and the identification
.S3

n ;K
0/Š .S3;K0n/ to assign a framing to K0n . Then the knot dual to the 0–surgery

on K0n in S3 is the knot dual to the 0–surgery on K0 in S3
n , which by definition is K

in Mn . But this is identified with Kn in M . That is, we see that Kn is the dual knot
to the 0–surgery on K0n . Finally, observe that

X D S3
�N .K0[L1[L2/

Š S3
�N .K0n[L1[L2/

ŠM �N .Kn
[L1[L2/

ŠM �N .K[L1[L2/:

Theorem 1.5 Let fK0ng be the Teragaito family of knots in S3 . For each n, let
Kn �M be the C4–surgery-dual to K0n with respect to the Seifert framing on K0n .
Then b0.K

0n/!1 and b2.K
n/!1 as n!1.
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Figure 4: The link L0 DK0[L1[L2 shown with the green annulus A , the
red pair of pants R , and the blue disk yQ .

Proof Recall that the Teragaito family is where j0 D 0; j1 D 1 and the C4–surgery
in the Seifert framing is our 0–surgery when framed by R. The 3–punctured disk Q

in the exterior X obtained from the disk yQ has one component of its boundary on
@N .L1/ and one component of its boundary on @N .L2/. As j1 ¤ 0, these slopes
both differ from the slopes of @yR, and so Q catches . yR;K/ and .A;K0/.

Teragaito shows that the link exterior X of K0[L1[L2 in S3 (and of K[L1[L2

in M ) is hyperbolic; hence in particular X contains no essential annulus. We apply
Corollary 1.4. As L1 [ L2 is not trivial in S3 , b0.K

0n/ ! 1 as n ! 1. By
Lemma 3.4, b2.K

n/!1 as n!1.

The Teragaito family fKng is thus a family of knots in the Seifert fiber space M of
unbounded bridge number each of which nevertheless admits an S3 surgery. We show
that the above generalization yields such families of knots (arbitrarily large genus-2
bridge number where each knot admits an S3 surgery) in manifolds M which are
hyperbolic.

Definition 3.1 SnapPy [3] shows that the manifold W D S3�N .K0[J0[J1/ of
Figure 4 is hyperbolic. It also verifies that W0 , the Dehn filling of W along the slope
of @R (ie slope 0) on the component of @W coming from @N .K0/, is hyperbolic.
SnapPy also shows that Y DS3�N .K0[J0[J1[L2/ is hyperbolic. By Thurston’s
hyperbolic Dehn surgery theorem, there is a constant � , which we will take to be
greater than 2, such that the following hold as long as minfjj0j; jj1jg � � :

� M , which is the Dehn filling of W0 along the slopes �1=j0 and �1=j1 on
the components of W0 coming from @N .J0/ and @N .J1/, respectively, is
hyperbolic.

� Yj0
, the �1=j0–Dehn filling of Y along the component of @Y coming from

@N .J0/, is hyperbolic.
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Theorem 3.2 For jj0j; jj1j � � , M has Heegaard genus 2 and b2.K
n/ ! 1 as

n!1.

Proof This follows from Corollary 1.4, Lemma 3.3 and Lemma 3.4.

Lemma 3.3 Let X DM �N .Kn [L1 [L2/ and T1;T2 the components of @X
corresponding to @N .L1/; @N .L2/. If jj0j � �; j1 ¤ 0, there is no essential annulus
in X with one boundary component on T1 and the other on T2 .

Proof As L1 is isotopic to a meridian of J1 in Figure 4, we can write X D Yj0
[T

C.jj1j; r/, where Yj0
is as in Definition 3.1, C.jj1j; r/ is cable space (a Seifert

fibered space over the annulus with one exceptional fiber) between T and T1 , and
T corresponds to @N .J1/ in @Yj0

. An essential annulus in X with one boundary
component on T1 and the other on T2 would give rise to an essential annulus in Yj0

with boundary on T and T2 (T is incompressible in Yj0
). But this contradicts the

hyperbolicity of Yj0
.

In support of the above theorems we proceed to show:

Lemma 3.4 For any j0; j1 , M has Heegaard genus 2. Furthermore, if either (a)
j1 D ˙1 and jj0j ¤ 1; 2, or (b) jj0j; jj1j � � � 3, then for each i 2 f1; 2g the link
component Li �M

� has tunnel number greater than 1,

� is not a cable of a tunnel number one knot where the slope of the cabling annulus
is that of @yR, and

� has an atoroidal Dehn surgery along the slope @yR.

Proof We assume that i D 1. Then the annulus yR shows that the same statements
hold for L2 .

(1) M has Heegaard genus 2 To start, Figure 5 shows an isotopy of K0 [L1 [

L2[J0[J1 into a simplified configuration. After dropping L2 , performing a further
isotopy makes the remaining link K0[L1[J0[J1 strongly invertible, as shown in
the first picture of Figure 6. The second picture continues the isotopy and exhibits the
fixed set of this strong inversion. Each component of the link is an unknot bounding a
disk that is also invariant under the involution. The framings of these disks agree with
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Figure 5

their page framings (ie blackboard framings). The third picture shows the quotient of
the involution. Each link component except J1 projects to an arc with the page framing.
The fourth picture shows an isotopy of the arc J1 and the fixed set that restores its
framing to the page framing.

The second row of Figure 6 begins with a banding along (the arc corresponding to) K0

using its page framing. By the Montesinos trick, this is equivalent to doing 0–surgery
on K0 . The remaining sequence of pictures of Figure 6 up to the penultimate one exhibit
isotopies of the fixed set and the arcs corresponding to L1 [ J0 [ J1 . Throughout
these isotopies the page framings of the arcs are unaltered.

The final picture of Figure 6 replaces the horizontal arcs J0 and J1 with rectangles
indicating vertical runs of jj0j and jj1j half-twists. The signs of j0 and j1 dictate the
handedness of the twists as illustrated in Figure 7. These replacements correspond to
performing �1=j0 and �1=j1 surgeries on J0 and J1 in the double branched cover.
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Figure 6

The double branched cover of the resulting link ` is the manifold M DMj0;j1
. Since

the link ` is 3–bridge, M is a manifold of Heegaard genus at most 2.

(2) L1 does not have tunnel number one The arc L1 in the final picture of
Figure 6 lifts to the knot L1 in M . The exterior of a small ball neighborhood of the
arc L1 is a ball that intersects the fixed set of the quotient in a tangle ! . The double
cover of this outside ball branched over ! is M �N .L1/.
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C4 �4

Figure 7

When jj1j D 1, the tangle ! is isotopic to the tangle � of Claim 3.6, which shows that
its double branched cover does not have tunnel number one.

So assume jj1j> 1 and that M �N .L1/ has tunnel number one. The double branched
cover of the link we get by adding a rational tangle to ! is a Dehn filling of M�N .L1/.
Any such Dehn filling must have Heegaard genus at most two. Consider the link l

gotten by adding n > 2 vertical twists to ! . The resulting link is the union of �
(Figure 8) and �, where � is a non-rational tangle whose double branched cover is
a Seifert fiber space S over the disk with exceptional fibers of order jj1j; n. The
Seifert fiber of S is unique up to isotopy along @S . By Claim 3.6, the Heegaard
genus-2 manifold Ml that is the double branched cover of l is the union along an
incompressible torus T of N (the double branched cover of � ) and S . As N and S

are irreducible, so is Ml .

Convention Below we will be considering the links in S3 gotten by filling the
boundary sphere of tangles �; �1 in Figures 8, 10 with rational tangles. Rational
tangles are determined by the slopes of their arcs on the bounding sphere with four
marked points. For an integer n, our convention will be that the rational tangles (or the
corresponding slopes on the sphere) are labeled: n=1 for two horizontal arcs with n

right-handed twists, 1=n for two vertical arcs with n left-handed twists. On the level
of the double branched covers, a slope on the tangle sphere determines a slope on the
bounding torus above, and a tangle filling results in a Dehn filling along that slope.

First we show that Ml cannot be a Seifert fiber space. Otherwise the separating
torus T would have to be vertical in that Seifert fiber space and N would admit a
Seifert fibration whose fiber agrees with the Seifert fiber of S . But Dehn filling N

along this fiber gives S2�S1 (adding the 1
0

–tangle to � gives the unlink). This means
that N is the circle bundle over the Möbius band. Thinking of N as a Seifert fiber
space over the disk with two exceptional fibers, each of order 2, we see that no Dehn
filling of N contains a separating essential torus. But filling � with the 0

1
–tangle gives

a link that is a union of two tangles �1; �2 whose double branched cover contains a
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separating incompressible torus by Claim 3.7 (and where the double branched cover of
�2 is Seifert fibered over the disk with two exceptional fibers).

Thus Ml has a non-trivial torus decomposition, and [11] describes such manifolds
with Heegaard genus 2. From now on, the labels (i)–(v) denote the five different types
of such manifolds as described in [11, Theorem].

Claim 3.5 Assume M is closed, connected, irreducible, has Heegaard genus 2, con-
tains an essential torus, and is not a Seifert fiber space. If M does not contain an
essential non-separating torus, then the canonical torus decomposition of M is one of
types (i)–(iv). If M contains an essential, non-separating torus, then the canonical torus
decomposition of M is of type (v), with the exception that one of the decomposing
tori is removed if at least one of M1 or M2 is a product T 2 � I .

The canonical torus decomposition of M has the property that any torus is isotopic into
one of the pieces of the decomposition.

Proof This is the content of the proof of [11, Theorem]. When M contains an
essential, non-separating torus, [11] shows that M has a decomposition of type (v).
In this case, the identification described between the components of @M1 and @M2

guarantees that the decomposition is the canonical (minimal) torus decomposition,
unless either M1 or M2 is T 2 � I . In that case, by amalgamating M1 and M2 we
get a torus decomposition which must be minimal since M is not a Seifert fiber space.

If M does not contain a non-separating torus, then [11, proof of Theorem] shows that
a canonical decomposition of M is of one of the forms (i)–(iv).

A canonical torus decomposition (see for example [7]) has the property that any torus
is isotopic into a piece of the decomposition (else there would be contiguous Seifert
pieces where the fibers agree; contradicting the minimality of the decomposition).

We now argue that Ml DN [T S does not have a canonical torus decomposition of the
form (i)–(v) guaranteed by Claim 3.5, thereby showing that Ml cannot have Heegaard
genus 2. Lemmas 4.2 and 4.4 of [11] show that the exterior of a two-bridge knot or
link is atoroidal. Lemma 5.2 of [11] shows that the exterior of a one-bridge knot in a
lens space of class LK of [11, Theorem] is atoroidal unless it is Seifert fibered over the
Möbius band with a single exceptional fiber. In this case, the unique incompressible
torus which is not boundary parallel is a vertical torus which bounds the neighborhood
of a vertical Klein bottle. Finally, note that since jj1j; n> 2, S is not the exterior of a
two-bridge knot in S3 .

(i)–(ii) Assume there is a canonical decomposition of type (i) or (ii). T is not isotopic
to @M1 since N does not have tunnel number one by Claim 3.6 and since S is not the
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exterior of a two-bridge knot. In a decomposition of type (i), since M1 is atoroidal,
T must be an essential torus in M2 . By [11, Lemma 5.2] M2 is Seifert fibered over
a Möbius band with a single exceptional fiber, and T bounds the neighborhood of a
vertical Klein bottle in M2 . But this contradicts that S is atoroidal and Seifert fibered
over the disk (with a unique fibration). In a decomposition of type (ii), M1 must be
Seifert fibered over the Möbius band with at least one exceptional fiber, and T must
be vertical in this fibration. As S is atoroidal, it must be the side of T that lies in M1 .
Then N is the union of a circle bundle over a once-punctured Möbius band and M2 ,
where the circle fiber is identified with the meridian of M2 . This implies that N has
tunnel number one (one can find a tunnel for a two-bridge knot where two meridians
represent jointly primitive curves in the genus-2 handlebody). But this contradicts
Claim 3.6.

(iii) Assume Ml has a canonical decomposition of type (iii). If T were isotopic
to @M1 , then M2 would have to be N (S is not the exterior of a two-bridge knot
in S3 ). But N is not tunnel number one. Thus M1 must be Seifert fibered over the
disk with three exceptional fibers and T must be a vertical torus in M1 . Thus one
side of T is the union of a Seifert fiber space over the annulus with one exceptional
fiber and M2 , where the Seifert fiber is identified with the meridian of the two-bridge
knot exterior M2 . But such a manifold has tunnel number one (a meridian is primitive
in the tunnel one handlebody of a two-bridge knot exterior). That is, both sides of T

have tunnel number one, contradicting Claim 3.6.

(iv) Assume that Ml is decomposed as in (iv) into the three atoroidal manifolds
M1;M2;M3 . Then T is isotopic to a component of @M3 . But each side of T has
tunnel number one (eg M3[M2 has tunnel number one, since the Seifert fiber of M2

is identified with the meridian of M3 , which is primitive in its tunnel one handlebody).
This contradicts Claim 3.6.

(v) Assume Ml is decomposed into M1 and M2 as in (v). The separating torus T

must be a vertical torus in M1 , where M1 is Seifert fibered over an annulus with
two exceptional fibers. Thus both sides of T have tunnel number one, contradicting
Claim 3.6 (note that the union of M2 with the Seifert fiber space over the 3–punctured
sphere has tunnel number one, since the Seifert fibers are identified with meridians of
the two-bridge link, which are jointly primitive in its tunnel one handlebody).

This shows that Ml does not have Heegaard genus 2, which contradicts our assumption
that M �N .L1/ has tunnel number one, once we verify the supporting claims.

Claim 3.6 Let � be the tangle pictured in Figure 8. The double branched cover N

of � is irreducible, @–irreducible, and has tunnel number greater than one.
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j0

Figure 8

Proof Filling � with the 1
0

–tangle gives the two-component unlink. Thus the corre-
sponding Dehn filling of N is S2 �S1 .

The 0
1
–filling of � gives the three component link l 0 in the first picture of Figure 9.

That picture shows this link decomposed along a Conway sphere into two tangles
�1; �2 , where �1 is the tangle of Figure 10 and where �2 is the tangle gotten by taking
a horizontal, unknotted circle along with two parallel, vertical arcs linking the circle.
The double branched cover Ml 0 of S3 along l 0 is the union along a torus T 0 of the
double branched cover N1 of �1 and the double branched cover N2 of �2 . N2 is a
twisted I–bundle over a Klein bottle which has exactly two descriptions as a Seifert
fiber space corresponding to two different slopes on @N2 : one as Seifert-fibered over a
disk with two exceptional fibers of order 2, the other as a circle bundle over a Möbius
band. By Claim 3.7, N1 is irreducible, @–irreducible, and atoroidal. Thus T 0 is an
incompressible torus in Ml 0 , and either Ml 0 is a toroidal Seifert fiber space or N1[N2

is a non-trivial, canonical torus decomposition of Ml 0 .

From the above discussion, the 1
0

–Dehn filling of N is prime and the 0
1

–Dehn filling
of N is irreducible, thus N is irreducible. As the filling Ml 0 contains an essential
torus, N is not a solid torus. Thus N is irreducible and @–irreducible.

Assume for contradiction that N has tunnel number one. Then the toroidal Ml 0 has
Heegaard genus 2.

First we show that Ml 0 is not a Seifert fiber space. Suppose it is. Then N1 is a Seifert
fiber space whose fiber is a fiber of one of the two Seifert fibrations of N2 , which is
either the 1

0
–slope (as a Seifert fiber space over the disk) or the 0

1
–slope (as the Seifert

fiber space over the Möbius band). However, the 0
1

–filling of �1 is the unknot, implying
that N1 is the exterior of a knot in S3 whose meridian is this 0

1
–slope. But the Seifert

fiber of a knot exterior in S3 is never meridional. Thus it must be that N1 is a Seifert
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fibered knot exterior in S3 whose fiber has slope 1
0

. Thus Ml 0 is a Seifert fibered
space over the 2–sphere with four exceptional fibers, two of which have orders greater
than 2 (by Claim 3.7, N1 is not the exterior of a two-bridge knot). However, such a
Seifert fibered space cannot have Heegaard genus 2. By [13], the splitting would have
to be horizontal or vertical. It cannot be vertical because there are too many exceptional
fibers. It cannot be horizontal by [16]. Thus Ml 0 is not a Seifert fiber space.
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j0

Figure 10

Thus N1[N2 is a non-trivial canonical decomposition of the genus-2 manifold Ml 0 .
In particular, any torus in Ml 0 is isotopic to T 0 . The main theorem of [11] describes
the possible canonical decompositions of Ml 0 (see Claim 3.5). We rule out each of
these possibilities. (M1 , M2 , M3 follow the notation of [11].)

(i) We rule out conclusion (i). By Claim 3.7, N1 is not a Seifert fibered space unless
j0 D 0 (since jj0j ¤ 1; 2 by hypothesis). In that case the slope of the regular fiber
of N1 on T 0 is �1

2
, but this is not the slope of a lens space filling of N2 . Thus it must

be that M1 is N2 and M2 is N1 . That is, N1 is the exterior of a one-bridge knot in a
lens space whose meridian is identified along T 0 with the Seifert fiber, with slope 1

0
,

of N2 coming from its fibration over the disk. Filling N1 along this meridian is a lens
space. However, this filling is the double branched cover of the two-component link
gotten by filling �1 with the 1

0
–tangle. By Hodgson and Rubinstein [8], this link must

be a two-bridge link. However, this is impossible since, for j0 ¤ 1; 2, one component
of this link is knotted.

(ii) Conclusion (ii) does not hold since neither N1 nor N2 is a two-bridge knot exterior.
(Claim 3.7 for N1 and the fact that N2 contains a Klein bottle.)

(iii) Conclusion (iii) does not hold as neither N1 nor N2 is a two-bridge knot exterior.

(iv) Conclusion (iv) does not hold as the torus decomposition of Ml 0 has only two
pieces.

(v) Conclusion (v) does not hold as Ml 0 does not contain a non-separating torus.

This finishes the proof of Claim 3.6.

Claim 3.7 Let �1 be the tangle in Figure 10. Let N1 be the double cover of the tangle
ball branched over �1 . Then N1 is the exterior of the .�2; 3; 2j0C 3/–pretzel knot
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j1 j1 j1 j1 j1L1

j0 j0 j0 j0

Figure 11

in S3 pictured in the final picture of Figure 9. N1 is irreducible, @–irreducible, and
atoroidal for every j0 . N1 is Seifert fibered only when j0D 1; 0;�1, and when j0D 0

the Seifert fiber on @N1 has slope �1
2

. N1 is the exterior of a two-bridge knot only
when j0 D�1;�2.

Proof Figure 9 is a sequence of pictures identifying N1 as the exterior of the non-
trivial .�2; 3; 2j0C 3/–pretzel knot. Since pretzel knots are not satellite knots [10],
N1 is irreducible, @–irreducible, and atoroidal for all j0 . These .�2; 3; 2j0C3/–pretzel
knots are the .3; 5/, .3; 4/, and .2; 5/–torus knots when j0 is 1; 0;�1, respectively, and
hyperbolic otherwise [10]. Moreover, they are two-bridge knots only when j0D�1;�2;
see eg [9]. When j0 D 0, the slope of the Seifert fiber on @N1 may be determined as
the slope of the tangle that fills �1 of Figure 10 to produce the connected sum of the
.3; 1/ and .�4; 1/ torus knots.

(4) Filling M � N .L1/ along the slope @ yR is atoroidal The R–framing of
L1 � S3 is the yR–framing of L1 �M and corresponds to the page framing of the arc
L1 at the end of Figure 6. Therefore the yR–framed surgery on L1 �M is the double
branched cover of the link in the second picture of Figure 11. The subsequent pictures
show isotopies of this link to the split link comprised of the unknot and the .2; j1/–torus
link. Thus the yR–framed surgery on L1 �M is homeomorphic to S1�S2 #L.j1; 1/,
which is atoroidal.

(3) L1 is not the cable of a tunnel number one knot in M for which the cabling
annulus has the same slope on L1 as @ yR Suppose L1 is cabled as described
about the tunnel number one knot J in M . Let A1 be the cabling annulus, properly
embedded in M �N .L1/, whose two boundary components have the same slope on
L1 as @yR (the 0–slope).

First assume jj1j D 1. As L1 is cabled, the 0–surgery in M along L1 will produce a
manifold with a lens space (of positive, finite order in first homology) summand. But
we saw above that 0–surgery on L1 produces S1�S2 # L.jj1j; 1/, which is S1�S2 .
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Thus we may assume that jj1j> 1. As jj0j; jj1j � � , M is hyperbolic. Because L1

is isotopic to a meridian of J1 (see Figure 5), L1 is also a .j1; 1/–cable of J 0
1

, the
dual to the �1=j1–surgery on J1 . Furthermore, the slope of this cabling annulus A2

on L1 is that of @yR. Now the exterior of J 0
1

in M is N , the double branched cover
of � in Claim 3.6. By that claim, J 0

1
does not have tunnel number one. Thus J is not

isotopic to J 0
1

in M .

We may isotope A1;A2 in M �N .L1/ so that they intersect in parallel essential
curves in the interiors of A1 and A2 . Let Vi be the cabling solid torus for Ai in the
exterior of L1 . Note that any incompressible annulus in V1 is @–parallel. Hence for
fi; j g D f1; 2g, we may assume that @Ai lies outside of Vj , and that each component
of Ai \Vj is parallel to @N .L1/\Vj . First assume that A1\A2 is non-empty. Then
Vj �N .Ai/ consists of solid tori, exactly one of which, Cj , has the property that
Ai\Cj is not longitudinal. The core of Cj is isotopic to the core of Vj . If Cj lies in Vi

then Cj D Ci and J would be isotopic to J 0
1

. So it must be that Cj lies outside of Vi .
As Cj meets Vi in a subannulus of Ai , T D Cj [Vi is a Seifert fiber space over the
disk with two exceptional fibers. Note that L1 is isotopic to a regular fiber of T . If
the boundary of T is compressible in M , then either it, and hence L1 , is contained in
a ball, or M is either a small Seifert fiber space or the connected sum of lens spaces.
If its boundary is incompressible, then M is toroidal. As M is hyperbolic, it must
be that L1 lies in a ball in M . Then M is a connected summand of the 0–surgery
on L1 . But M is hyperbolic, and 0–surgery on L1 produces S2 �S1 # L.jj1j; 1/.

Thus it must be that A1;A2 are disjoint. Then V1 [N .L1/[ V2 is a Seifert fiber
space over the disk with two exceptional fibers, of which L1 is a regular fiber. As
above, this contradicts the hyperbolicity of M .

Teragaito also describes the link L0
1;1

in [17] and states that 0–surgery (C4–surgery with
respect to the Seifert framing) on each of the knots K0n

1;1
yields the same Seifert fibered

manifold of type S2.3; 4; 8/. We observe this as follows: Continuing from Figure 6,
Figure 12 shows that setting j0 D j1 D 1 produces a link isotopic to the Montesinos
link m.0I �1

3
; 5

8
;�1

4
/. The double branched cover of this link is the manifold M1;1

that results from the 0–surgery on K00
1;1

and is a Seifert fibered manifold of the type
claimed.

Theorem 3.8 For the second Teragaito family, where j0 D 1 and j1 D 1, fb2.K
n/g

is finite.

Proof We set j0D 1 and j1D 1. Figure 12 also keeps track of the orange arc that lifts
to L1 . The final link of this figure is decomposed in Figure 13 into two 3–strand trivial
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Figure 12

Figure 13

tangles, one of which contains the orange arc as a “core arc”. That is, in the genus-2
handlebody that is the double branched cover of this 3–strand trivial tangle, the orange
arc lifts to a core. Consequently, this implies L1 is a core curve of a genus-2 splitting
of M . Hence the tunnel number of L1 �M is one. Moreover, if OF is a Heegaard
surface of this splitting, then L1 may be isotoped into OF with any desired framing.
Therefore there is an isotopy of the annulus OR into OF . As argued at the end of the proof
of Corollary 1.1, there is an upper bound for b yF .K

n/ and hence for b2.K
n/ as well.

Definition 3.9 A non-orientable, closed surface with Euler characteristic �1 is called
a Dyck’s surface.

Lemma 3.10 For infinitely many pairs .j0; j1/ the manifold Mj0;j1
is hyperbolic

and contains no Dyck’s surface.

Proof Recall that Mj0;j1
is obtained by Dehn surgery on the link K0 [ J0 [ J1

in S3 : 0;�1=j0;�1=j1–surgery on K0;J0;J1 respectively. Let X be the exterior
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of K0 [ J0 [ J1 in S3 and T;T0;T1 be the components of @X corresponding to
K0;J0;J1 , respectively. Recall that W0 is the 0–filling of X along T and that the
interiors of both X and W0 are hyperbolic of finite volume.

First we note that M0;1 contains no Dyck’s surface, Klein bottle, or projective plane
[1, appendix] .M0;1 is the Seifert fiber space S2.�1

2
; 1

6
; 2

7
//. As M0;1 is a filling

of W0 , this implies that W0 contains no Dyck’s surface.

Claim 3.11 For jj1j > 108, the manifold W0.j1/ obtained by �1=j1–filling the T1

boundary of W0 contains no Dyck’s surface.

Proof Assume jj1j > 108. The obvious disk that K0 bounds in the final picture of
Figure 5 gives rise in W0 to a 4–punctured disk with punctures on T1 . By tubing an
appropriate pair of these punctures we get a 2–punctured torus Q0 properly embedded
in W0 whose two boundary components are coherently oriented curves representing
meridians

�
slope 1

0

�
of J1 . Assume for contradiction there is a Dyck’s surface S

in W0.j1/. Let J 0
1

be the core of the attached solid torus at T1 in W0.j1/. Isotope S

in W0.j1/ to intersect J 0
1

minimally. Let S 0 DW0\S . As W0 contains no Dyck’s
surface, @S 0 is a non-empty collection of curves of slope �1=j0 on T1 . Isotope
@Q0; @S 0 to intersect minimally in W0 . Then no arc of Q0\S 0 is boundary parallel in
either Q0 or S 0 (note that a boundary parallel arc in Q0 is orientation-preserving so
the parity rule still applies). Let A be the punctured genus-2 surface coming from a
regular neighborhood of S 0 in W0.j1/. Then no arc of Q0\A is boundary parallel
in Q0 or in A. Consider the graphs of intersection GA;GQ0 coming from the arcs of
Q0\A. Then GA;GQ0 have no monogons.

As the distance between the slopes of the boundaries of Q0 and A on T1 is jj1j, GQ0 has
jj1jj@Aj edges. Let fGQ0 be the reduced graph of GQ0 gotten by amalgamating parallel
edges of GQ0 . The proof of Claim 2.9 shows that fGQ0 has at most six edges. Thus
GQ0 must have a collection E of at least jj1jj@Aj=6 parallel edges. Let GA.E/ be the
subgraph of GA corresponding to these edges (along with all vertices of GA ). Then
the valence of each vertex of GA is at least jj1j=6 > 18. By Claim 2.10, two of the
edges of GA.E/ are parallel on GA . As in the proof of Lemma 2.8, the union of the
disks bounded in Q0;A by an innermost pair of edges gives rise to a Möbius band
properly embedded in W0 . But this contradicts the hyperbolicity of W0 .

Claim 3.12 Assume W0.j1/ is hyperbolic. If jj1j> 108 and Mj0;j1
and Mj 0

0
;j1

both
contain Dyck’s surfaces, then jj0� j 0

0
j � 324.

Proof Assume for contradiction that jj1j> 108, jj0�j 0
0
j> 324 and that S �Mj0;j1

and F �Mj 0
0
;j1

are embedded Dyck’s surfaces. Isotope S;F so that they intersect
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the core of the solid torus attached to T0 in Mj0;j1
;Mj 0

0
;j1

minimally. Let

S 0 D S \W0.j1/; F 0 D F \W0.j1/:

By Claim 3.11, @S 0 is a non-empty collection of curves of slope �1=j0 and @F 0 is a
non-empty collection of curves of slope �1=j1 on T2 in @W0.j1/. Isotope S 0;F 0 to
intersect minimally. Then no arc of S 0 \F 0 is boundary parallel in either S 0 or F 0 .
Let A and B be the boundaries of regular neighborhoods of S 0 and F 0 in W0.j1/,
respectively. Then A and B are both punctured surfaces of genus 2. Consider the
graphs of intersection GA;GB . Neither GA nor GB have monogons. The valence
of each vertex of GA is jj0 � j 0

0
jj@Bj. Let eGA be the reduced graph of GA . By

Claim 2.10, the valence of some vertex of eGA is at most 18. This implies that there
must be a group of parallel edges E in GA with cardinality jj0 � j 0

0
jj@Bj=18. Let

GB.E/ be the subgraph of GB gotten from the edges corresponding to E . The vertices
of GB.E/ have valence jj0 � j 0

0
j=18 > 18. Thus again Claim 2.10 implies that two

edges of GB.E/ are parallel in GB . Once again, the disks bounded on A;B by an
innermost pair of such edges gives rise to a Möbius band properly embedded in W0.j1/.
But this contradicts that W0.j1/ is hyperbolic.

Recall that Mj0;j1
is hyperbolic as long as jj0j; jj1j�� . As W0 is hyperbolic, there is a

constant �0 such that if jj1j>�
0 then W0.j1/ is hyperbolic. Fix jj1j>maxf�; �0; 108g.

By Claim 3.11, for all but finitely values of j0 , Mj0;j1
will be hyperbolic and contain

no Dyck’s surface. This completes the proof of Lemma 3.10.
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