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Braiding link cobordisms and non-ribbon surfaces

MARK C HUGHES

We define the notion of a braided link cobordism in S3 � Œ0; 1� , which generalizes
Viro’s closed surface braids in R4 . We prove that any properly embedded oriented
surface W � S3 � Œ0; 1� is isotopic to a surface in this special position, and that the
isotopy can be taken rel boundary when @W already consists of closed braids. These
surfaces are closely related to another notion of surface braiding in D2 �D2 , called
braided surfaces with caps, which are a generalization of Rudolph’s braided surfaces.
We mention several applications of braided surfaces with caps, including using them
to apply algebraic techniques from braid groups to studying surfaces in 4–space, as
well as constructing singular fibrations on smooth 4–manifolds from a given handle
decomposition.

57M12; 57M25, 57R52

1 Introduction

Two of the most useful and foundational results in knot theory and low-dimensional
topology are the classical theorems of Alexander and Markov. These theorems allow
us to study knots entirely within the realm of braids and braid closures, where we
can exploit either the algebraic structure of the braid group, the special position of
a closed braid in S3 or the fact that braids with isotopic closures can be related by
special braid moves. These results have been used in numerous applications, examples
of which include the construction and categorification of quantum link invariants due
to Freyd, Yetter, Hoste, Lickorish, Millett and Ocneanu [9], Jones [13] and Khovanov
and Rozansky [20], the construction of open book decompositions on 3–manifolds of
Alexander [2], and studying the slice and ribbon genera of knots of Rudolph [25; 27].

The notion of a closed braid as a specially positioned 1–dimensional submanifold of
3–dimensional space has been generalized by different authors to certain classes of
surfaces in 4–space. One such generalization is due to Rudolph [25], who considered
surfaces S �D2�D2 on which the projection to the second factor pr2W D

2�D2!D2

restricts as a branched covering. These braided surfaces generalize the classical notion
of a (geometric) braid as a 1–dimensional submanifold of D2 � Œ0; 1� on which the
projection prŒ0;1�W D

2 � Œ0; 1�! Œ0; 1� restricts as an ordinary covering. Any braided
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surface is necessarily ribbon and Rudolph showed that every orientable ribbon surface
with boundary properly embedded in D2 �D2 is isotopic to a braided surface.

Braided surfaces are closely related to a similar notion due to Viro [29], called 2–braids.
Analogous to classical braids, 2–braids admit a closure operation yielding closed
surfaces in S4 . Viro [29] and Kamada [16] independently proved a 4–dimensional
Alexander theorem by showing that every closed oriented surface in S4 is isotopic
to the closure of a 2–braid. Kamada [15; 19] additionally proved a 4–dimensional
Markov theorem which relates any pair of 2–braids with isotopic closures.

Like their lower-dimensional counterparts, braided ribbon surfaces have found use in
various applications, including finding obstructions to sliceness in knot theory [27],
the study of Stein fillings of contact 3–manifolds and the construction of Lefschetz
fibrations on 4–dimensional 2–handlebodies (ie 4–manifolds admitting handle de-
compositions with no 3– or 4–handles). Indeed, using the fact that any oriented
4–dimensional 2–handlebody X admits a covering over D2 �D2 branched along an
orientable ribbon surface, Loi and Piergallini [22] were able to construct Lefschetz
fibrations on X and used them to give a topological characterization of Stein surfaces
with boundary.

As Rudolph’s braided surfaces do not include non-ribbon surfaces, the above techniques
were not sufficient for studying smooth 4–manifolds with 3– or 4–handles. Indeed, the
branched coverings of such manifolds over D2 �D2 do not have ribbon branch loci.
Expanding these applications thus requires a more general notion of braided surface.

In this paper we generalize these notions further, by defining braided link cobordisms
(or simply braided cobordisms). These are surfaces W � S3 � Œ0; 1�, smoothly and
properly embedded, on which the projection pr2W S

3�Œ0; 1�! Œ0; 1� restricts as a Morse
function with each regular level set W \ .S3�ftg/ a closed braid in S3�ftg. Braided
cobordisms generalize Viro’s closed 2–braids to oriented surfaces with boundary. We
prove the following:

Theorem 1.1 Let W � S3 � Œ0; 1� be an oriented surface smoothly and properly
embedded. Then W is isotopic to a braided cobordism. If the boundary links of @W
are already closed braids, then this isotopy can be chosen rel @W .

Theorem 1.1 can be thought of as a cobordism analogue to the classical Alexander’s
theorem and will be proven in Section 3. Our construction will be similar to Kamada’s
construction [16], which implies our result in the case that W is a closed surface. The
bulk of the additional work here will be in carrying out the construction in a way that
allows us to keep @W fixed during the required ambient isotopies. This boundary-fixing
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requirement is considered with an eye toward applications (see either Jacobsson [12]
for a construction using Khovanov homology, which is not invariant under general
isotopies of W , or below for other applications).

We also define a related class of surfaces in D2 �D2 , called braided surfaces with
caps, which generalize Rudolph’s braided surfaces (see Section 2.4), and which are
closely related to braided cobordisms. Theorem 1.1 then gives us the following:

Corollary 1.2 Let S be a smooth oriented properly embedded surface in D2 �D2 .
Then S is isotopic to a braided surface with caps. If @S is already a closed braid, then
the isotopy can be chosen rel @S .

These generalized surface braiding results make it possible to extend applications
which rely on Rudolph’s braiding algorithm. Here we outline one such application,
which involves extending Loi and Piergallini’s techniques to construct broken Lefschetz
fibrations on oriented smooth 4–manifolds. Let X be a smooth, oriented, compact
4–manifold and † a compact oriented surface. Then a surjective map f W X !† is
called a Lefschetz fibration if around every critical point the map f can be modeled
in orientation-preserving complex coordinates locally as f .u; v/ D u2 C v2 . It is
called a broken Lefschetz fibration if, along with these isolated critical points, it also
contains embedded circles of critical points near which f is locally modeled by
f .�;x;y; z/D .�;x2Cy2� z2/.

Lefschetz fibrations are closely related to symplectic structures on X — see Donald-
son [8] and Gompf and Stipsicz [11] — and allow us to express the 4–manifold X

combinatorially in terms of the monodromy of a regular fiber (see [11]). Broken
Lefschetz fibrations exist more generally, but share a similar relation to near-symplectic
structures — see Auroux, Donaldson and Katzarkov [3] — and can be used to define
invariants of smooth 4–manifolds and finitely presented groups; see Baykur [5]. They
were introduced in [3], which constructed a broken Lefschetz fibration on S4 . Later,
it was shown independently by Akbulut and Karakurt [1], Baykur [4] and Lekili [21]
that any oriented smooth 4–manifold admits a broken Lefschetz fibration over S2 .
Although their approaches differ, none of them build the desired fibration directly from
a given handle decomposition of X , instead relying on the modification of critical
points of generic maps or deep classification results from contact topology.

Corollary 1.2 allows us to extend Loi and Piergallini’s techniques to construct broken
Lefschetz fibrations from handle decompositions on a wide class of 4–manifolds.
Indeed, given a handle decomposition of X with @X ¤∅, we can construct a branched
covering hW X !D2 �D2 one handle at a time, so that the branch locus is a surface
with only cusp and node singularities. In many cases this branch locus can be made to
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be orientable and hence, by Corollary 1.2, can be isotoped to a braided surface with
caps in D2 �D2 . The desired fibration on X is then obtained as the composition
pr2 ıhW X !D2 . This construction yields fibrations directly from the handle decom-
position of X and can be combined with techniques of Gay and Kirby [10] to give
broken Lefschetz fibrations on closed 4–manifolds.

Another avenue of application lies in using algebraic information from a braid to answer
geometric questions about its closure. Indeed, Rudolph used braided ribbon surfaces
to study quasipositive links [26; 27; 28] (links which bound braided ribbon surfaces
with only positive branch points), as well as to find bounds on the ribbon genus of
a link in terms of algebraic information from the braid group [25]. Using braided
(non-ribbon) surfaces with caps, this latter approach can be extended further to look
for bounds on the genus of an arbitrary surface bounded by a link in terms of algebraic
information from its boundary. Furthermore, there are a number of link invariants
whose definitions require they be computed on closed braid diagrams (see eg [20]). By
examining links that are joined by a given braided cobordism W , one could attempt to
extend these invariants across W and uncover interesting relationships between the
invariants along @W and the surface W . The author intends to pursue these questions
further in upcoming work.

The remainder of this paper will be organized as follows. In Section 2 we define
various notions of surface braidings in D2�D2 and S3� Œ0; 1�, as well as outline the
relationship between them. In Section 3 we present diagrammatic methods for studying
1–dimensional braids and surfaces in 4–space and use them to prove Theorem 1.1 and
Corollary 1.2.

Acknowledgements The author would like to thank Oleg Viro for many helpful
comments and suggestions.

2 Braided surfaces in 4–space

2.1 Links as braid closures

Let D2�C be the closed unit disk, S1D@D2 and S3Df.z; w/ j jzj2Cjwj2D1g�C2

the unit 3–sphere. We set T1 D S3 \ fjzj � 1=
p

2g and T2 D S3 \ fjwj � 1=
p

2g,
which are both tori, and let U D S3 \ fw D 0g (ie the core of T2 ). We say that an
oriented link L in S3 is a closed braid if L� S3nU and arg.w/ is strictly increasing
as we traverse the components of L in the positively oriented direction. We call U the
axis of the closed braid.
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Alexander’s theorem then says that any oriented link in S3 is isotopic to a closed braid.
Markov’s theorem says that any two closed braids which are isotopic as links can be
joined by a sequence of isotopies through closed braids as well as stabilization and
destabilizations moves which increase and decrease the braid index, respectively.

2.2 Movie presentations of braided cobordisms

Recall from Section 1 that a braided cobordism is a surface W � S3� Œ0; 1�, smoothly
and properly embedded, on which the projection pr2W S

3 � Œ0; 1�! Œ0; 1� restricts as
a Morse function with each regular level set Wt D W \ .S3 � ftg/ a closed braid
in S3�ftg. We will assume in what follows that pr2jW is injective on its set of critical
points. Each regular Wt with t < 1 is oriented as the boundary of W \ .S3 � Œt; 1�/.

We now establish a diagrammatic method for describing braided cobordisms. Choose a
point p 2U �S3 with fpg� Œ0; 1� disjoint from W , and identify the complement of p

in .S3;U / with .R3; z–axis/. Choose the identification so that arg.w/ corresponds
to the angular cylindrical coordinate on R3 . Here we let .x;y; z/ denote the usual
coordinates on R3 , while t denotes the coordinate on Œ0; 1�.

Let � W R3!R2 denote the orthogonal projection to the xy –plane. After perturbing W

slightly if necessary, we can assume that � � idW R3� Œ0; 1�!R2� Œ0; 1� restricts to a
family of regular link projections Wt !R2 � Œ0; 1� for all but finitely many t 2 Œ0; 1�.
After decorating with over- and under-crossing information, we obtain a continuous
family of link diagrams with finitely many singular diagrams. As each regular Wt is a
closed braid, each regular diagram will be the diagram of a closed braid, while passing
a singular still will change the diagram by one of the following:

(1) Addition or deletion of a single loop around 0 2R2 disjoint from the rest of the
diagram (corresponding to local maximum and minimum points of W ).

(2) Addition or deletion of a single crossing between adjacent strands in the braid
diagram by a band surgery (corresponding to saddle points of W ).

(3) A single braid-like Reidemeister move of type II or III, where each strand
involved in the move is oriented in the positive direction.

We refer to this family of link diagrams as the movie presentation of W . Note that,
because we are not assuming W is in general position with respect to the z– and
t –projections, our definition of movie presentation differs slightly from that used by
other authors (see eg Carter, Kamada and Saito [7]). During the proof of Theorem 1.1,
we will also consider movie presentations using projections other than the orthogonal
projection � W R3!R2 to the xy –plane.
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Figure 1: Braided movie presentation

The surface W can then be described by taking a finite number of the nonsingular stills,
where each one differs from the previous still by a single modification as described
above, or by a planar isotopy preserving the closed braid structure. Some caution is
needed in using such descriptions, as different choices of planar isotopies linking two
adjacent diagrams can result in non-isotopic embeddings (see eg Jacobsson [12]). See
Figure 1 for a genus-1 example of a braided movie presentation between the trefoil
and the empty knot (the stills are read as lines of text, from left to right).

2.3 Braided surfaces in D2 � D2

Rudolph [25] defined a braided surface to be a smooth, properly embedded, oriented
surface S �D2�D2 on which the projection to the second factor pr2W D

2�D2!D2

restricts as a simple branched covering. Examples of these braided surfaces can be
obtained by taking intersections of nonsingular complex plane curves with 4–balls
in C2 and they can be used to study the links that arise as their boundaries in S3D @D4

(see eg [26; 27; 28]).
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Let S be a braided surface. In a neighborhood of any branch point p of the cover-
ing pr2jS , there are local complex coordinates u and v on D2 such that S is given
by the equation u2 D v in the coordinates .u; v/ on D2 �D2 .

The boundary of D2�D2 decomposes as @.D2�D2/D .D2�S1/[.S1�D2/ in the
obvious way and we set @1DD2�S1 and @2DS1�D2 . We then define closed braids
in @.D2�D2/ as links in @1 on which the projection pr2W @1!S1 restricts to a cover-
ing map. Note that the boundary of a braided surface is a closed braid in @.D2 �D2/.

One feature of Rudolph’s braided surfaces is that they are all necessarily ribbon. A
properly embedded surface S in D4 D f.z; w/ j jzj2Cjwj2 � 1g is said to be ribbon
embedded if the function jzj2Cjwj2 restricts to S as a Morse function with no local
maximal points on int S . A properly embedded surface in D4 is said to be ribbon
if it is isotopic to a surface which is ribbon embedded. By fixing an identification
of D2 �D2 with D4 , we can similarly consider ribbon surfaces in D2 �D2 (the
definition of ribbon embeddings in D2�D2 will depend on our choice of identification,
though the resulting class of ribbon surfaces will not).

Rudolph proved that any orientable ribbon surface in D2 �D2 is isotopic to a braided
surface, though in general this isotopy cannot be chosen to fix @S , even if @S is already
a closed braid.

Viro defined a similar notion, which he called a 2–braid, by additionally requiring
that @S � @1 D D2 �S1 be a trivial closed braid (ie @S D P �S1 for some finite
subset P �D2 ). These 2–braids come equipped with a closure operation, yielding
closed surfaces in S4 . Viro [29] and Kamada [16] independently proved that every
closed oriented surface in S4 is isotopic to the closure of a 2–braid. These 2–braids
were studied further by Kamada [14; 15; 17; 18; 19], who also proved a 4–dimensional
Markov theorem relating any two 2–braids with isotopic closures.

2.4 Braided surfaces with caps

The embedded surfaces in D2 �D2 we consider in this paper will not in general be
ribbon and hence cannot be braided via Rudolph’s algorithm. We thus consider a less
restrictive notion of braiding, which we define now.

Let �W F !† be a smooth map of oriented surfaces. Then a cap of F with respect
to � is an embedded disk D � F such that

(1) � restricts to embeddings on int D and on @D ,

(2) F and † admit coordinate charts of the form S1�Œ�1; 1� around @DDS1�f0g

and �.@D/D S1 � f0g, on which � is given by .�; t/ 7! .�; t2/,

(3) in the above coordinate chart around �.@D/, the curve S1�f1g lies in �.int D/.

Algebraic & Geometric Topology, Volume 15 (2015)



3714 Mark C Hughes

pS

SS

D2

S

D2

prS

Figure 2: Cross-section of a braided surface with caps

Now let S �D2�D2 and let prS denote the restriction of pr2 to S . We say that S is
a braided surface with caps if the critical points of prS all correspond either to isolated
simple branch points or boundaries of caps of S with respect to prS . Moreover, we
will often assume that the critical values in D2 form a set of embedded concentric
circles (corresponding to the boundaries of caps), with isolated critical values lying
inside the innermost circle. See Figure 2 for a cross-sectional diagram of a braided
surface with a single cap.

2.5 Braided surfaces with caps from braided cobordisms

Braided cobordisms are closely related to braided surfaces with caps, a fact which we
illuminate here. We begin by defining a smooth map �W S3 ! D2 as follows. Let
�W Œ0; 1�! Œ0; 1� be a smooth function with �.t/D t on Œ0; 1

4
�, �� 1=

p
2 on Œ1=

p
2; 1�

and so that d�=dt > 0 on Œ0; 1=
p

2/. Then we define �W S3!D2 as

�.z; w/D

p
2w�.jwj/

jwj

for w ¤ 0 and �.z; 0/ D 0. Clearly � is smooth, with T1 D �
�1.@D2/ and T2 D

��1.int D2/. Furthermore, using � we can fix a fibering of T1 over S1 with fiber D2

and a fibering of T2 over D2 with fiber S1 . A link L� T1 is a closed braid if and
only if �jLW L! S1 is a covering map. We call the degree of the covering map �jL
the index of the closed braid L.

We now identify @.D2�D2/ with S3 by a smooth homeomorphism � , which smooths
the corners of @.D2 �D2/ and identifies @1 with T1 and @2 with T2 . Furthermore,
we assume that � is a diffeomorphism away from the corners of @.D2�D2/ and maps
the fibers of pr2 diffeomorphically onto the fibers of � .
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For 0 � t � 1, we can multiply @.D2 � D2/ � C2 by a factor of 1
2
.t C 1/ and

use � to identify the resulting set with S3 � ftg. We thus obtain an identification of
S3� Œ0; 1� with a collar neighborhood � of @.D2�D2/ in D2�D2 , which we denote
by �0W �! S3 � Œ0; 1�.

As any properly embedded surface S in D2 �D2 can easily be arranged to lie in the
collar neighborhood � , we see that after smoothing corners any such surface gives rise
to a smooth properly embedded surface in S3� Œ0; 1� whose boundary lies in S3�f1g,
and vice versa.

Lemma 2.1 Suppose W �S3�Œ0; 1� is a braided cobordism with W \.S3�f0g/D∅.
Then .�0/�1.W / will be a braided surface with caps in D2�D2 (after a small isotopy
smoothing corners around the boundaries of the caps).

Proof Let S D .�0/�1.W / and let prS denote the restriction of pr2 to S . Each local
maximum or minimum point of W � S3 � Œ0; 1� with respect to the height function
will lie in T2� Œ0; 1� and we can arrange that each saddle point of W lies in T1� Œ0; 1�.
Furthermore, by flattening a neighborhood of each local maximum and minimum point,
we can isotope W so that it intersects T2 � Œ0; 1�D S1 �D2 � Œ0; 1� in a collection of
disks of the form fpg �D2 � ftg. The image of any such disk under .�0/�1 will be
a disk in 1

2
.t C 1/ � @2 and the restriction of prS to its interior will be free of critical

points.

Now W 0t DW \ .T1 � ftg/ will be a (possibly singular) closed braid in T1 � ftg for
each 0 � t � 1. Each singular braid W 0t will consist of a closed braid with a pair
of strands intersecting at a point, with distinct tangent lines. These self-intersections
correspond to saddle points of the surface W . Each .�0/�1.W 0t / will thus also be a
possibly singular closed braid in 1

2
.t C 1/ � @1 , where each singular point gives rise to

a simple branch point of the projection prS . The nonsingular points of these closed
braids all correspond to regular points of prS .

Finally, it remains to consider what happens along the boundaries of the disks in
W \ .T2 � Œ0; 1�/. For any disk D corresponding to a local minimum of W , the
boundary of .�0/�1.D/ can be smoothed in such a way that the resulting points are all
regular points of the map prS . If D instead corresponds to a local maximum, then the
boundary of .�0/�1.D/ is instead smoothed in such a way that .�0/�1.D/ becomes a
cap of S with respect to prS . Since all critical points of prS are either isolated simple
branch points or lie along the boundary of a cap, S �D2 �D2 is a braided surface
with caps.
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3 Braiding link cobordisms

We start the proof of Theorem 1.1. For the duration of the proof, it will be convenient
to think of our cobordisms as lying in R3� Œ0; 1�, so that we can use the diagrammatic
approach described in Section 2.2. Suppose that W �R3�Œ0; 1� is a properly embedded
oriented link cobordism between closed braids B0 � R3 � f0g and B1 � R3 � f1g.
Assume furthermore that the restriction of the projection pr2W R

3� Œ0; 1�! Œ0; 1� to W

is a Morse function. For any such surface W �R3 � Œ0; 1� and any Œa; b�� Œ0; 1�, let
WŒa;b� DW \ .R3 � Œa; b�/ and Wt DW \ .R3 � ftg/.

3.1 Braiding around critical points

We begin by proving that W can be “braided” in a neighborhood of the critical points
of pr2jW . This will reduce the problem of proving Theorem 1.1 to proving it for
cobordisms W without critical points.

Lemma 3.1 There is an isotopy of W rel @W taking W to a surface W 0 such that
W 0
Œa;b�

is a braided cobordism for Œa; b� 2 fŒ0; 1
6
�; Œ1

3
; 2

3
�; Œ5

6
; 1�g and is free of critical

points for Œa; b� 2 fŒ1
6
; 1

3
�; Œ2

3
; 5

6
�g.

Proof As both B0 and B1 are closed braids, Wt will also be a closed braid for t

close to 0 and 1, so we can assume that Wt is a closed braid for all t 2 Œ0; 1
6
�[ Œ5

6
; 1�.

Push all minimal points into R3 � Œ0; 1
6
�, all maximal points into R3 � Œ5

6
; 1� and all

saddle points into R3 � f
1
2
g (see [19] for details). The maximal and minimal points

can easily be positioned in such a way that W 0
Œ0;1=6�

and W 0
Œ5=6;1�

remain braided.

Now, passing each saddle point changes the level set Wt by surgery along a 2–dimen-
sional 1–handle. After a small perturbation in a neighborhood of each saddle point,
we can assume that these 1–handles all lie in R3 � f

1
2
g. By adding a half-twist in

each band, we can arrange that each segment of W1=2C" and W1=2�" involved in the
surgeries are oriented in the positive direction (see Figure 3, where W1=2 is shown).
Keeping these bands in place, the remaining strands of W1=2 can be braided using the
standard proof of the classical Alexander’s theorem. Thus we can arrange W1=2 so
that it is a closed braid both before and after the surgeries, and can extend the closed
braid structure to the rest of W 0

Œ1=3;2=3�
.

The above argument is due to Kamada [19].
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Figure 3: Arranging 1–handles

3.2 Braiding critical point-free cobordisms

Any cobordism W which is free of critical points is topologically just a union of
cylinders, and is isotopic to a product cobordism. In general, however, the isotopy
taking W to a product cobordism cannot be chosen to fix the boundary. Consider, for
example, the movie presentation of the critical point-free cobordism W depicted in
Figure 4 (where the middle still is meant to imply that the bottom strand is given a
non-zero number of full twists as we look at the level sets moving down). Here, W is
isotopic to a product cobordism, but there is no such isotopy fixing @W .

The movie presentations of a critical point-free cobordism is described entirely by its
starting diagram and a sequences of Reidemeister moves and planar isotopies. We will
complete the proof of Theorem 1.1 in two stages, first by proving it for critical point-free
cobordisms whose movie presentation is described entirely by a planar isotopy (ie no Rei-
demeister moves take place between nearby stills) before proving it for the general case.
Before doing this however, we must first recall a geometric set of Markov moves for
classical links used by Morton [24], as well as his threading construction, which gives a
diagrammatic approach to studying isotopies of closed braids. The proof of Theorem 1.1
relies on enhancements of the arguments used in his proof of Markov’s theorem.

Figure 4: Critical point-free cobordism not isotopic rel boundary to product cobordism
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Figure 5: Simple Markov equivalence

3.3 Geometric Markov moves for closed braids in R3

Morton’s geometric formulation of Markov’s theorem states that two closed braids
which are isotopic as links can be joined by a sequence of braid isotopies and simple
Markov equivalences. A braid isotopy between two closed braids L0 and L1 in R3 is
an isotopy �˛ of R3 , ie a continuous family of maps �˛W R3!R3 parametrized by
˛2 Œ0; 1� with �0D idR3 such that �˛.L0/ is a closed braid for all ˛ and �1.L0/DL1 .

The second move on closed braids is a geometric version of braid stabilization. Let
B and B0 be closed braids and suppose there is an oriented embedded disk R�R3

intersecting the z–axis transversely in a single point. Suppose also that @RD c [ c0 ,
where c D B \R and c0 D B0\R are connected and where the boundary orientation
of @R is winding clockwise along c and counterclockwise along c0 . Suppose further
that Bnc D B0nc0 . Then B and B0 are said to be simply Markov equivalent (see
Figure 5, where the disk R is shaded).

The projections of such B and B0 to the xy –plane differ by a sequence of Reidemeister
moves which includes precisely one move of type I creating an extra loop around the
origin.

3.4 Threading construction

Let P be the xz–plane and let � 0W R3! P be the orthogonal projection. Let h� P

be the image of the z–axis under � 0 . Suppose D is the diagram in P of an oriented
link L. Let C �D denote the double points (crossings) of L under the projection � 0 .

A choice of overpasses for D is a pair of disjoint finite subsets S , F � DnC such
that each link component contains points from S [F and points of S alternate with
points of F when traveling along any component. Furthermore, when traveling in the
positively oriented direction, each arc of the form Œs; f � contains no under-crossings
and each arc Œf; s� contain no over-crossings.
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Figure 6: Trefoil as a closed braid given by a threading

Now let PCDP\fx> 0g and P�DP\fx< 0g be the right- and left-hand regions of
P separated by h, respectively. Although h is not a component of L, we can enhance
the diagram D by assigning a crossing choice whenever D intersects h transversely.

Given such an enhanced diagram, h is said to thread the diagram D for some choice
of overpasses .S;F / if h intersects D transversely, S � P� , F � PC and

(1) D crosses over h when traveling from P� to PC ,

(2) D crosses under h when traveling from PC to P� .

Threadings of link diagrams allow us to study closed braids on the level of link diagrams.
The following lemma is due to Morton (see [24]):

Lemma 3.2 Suppose D is a diagram that is threaded by h for some choice of over-
passes. Then there is a closed braid L with diagram D .

The idea behind the proof of the lemma is summarized in Figure 6. Note that, even if
the over- and under-crossing information of D with h has not been specified, there
is a unique assignment to each such crossing so that the resulting diagram lifts to a
closed braid. Conversely, it is also easy to show that any closed braid is braid-isotopic
to one whose diagram is threaded by h for some choice of overpasses.
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3.5 Braiding movie presentations without Reidemeister moves

Now suppose that W � R3 � Œ0; 1� is a critical point-free cobordism between two
closed braids and consider the movie presentation of W , this time projecting each
Wt � R3 � ftg D R3 to the plane P via the projection � 0 . We let Dt denote the
(possibly singular) diagram of Wt in P for each t 2 Œ0; 1�. As W is free of critical
points, nearby diagrams will differ by either a planar isotopy or Reidemeister move. If
the movie presentation of W does not involve any Reidemeister moves, then it can be
described completely by specifying the initial diagram D0 and a planar isotopy �˛
of P , with �˛.D0/DD˛ for all ˛ . In what follows it will be convenient to specify
the movie presentations of such surfaces in this way.

We prove Theorem 1.1 first in the special case when D0 and D1 are threaded and the
movie presentation of W does not involve any Reidemeister moves:

Proposition 3.3 Suppose W has no critical points and that its movie presentation
does not involve any Reidemeister moves. Suppose further that W0 and W1 are closed
braids with diagrams D0 and D1 threaded by h for some choices of overpasses. Then
W is isotopic relative its boundary to a braided cobordism.

In order to prove the above proposition we will need to lift the planar isotopy joining D0

and D1 to a sequence of braid isotopies and simple Markov equivalences in R3 . For
the rest of this section we assume W is as described in the statement of Proposition 3.3.
The first lemma we will need is the following:

Lemma 3.4 Let  ˛ be a planar isotopy of P taking D0 to D1 which fixes h setwise.
Suppose further that  ˛ �  0 and  1�˛ �  1 for ˛ in a small neighborhood of 0.
Then there is a braid isotopy �˛ taking W0 to W1 such that � 0 ı�˛.W0/D  ˛.D0/

for all ˛ 2 Œ0; 1�.

Proof For any p 2 W0 and ˛ 2 Œ0; 1�, the x– and z–coordinates of �˛.p/ are
determined by  ˛ . The y–coordinate of �˛.p/ can then be chosen uniquely so that
the radial coordinate of �˛.p/ remains constant for all ˛ . It thus suffices to note that
any two closed braids with the same diagram are also braid-isotopic, via a straight line
isotopy.

Let .S0;F0/, .S1;F1/ � P denote the overpasses chosen for the threadings of D0

and D1 , respectively, and let  ˛ denote a planar isotopy of P associated to the movie
presentation of W , ie  ˛.D0/DD˛ for all ˛ 2 Œ0; 1�. We can assume that

S0\ 
�1
1 .S1/D F0\ 

�1
1 .F1/D∅:
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The following lemma will allow us to assume that the choices of overpasses for both
D0 and D1 coincide and that they can be assumed to be fixed by the planar isotopy  ˛ .

Lemma 3.5 W is isotopic relative its boundary to a cobordism whose movie presen-
tation is determined by the diagram D0 and a planar isotopy '˛ , where '˛.S0/D S0

and '˛.F0/D F0 for 0� ˛ � 1
2

, and '˛.S1/D S1 and '˛.F1/D F1 for 1
2
� ˛ � 1.

Proof We can assume that, for all q2S1[F1 , the sets f �1
˛ .q/ j0�˛�1g are disjoint

embedded arcs in P which do not intersect S0[F0 (see for example [6, Lemma 10.4]).
For each q 2S1[F1 choose a small regular neighborhood Aq of f �1

˛ .q/ j 0�˛� 1g

so that the Aq are pairwise disjoint and also do not intersect S0[F0 .

Now let �˛ be a planar isotopy of P which restricts to the identity on the complement
of
S

Aq and is such that for all ˛ 2 Œ0; 1� and all p 2  �1
1
.S1 [ F1/ we have

�˛.p/D 
�1
1�˛
ı 1.p/. Let ��;˛ be the one-parameter family of planar isotopies of P ,

with � 2 Œ0; 1�, defined by

��;˛ D

�
�2�˛ if 0� ˛ � 1

2
;

��.2�2˛/ if 1
2
� ˛ � 1:

After an isotopy of W which rescales the t –coordinate, we can arrange that the movie
presentation of W is instead described by the planar isotopy

ˆ˛ D

�
idP if 0� ˛ � 1

2
;

 2˛�1 if 1
2
� ˛ � 1:

Now consider the composition ˆ˛ı��;˛ . Letting � range from 0 to 1 shows that the sur-
face W , which is described by the diagram D0 and the planar isotopy ˆ˛Dˆ˛ ı�0;˛ ,
is isotopic to a surface described by D0 and the planar isotopy

'˛ WDˆ˛ ı�1;˛ D

�
�2˛ if 0� ˛ � 1

2
;

 2˛�1 ı �2�2˛ if 1
2
� ˛ � 1:

As the �˛ is the identity outside of
S

Aq , for any p 2 S0[F0 and any ˛ 2 Œ0; 1
2
� we

have '˛.p/D �2˛.p/D p . For ˛ 2 Œ1
2
; 1� and q 2 S1[F1 we have

'˛.q/D  2˛�1 ı �2�2˛.q/D  2˛�1 ı 
�1
1�.2�2˛/.q/D q;

as required. Note that all the isotopies described above fix W0[W1 D @W .

By the above lemma it is enough to prove Proposition 3.3 in the case when SDS0DS1 ,
F D F0 D F1 and all points in S [F are fixed by  ˛ . Indeed, since the points in
S0 [F0 are stationary during the first half of the planar isotopy '˛ and since they
form a choice of overpasses for which D0 is threaded, they must also form a choice
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h hhhh h h h

Figure 7: Reidemeister-like moves involving h

of overpasses which give rise to a threading of D1=2 . Likewise, D1=2 is threaded by
h with the choice of overpasses .S1;F1/, since they remain stationary for during the
second half of '˛ and give a threading of D1 . By Lemma 3.2 we can arrange W

locally near R3�f
1
2
g so that W1=2 is a closed braid with diagram D1=2 threaded with

either choice of overpasses and prove Proposition 3.3 for WŒ0;1=2� and WŒ1=2;1� .

Suppose then that W is as above. Although the movie presentation of W does not
involve any Reidemeister moves, it will (after perturbing W slightly away from the
boundary) contain Reidemeister II– and III–like moves involving components of the
diagrams and the z–axis h (see Figure 7). These Reidemeister-like moves are like
classical Reidemeister moves, but where no crossing information is specified at double
points of the projection involving h. The absence of crossing information with h

reflects the fact that the movie presentation of W does not specify the relative position
of the links Wt above or below P and that the components of the link are free to pass
through the z–axis during isotopies in R3 .

We can thus break the planar isotopy  ˛ determining W into a sequence of transfor-
mations that take into account the relative position of the diagrams Dt with h. More
precisely, we can divide the interval Œ0; 1� into smaller subintervals Œtj�1; tj � such that
for each j there is either

(1) a planar isotopy �j
˛ of P that fixes h setwise with �j

˛.Dtj �1
/DDtj �1C˛.tj�tj �1/

for all ˛ 2 Œ0; 1�, or

(2) a Reidemeister-like move of type II or III taking Dtj �1
to Dtj involving (but

fixing) h.

We will simplify notation and write Dj and W j instead of Dtj and Wtj , respectively,
for each j . Since we are assuming that the points of S [F are fixed throughout the
planar isotopy  ˛ , we can fix .S;F / as a choice of overpass for each Dj . Furthermore,
for each diagram we fix the unique choice of h–crossing information so that Dj is
threaded by h.

Before proceeding, we need to eliminate any situations as in Figure 8. Here we have
a Reidemeister-like move of type III where the center crossing cannot pass to the
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h hh h

Figure 8: Reidemeister-like move of type III which does not lift to a braid isotopy

other side of h without first introducing crossing changes. These can be eliminated by
making a local replacement as in Figure 9, where the offending move has been replaced
by a sequence consisting of three Reidemeister-like moves, two of type II and one of
type III (which lifts to an isotopy avoiding the z–axis). This local replacement does
not change the isotopy class of W rel @W .

Lemma 3.6 If W j�1 is a closed braid, then the transformation Dj�1 ! Dj lifts
to R3 as a sequence of braid isotopies and simple Markov equivalences on W j�1 .

Proof Note first that, since W j�1 is a closed braid and Dj�1 is threaded, the
h–crossing information on Dj�1 will match that coming from the projection of W j�1 .

For transformations of type (1) above, Lemma 3.4 shows that the planar isotopy between
Dj�1 and Dj can be lifted to a braid isotopy on W j�1 .

Suppose now that Dj is obtained from Dj�1 by a Reidemeister-like move of type II
(or its inverse) as in Figure 7. Then, as Dj�1 is threaded, locally it must look like
either the right- or left-hand side of one of the transformations in Figure 10. Note
that by assumption no points of S or F can occur anywhere in these local pictures.
Clearly Dj can be lifted to a closed braid W j which agrees with W j�1 away from
the Reidemeister-like move of type II, so that W j�1 and W j are simply Markov
equivalent.

Now suppose that Dj is obtained from Dj�1 by a Reidemeister-like move of type III.
It is easy to verify that for most configurations of Dj�1 the move can be lifted to a braid

h h h hh h h h

Figure 9: Replacing bad Reidemeister-like moves of type III with a sequence
of moves that lift to braid isotopies and simple Markov equivalences
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hh hh

hh hh

h h h h

h h h h

Figure 10: Reidemeister-like moves of type II

isotopy taking W j�1 to a closed braid W j with diagram Dj . The only exceptions
arise as in Figure 8, but these were all replaced previously by sequences of moves that
can be lifted.

Starting with the closed braid W0 �R3 � f0g, we can construct a new surface W 0 by
tracing the path of W0 in R3� Œ0; 1� as we apply the sequence of lifted braid isotopies
and simple Markov equivalences obtained from the previous lemma. Away from the
simple Markov equivalences each level set W 0t will be a closed braid. By construction,
the movie presentation of W 0 will be the same as that of W , hence it will be isotopic
to W rel @W 0 . To prove Proposition 3.3 it thus remains only to show that W can be
braided in neighborhoods of the simple Markov equivalences.

Proof of Proposition 3.3 Suppose that, for some s 2 Œ0; 1� and " > 0, the closed
braids Ws�" and WsC" differ by a simple Markov equivalence spanned by a disk R.
After a small isotopy in the neighborhood of the hyperplane R3 � fsg we can assume
that R lies entirely in this hyperplane and that the orthogonal projection of @R to the
xy –plane yields a figure eight.

Decompose R as the boundary sum of two closed disks R0 and R00 (equipped with
the orientation of W ), where R0 intersects the z–axis transversely in a single point
and @R0 is a simple curve which is strictly monotone in the angular direction (see
Figure 11). Push R0 to either R3 � fsC "g or R3 � fs � "g (depending on whether
@R0 is monotone increasing or decreasing, respectively) while keeping R00 fixed. This
gives rise to a new maximal disk (minimal disk, respectively) while R00 yields a new
saddle band. After a slight local perturbation these new critical disks can be changed
to isolated critical points, completing the proof of Proposition 3.3.
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R′

R′′R00

R0

Figure 11: Decomposing R as the boundary sum of R0 and R00

3.6 Braiding movie presentations with Reidemeister moves

Now consider an arbitrary critical point-free cobordism W between two closed braids.
The movie presentation of W under the projection to P will in general include
Reidemeister moves as well as planar isotopies. Recycling notation from above, let
Dt denote the diagram of Wt and divide the interval Œ0; 1� into smaller subintervals
Œtj�1; tj � such that for each j there is either

(1) a planar isotopy �
j
˛ of P which has �j

˛.Dtj �1
/ D Dtj �1C˛.tj�tj �1/ for all

˛ 2 Œ0; 1�, or

(2) a Reidemeister move taking Dtj �1
to Dtj .

As above we will simplify notation and write Dj and W j instead of Dtj and Wtj ,
respectively, for each j . To complete the proof of Theorem 1.1 we need:

Lemma 3.7 Suppose Dj is obtained from Dj�1 by a Reidemeister move of any
type. Then there is a planar isotopy �˛ of P such that �1.Dj�1/ and �1.Dj / are
both threaded by h for some choice of overpasses and, if W j�1 is a closed braid with
diagram �1.D

j�1/, then the Reidemeister move taking �1.Dj�1/ to �1.Dj / lifts to a
braid isotopy of W j�1 .

To see that this completes the proof of Theorem 1.1, note first that by [24, Theorem 2]
there are braid isotopies taking W0 and W1 to closed braids whose diagrams in P

are threaded by h for some choices of overpasses. Thus we can assume that the
diagrams D0 and D1 are both threaded. We also assume that in the movie presentation
of W the sequence involved alternates between planar isotopies and Reidemeister
moves, beginning and finishing with planar isotopies. Suppose for some j that Dj is
obtained from Dj�1 by a Reidemeister move and let �j�1

˛ and �jC1
˛ be the planar

isotopies taking Dj�2 to Dj�1 and Dj to DjC1 , respectively. Then we can replace
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Figure 12: Overpass choices in a neighborhood of type I and II moves

Dj�1 and Dj with �1.Dj�1/ and �1.Dj /, respectively, and �j�1
˛ and �jC1

˛ with
�˛ ı�

j�1
˛ and �1�˛ ı�

jC1
˛ , respectively, without changing the isotopy class of W rel

@W . Performing a similar replacement one by one around all Reidemeister moves in
the movie presentation, we see that W is isotopic relative its boundary to a cobordism
whose movie presentation involves only Reidemeister moves and planar isotopies
between threaded diagrams.

Thus we can assume that each of the Dj are threaded and that the W j are all closed
braids. By Lemma 3.7, the portions of W corresponding to planar isotopies in the
movie presentation are then isotopic relative their boundaries to braided cobordisms,
while by Proposition 3.3 we see that the same is true for portions of W corresponding
to Reidemeister moves. Thus W itself is isotopic relative its boundary to a braided
cobordism, completing the proof.

Proof of Lemma 3.7 Begin by making a choice of overpasses for Dj�1 and Dj

which agree outside some small neighborhood of the move in question. In the small
neighborhood of the move we choose points which give a valid choice of overpasses
both before and after the move. See examples of different possible configurations in
Figure 12, where incoming strands are labeled with o if they are part of an overpass or
u if they are part of an underpass.
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Figure 13: Threading near a Reidemeister move of type III

Now let �˛ be a planar isotopy which repositions all of the S points to P� (the left
half of the plane P ) and all the F points to PC (the right half of P ). Once positioned
in this way, there is a unique way to assign over- and under-crossings of Dj�1 and Dj

with h so that both diagrams are threaded by h.

Note that, in the case of moves of type I and II, we can choose S , F and �˛ so that
the Reidemeister move of interest happens away from h. It is then easy to see that the
Reidemeister move of interest lifts to a braid isotopy.

Moves of type III cannot be arranged to take place away from h, however. Of the three
strands in this local picture, one strand will cross over the other two, one will pass
under the other two, while the third will pass over one and under the other. Choose
S and F away from this picture so that the top strand is part of an over-crossing, the
bottom strand is part of an under-crossing and place a single point from each of S

and F on the third strand to create a valid choice of overpasses.

Now we can arrange the diagrams so that h separates S and F , and so that the
uppermost strand crosses over h in a neighborhood of the move (the orientation of
this strand determines whether it will cross h at the top or bottom of the local picture).
Regardless then of the orientation on the other two strands or their shared crossing,
the uppermost strand is free to pass over the crossing and both the nearby S and F

points as in Figure 13, a move which can clearly be lifted to a braid isotopy in R3 .
This completes the proof of Lemma 3.7 and of Theorem 1.1.

Corollary 1.2 now follows easily by combining Theorem 1.1 with Lemma 2.1.

Remark Suppose now that the cobordism W we start with is in ribbon position, ie
has no local maximal points with respect to the t –coordinate. Although we may hope
to preserve this property during the braiding procedure described above, this will not
be possible in general. Indeed, Morton [23] gave an example of a 4–strand braid ˇ
with unknotted closure which is irreducible, meaning any simplification of ˇ using
Markov moves necessarily raises the braid index to 5. As noted by Rudolph [26], it
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is not difficult to see that any braided ribbon cobordism bounded by the closure of
ˇ must have genus at least 1, even though it clearly bounds a ribbon embedded disk
in S3 � Œ0; 1�.
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