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On the K–theory of subgroups
of virtually connected Lie groups

DANIEL KASPROWSKI

We prove that for every finitely generated subgroup G of a virtually connected
Lie group which admits a finite-dimensional model for EG , the assembly map in
algebraic K–theory is split injective. We also prove a similar statement for algebraic
L–theory which, in particular, implies the generalized integral Novikov conjecture
for such groups.

18F25, 19A31, 19B28, 19G24

1 Introduction

For every group G and every ring R there is a functor KRW Or G!Spectra from the
orbit category of G to the category of spectra, sending G=H to (a spectrum weakly
equivalent to) the K–theory spectrum K.RŒH �/ for every subgroup H � G . By K–
theory we will always mean nonconnective K–theory as constructed by Pedersen and
Weibel [26]. For any such functor F W Or G!Spectra a G –homology theory F can
be constructed via

F.X / WDMapG. � ;XC/^Or G F I

see Davis and Lück [14]. We will denote its homotopy groups by H G
n . � ;F / WD

�nF.X /. Let F be a family of subgroups of G . The K–theoretic assembly map for
F is the map

˛F W H
G
n .EF GIKR/!H G

n .ptIKR/ŠKn.RŒG�/;

induced by the map EF G ! pt. Here EF G denotes the classifying space for the
family F ; see Lück [22]. The assembly map is a helpful tool to relate the K–theory of
the group ring RŒG� to the K–theory of the group rings over H 2 F . The assembly
map can be defined more generally for any small additive G–category instead of R;
see Bartels and Reich [11]. In this article all additive categories will be small.

Analogously, for every additive G–category A with involution and every family of
subgroups F we can define the L–theoretic assembly map

˛F W H
G
n .EF GILh�1iA /!H G

n .ptILh�1iA /:
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The Farrell–Jones conjecture [15] states that the assembly maps ˛Vcyc for the family
of virtually cyclic subgroups in K– and L–theory are isomorphisms for all additive
G –categories A (with involution) and all n2Z. The Farrell–Jones conjecture has been
proven for a large class of groups, for example hyperbolic and CAT(0)–groups (Bartels
and Lück [7; 8], Bartels, Lück and Reich [9; 10] and Wegner [29]), virtually solvable
groups (Wegner [30]), and lattices in virtually connected Lie groups (Bartels, Farrell
and Lück [4] and Kammeyer, Lück and Rüping [19]). The Farrell–Jones conjecture
implies that the assembly maps ˛Fin for the family of finite subgroups are split injective;
see Bartels [2, Theorem 1.3]. The rational split injectivity of the map ˛Fin in L–theory
implies the Novikov conjecture. The integral split injectivity of ˛Fin is called the
generalized integral Novikov conjecture; for more details see Section 6. Kasparov
proved the Novikov conjecture for all discrete subgroups of virtually connected Lie
groups in [20, Theorem 6.9]. More generally, the Novikov conjecture is true for groups
which uniformly embed into a Hilbert space; see Skandalis, Tu and Yu [27]. This
includes all amenable groups and all groups with finite asymptotic dimension. By
Carlsson and Goldfarb [12, Section 3] and Ji [17, Corollary 3.4], discrete subgroups
of virtually connected Lie groups have finite asymptotic dimension, giving a second
proof that the Novikov conjecture holds for these groups. Here we will show that,
in particular, discrete subgroups of virtually connected Lie groups also satisfy the
generalized integral Novikov conjecture.

In [21] the author proved the split injectivity of the assembly map for finitely generated
subgroups G of GLn.C/ which have an upper bound on the Hirsch length of the
unipotent subgroups. For a definition of the Hirsch length see Section 3. The bound on
the Hirsch length exists if and only if G has finite virtual cohomological dimension by
Alperin and Shalen [1]. Since G is virtually torsion-free, this is the case if and only
if there is a finite-dimensional model for EG where we consider G with the discrete
topology; see Lück [22, Theorem 3.1]. In this article we want to extend this theorem
to subgroups of all virtually connected Lie groups. Note that in the theorem we again
consider G with the discrete topology.

Theorem 1.1 Let G be a finitely generated subgroup of a virtually connected Lie
group, and assume there exists a finite-dimensional model for EG . Then the K–
theoretic assembly map

H G
n .EGIKA/!Kn.AŒG�/

is split injective for every additive G –category A.

A similar version holds for L–theory as well, which implies, in particular, the general-
ized integral Novikov conjecture for these groups; see Section 6.
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If G is a discrete subgroup of a virtually connected Lie group H , and K the maximal
compact subgroup of H , then H=K is a finite-dimensional model for EG ; see Lück
[23, Theorem 4.4]. In particular, we get the following corollary.

Corollary 1.2 Let G be a finitely generated discrete subgroup of a virtually connected
Lie group. Then the K–theoretic assembly map

H G
n .EGIKA/!Kn.AŒG�/

is split injective for every additive G –category A.

The condition on the existence of a finite-dimensional model for EG can be reformu-
lated in the following way.

Proposition 1.3 A finitely generated subgroup G of a virtually connected Lie group
admits a finite-dimensional model for EG if and only if there exists N 2N such that
every finitely generated abelian subgroup of G has rank at most N .

The rank of an abelian group A is defined as rk.A/ WD dimQ.A˝Z Q/ or, equivalently,
as the cardinality of a maximal linearly independent subset of A. The statement that
every finitely generated abelian subgroup of G has rank at most N is equivalent to the
statement that every abelian subgroup of G has rank at most N . For a proof of the
proposition, see Section 3.

In Section 7, we prove that Theorem 1.1 and its L–theoretic analog also hold without
the assumption that G is finitely generated.

Acknowledgments: I would like to thank Johannes Ebert for helpful discussions, and
Henrik Rüping and the referee for useful comments and suggestions. This work was
partially supported by the SFB 878 “Groups, Geometry and Actions” and the Max
Planck Society.

2 Lie groups

A Lie group is virtually connected if it has only finitely many connected components.
For the rest of this section let H be a virtually connected Lie group with Lie algebra h

(which we identify with TeH ). The Lie group H acts on itself by conjugation;

cW H ! Aut.H /; g 7! .h 7! ghg�1/:

Taking the derivative yields a map

AdW H ! Aut.h/; g 7!De.c.g//:

Algebraic & Geometric Topology, Volume 15 (2015)
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Since Aut.h/ is a Lie subgroup of GL.h/, Ad gives a representation of H . The kernel
of the representation Ad is the centralizer CH .H0/ of the unit component H0 of H .

By definition of the centralizer, the group CH .H0/\H0 is abelian, and since H is
virtually connected the centralizer CH .H0/ is, therefore, virtually abelian. For every
subgroup G of H we obtain a short exact sequence

1! CH .H0/\G!G! Ad.G/! 1;

with virtually abelian kernel and linear quotient. We will use this sequence to extend
the results of [21] to general virtually connected Lie groups. Before we can do so, we
first need to prove Proposition 1.3, which will be done in the next chapter.

3 A bound on the rank of abelian subgroups

In the proof of Proposition 1.3, a bound on the Hirsch length of the finitely generated
nilpotent subgroups is needed. First we review some facts about nilpotent groups to see
that this is the same as a bound on the ranks of the finitely generated abelian subgroups.

Let G be a group. Define G1 WD G and, recursively, GnC1 WD ŒGn;G�. The series
G DG1 �G2 � � � � is called the lower central series of G . A group G is nilpotent if
there exists c 2N with GcC1 D 1. The smallest such c is called the nilpotency class
of G ; we denote it by c.G/. The upper central series 1DZ0.G/�Z1.G/� � � � of
G is recursively defined by

ZiC1.G/ WD fg 2G j 8h 2G W Œg; h� 2Zi.G/g:

If G is nilpotent, then Zc.G/.G/DG and the length of the upper and lower central
series agree. For any normal subgroup H �G the quotient G=H is again nilpotent.

The Hirsch length h.G/ of G is

h.G/ WD rk.G1=G2/C � � �C rk.Gc�1=Gc/C rk.Gc/;

where rk.H / denotes the rank of an abelian group H ; ie rk.H / WD dimQ.H ˝Z Q/.

Let n.G/ denote

maxfrk.A/ jA E G an abelian normal subgroupg:

Let H be and G be a group acting on H . G acts nilpotently if there is a series

1DH0 �H1 � � � � �Hn DH
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of G–invariant normal subgroups of H such that the induced action on Hi=Hi�1 is
trivial. In the special case where H D G and the action is by conjugation, G acts
nilpotently on itself if and only if G is nilpotent.

Proposition 3.1 Let G be finitely generated nilpotent. Then h.G/� n.G/.n.G/C1/
2

.

The proposition is proved in Möhres [25, Theorem 2] for torsion-free nilpotent groups
instead of finitely generated nilpotent groups. For the convenience of the reader we
give a proof. For this we need the following well-known statements about nilpotent
groups.

Lemma 3.2 A subgroup of a finitely generated nilpotent group is finitely generated.

Proof The statement follows by induction on the nilpotency class.

Lemma 3.3 [28, Theorem 1.3] Let G be nilpotent and N E G a nontrivial normal
subgroup. Then N \Z.G/ is nontrivial, where Z.G/ denotes the center of G .

Lemma 3.4 Let G be nilpotent and A a maximal abelian normal subgroup. Then
CG.A/DA, where CG.A/ is the centralizer of A in G .

Proof Since A E G is normal, so is CG.A/. Suppose A¤ CG.A/. Then CG.A/=A

is a nontrivial normal subgroup of G=A, and H WD CG.A/=A\Z.G=A/ is nontrivial
by the previous lemma. Let C Dhci be a cyclic subgroup of H . Then C E Z.G=A/E
G=A and, since C lies in the center, it is a normal subgroup of G=A. Let c0 2 CG.A/

be a preimage of c ; then the preimage of C is hA; c0i. This is abelian and normal in
G ; hence, A was not maximal with this property.

Lemma 3.5 Let Tr.n;Z/ � GLn.Z/ denote the subgroup of unitriangular matrices;
ie every element of Tr.n;Z/ has 1’s on the diagonal and 0’s below the diagonal. If
G � GLn.Z/ acts nilpotently on Zn , then it is unipotent and conjugate to a subgroup
of Tr.n;Z/.

Proof Since Tr.n;Z/ is unipotent, it suffices to prove that G is conjugate to a subgroup
of it. Let

0DH0 E H1 E H2 E : : :E Hk D Zn

be a sequence of G–invariant subspaces and let G act trivially on Hi=Hi�1 for all
i D 1; : : : ; k . The lemma is obvious for k D 1, and we will prove it by induction on k .
Let H 0 WD fz 2Zn j 9 l 2Z W lz 2H1g. Let z 2H 0 and l 2Z with lz 2H1 . For every
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g 2G we have lg.z/D g.lz/D lz and thus also g.z/D z ; ie G acts trivially on H 0 .
By construction, Zn=H 0 is torsion-free, and we obtain a splitting Zn ŠH 0˚Zn=H 0 .
The sequence

0DH 0=H 0 E H2CH 0=H 0 E � � �E Hk CH 0=H 0 D Zn=H 0

consists of G –invariant subspaces, and G acts trivially on the quotients. By induction
there is a basis of Zn=H such that G � GL.Zn=H / is unitriangular. Using this basis
together with a basis of H 0 yields a basis of Zn for which G lies in Tr.n;Z/.

Proof of Proposition 3.1 Let n WDn.G/ and A be a maximal abelian normal subgroup.
Then A again is finitely generated by Lemma 3.2, and AŠ Zn˚F with F a finite
group. The group G acts by conjugation on A and, since CG.A/DA, the induced map
G=A! Aut.A/ is injective. Since F is finite, the projection to Aut.Zn/D GLn.Z/
has finite kernel. The group G is nilpotent, and thus it acts nilpotently on Zn (by
conjugation). This implies that the image G=A in GLn.Z/ is conjugate to a subgroup
of the unitriangular matrices Tr.n;Z/. Since h.Tr.n;Z//D n.n� 1/=2, we have

h.G/� h.A/C h.ker.Aut.A/! GLn.Z///C h.Tr.n;Z//

D nC 0C
n.n� 1/

2
D

n.nC 1/

2
:

A direct corollary of Proposition 3.1 is the following.

Corollary 3.6 Let G be a group. Then G has a bound on the Hirsch length of its
finitely generated nilpotent subgroups if and only if it has a bound on the rank of its
finitely generated abelian subgroups.

Before we can prove Proposition 1.3 we need the following lemma.

Lemma 3.7 Let A be a (countable) abelian group with finite rank, then there is a
finite-dimensional model for EA.

Proof Let rk A D n. Then there exists a subgroup B � A isomorphic to Zn . The
quotient Q WDA=B has rank 0 and thus is a torsion group. For n 2N let Fn �Q be
finite subgroups with Fn � FnC1 and QD

S
n2N Fn . Define a Q–CW-complex X

by taking
`

n2N Q=Fn as the zero skeleton and for every n 2N adding a 1–cell with
stabilizer Fn between the 0–cells Q=Fn and Q=FnC1 . This defines a 1–dimensional
model X for EQ. Let pW A! Q be the quotient map. For every finite subgroup
F � Q, the preimage p�1.F / is finitely generated abelian of rank n and thus has
Rn as an n–dimensional model for Ep�1.Q/. Therefore, the proof of Lück [22,
Theorem 3.1] shows that A has a model for EA of dimension nC 1.
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Let G be a subgroup of GLn.C/ and assume there exists N 2N such that the rank
of every finitely generated unipotent subgroup of G is at most N . Then, by Alperin
and Shalen [1], the virtual cohomological dimension of G is bounded and therefore
admits a finite-dimensional model for EG by [22, Theorem 6.4]. Using this, we now
can prove Proposition 1.3.

Proof of Proposition 1.3 Let G be a subgroup of a virtually connected Lie group H

such that there exists a finite dimensional model X for EG . Then, in particular, X is
a model for EA for every abelian subgroup A�G and rk A� dim X .

For the other direction, let G be a finitely generated subgroup of a virtually connected
Lie group H such that there exists a bound on the rank of the finitely generated abelian
subgroups of G . Then, by Corollary 3.6, G has also a bound on the Hirsch length of its
finitely generated nilpotent subgroups. Let G0 WDG \H0 , and consider the extension

1! CH .H0/\G0!G0! Ad.G0/! 1

from Section 2. Since CH .H0/\G0 is contained in the center of G0 , Ad.G0/ also
has a bound on the Hirsch length of its finitely generated nilpotent subgroups and,
thus, on the finitely generated unipotent subgroups. By the above it admits a finite
dimensional model for E Ad.G0/. And since also K WDCH .H0/\G0 has finite rank,
there is a finite dimensional model for EK by Lemma 3.7. Consider the extensions

1!K!G0! Ad.G0/! 1;

1!G0!G! F ! 1;

with F finite. The group G0 is finitely generated since finite index subgroups of finitely
generated groups are again finitely generated. Thus Ad.G0/ is virtually torsion-free
by Selberg’s lemma, and we can use [22, Theorem 3.1] to obtain a finite dimensional
model for EG from these sequences.

Remark 3.8 Using the results of the author from [21], the short exact sequence

1! CH .H0/\G!G! Ad.G/! 1

implies that G has fqFDC, which also is defined in [21]. In particular, if G has a bound
on the order of the finite subgroups, then the main result of [21] directly implies the split
injectivity of the K–theoretic assembly map and a similar result in L–theory. Since
we do not know if this always holds, we use a different approach using inheritance
properties; see Sections 4 and 5.
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4 Inheritance properties

To use the short exact sequence from Section 2 we want to show the following inheri-
tance property.

Proposition 4.1 Assume there is a short exact sequence of groups

1! J !G
�
�!Q! 1

such that for every virtually cyclic subgroup V �Q the preimage ��1.V / satisfies the
Farrell–Jones conjecture. Furthermore, assume that the assembly map

H G
n .EQIKB/!Kn.BŒQ�/

is split injective for every n 2 Z and every additive Q–category B . Then the K–
theoretic assembly map

H G
n .EGIKA/!Kn.AŒG�/

is split injective for every n 2 Z and every additive G –category A.

Proof Let A be an additive G –category. The fact that ��1.V / satisfies the Farrell–
Jones conjecture for every virtually cyclic subgroup V �Q implies that the natural map
H G

n .EVcycGIKA/! H G
n .E��VcycGIKA/ is an isomorphism, by Bartels and Lück

[6, Lemma 2.2], where ��Vcyc WD fK � G j �.K/ 2 Vcycg. Here we used that the
projection EVcycG�E��VcycG!E��VcycG is a model for the natural map EVcycG!

E��VcycG . Furthermore, the natural map H G
n .EGIKA/!H G

n .EVcycGIKA/ is split
injective by Bartels [2]. Now the commutative diagram

H G
n .EGIKA/ //

� _

��

H G
n .E��FinGIKA/

��
H G

n .EVcycGIKA/
Š // H G

n .E��VcycGIKA/

implies that the map H G
n .EGIKA/! H G

n .E��FinGIKA/ is split injective, where
��Fin WD fK �G j �.K/ 2 Fing. By Bartels and Reich [11, Corollary 4.3] the split
injectivity for Q implies that the assembly map H G

n .E��FinGIKA/!Kn.AŒG�/ is
split injective. Combining these results yields the proposition.

To apply the above proposition for the short exact sequence from the previous section,
we need the following.
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Lemma 4.2 The class of virtually solvable groups is closed under group extensions.

The idea of the proof is taken from math.stackexchange.com; see [13].

Proof Let
1!N !G

p
�!Q! 1

be a short exact sequence, and let N and Q be virtually solvable. Let Q0 �Q be a
solvable subgroup with ŒQ WQ0� <1; then ŒG W p�1.Q0/� <1. Thus we can assume
that Q is solvable. We will first consider the case that N is finite. Since N is normal
in G , G acts on N by conjugation, which induces a map cW G ! Aut.N /. The
centralizer CG.N / of N in G is the kernel of c . Since the class of solvable groups is
closed under extension, and CG.N /\N is abelian, the exact sequence

1! CG.N /\N ! CG.N /! p.CG.N //! 1

shows that CG.N / is solvable. The group N is finite; thus CG.N / has finite index
in G .

Now let N be any virtually solvable group. And let S be the set of all normal, solvable,
finite-index subgroups of N , ordered by inclusion. This is not empty, and we can
choose K to be a maximal element of S . For every g 2G also gKg�1K is a solvable,
normal, finite-index subgroup of N . Since K was maximal, it therefore has to be
normal in G . From the short exact sequence

1!N=K!G=K!Q! 1;

it follows from the first case that G=K is virtually solvable. Since K is solvable, the
sequence

1!K!G!G=K! 1

implies that G is virtually solvable.

5 Proof of Theorem 1.1

For this section let H be a virtually connected Lie group and G � H a finitely
generated subgroup such that there exists a finite dimensional model for EG . The
proof of Theorem 1.1 follows easily from the statements of the previous section.

Proof of Theorem 1.1 Let � WD Ad.G/ be the image of G under AdW H ! GL.h/.
Since CH .H0/\G\H0 is contained in the center of G , the preimage of any unipotent
subgroup U of Ad.G\H0/ is a nilpotent subgroup of G\H0 . By Corollary 3.6 and
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Proposition 1.3 there is a bound on the Hirsch length of the nilpotent subgroups of
G \H0 and, in particular, there is a bound on the Hirsch length of U . Since G \H0

has finite index in G , this implies that there also is a bound on the Hirsch length of the
unipotent subgroups of � . Now we can apply the following:

[21, Corollary 3] Let F be a field of characteristic zero, and let � be a finitely
generated subgroup of GLn.F / with a global upper bound on the Hirsch rank of its
unipotent subgroups. Then the K–theoretic assembly map

H�
� .EGIKA/!H�

� .ptIKA/ŠK�.AŒ��/

is split injective for every additive � –category A.

Note that [21, Corollary 3] is stated only for rings instead of additive �–categories,
but by [21, Theorem 8.1] it is true for any additive � –category.

Furthermore, by Wegner [30], every virtually solvable group satisfies the Farrell–Jones
conjecture. Using this and Lemma 4.2, we see that the sequence

1! CH .H0/\G!G! Ad.G/! 1

satisfies the conditions of Proposition 4.1. Therefore, the assembly map

H G
� .EGIKA/!K�.AŒG�/

is split injective for every additive G –category A.

6 L–theory

Most of the statements from the previous sections also hold for L–theory. For the
rest of the section let G be a finitely generated subgroup of a virtually connected
Lie group H with a finite dimensional model for EG , and let Q be the image of G

under AdW H ! GL.h/. Furthermore, let � denote Ad jG , and let A be an additive
G –category with involution. As above we obtain the commutative diagram

H G
n .EGILh�1iA / //

��

H G
n .E��FinGILh�1iA /

��
H G

n .EVcycGIL
h�1i

A /
Š // H G

n .E��VcycGIL
h�1i

A /;

and the lower horizontal map is still an isomorphism by Bartels and Lück [6, Lemma 2.2]
and Wegner [30]. But for the vertical map on the left to be injective we need that for
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every virtually cyclic subgroup V �G there is an i0 2N such that for every i � i0
we have K�i.AŒV �/D 0; see Bartels [2]. Then it remains to show that

H G
n .E��FinGILh�1iA /!Lh�1in .AŒG�/

is split injective. By Bartels and Reich [11, Proposition 4.2 and Corollary 4.3], this
follows if

H Q
n .EGILh�1iind� A/!Lh�1in ..ind� A/ŒQ�/

is split injective. See [11] for the definition of ind� A. To apply [21, Theorem 9.1] as
above, we need the further assumption that for every finite subgroup H �Q there is
an i0 2N such that for every i � i0 we have

0DK�i..ind� A/ŒH �/ŠK�i.AŒ��1.H /�/:

Since ��1.H / is virtually abelian, we obtain the following version of the main theorem
for L–theory.

Theorem 6.1 Let G be a finitely generated subgroup of a virtually connected Lie
group, and assume there exists an N 2 N such that every finitely generated abelian
subgroup of G has rank at most N. Let A be an additive G –category with involution.
Assume further that for every virtually abelian subgroup H of G there is an i0 2 N
such that for every i � i0 we have K�i.AŒH �/ D 0; then the L–theoretic assembly
map

H G
n .EGILh�1iA /!Lh�1in .A.ŒG�/

is split injective.

For torsion-free groups G the integral Novikov conjecture states that the assembly map

H G
n .EGILh�1iZ /!Lh�1in .ZŒG�/

is injective. It is known that the integral Novikov conjecture is false for groups
containing torsion. Following Ji [18], we say that G satisfies the generalized integral
Novikov conjecture if the assembly maps

H G
n .EGILh�1iZ /!Lh�1in .ZŒG�/; H G

n .EGIKZ/!Kn.ZŒG�/

are injective. By Lück and Reich [24, Propostion 2.20], the relative rational assembly
map

H G
n .EGILh�1iZ /˝Z Q!H G

n .EGILh�1iZ /˝Z Q

is injective. Observe that, since the Z=2–Tate cohomology groups vanish rationally,
there is no difference between the various decorations in L–theory as can be seen using
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the Rothenberg sequence. Therefore, by [24, Proposition 1.53], the injectivity of the
rational assembly map

H G
n .EGILh�1iZ /˝Z Q!Lh�1in .ZŒG�/˝Z Q

implies the Novikov conjecture about the homotopy invariance of higher signatures. In
particular, the generalized integral Novikov conjecture implies the (classical) Novikov
conjecture.

We will show that K�n.ZŒG�/ D 0 for n > 1 and any virtually abelian group A.
Therefore, Theorem 6.1 implies the generalized integral Novikov conjecture for the
groups G appearing in the theorem; ie we get the following corollary.

Corollary 6.2 Let G be a finitely generated subgroup of a virtually connected Lie
group, and assume there exists an N 2 N such that every finitely generated abelian
subgroup of G has rank at most N . Then G satisfies the generalized integral Novikov
conjecture.

By Farrell and Jones [16, Theorem 2.1], for every virtually cyclic group V and n> 1,

K�n.ZŒV �/D 0:

Let G be a group and let X be a finite G –CW-complex with virtually cyclic stabilizers.
By induction on the dimension of X we prove that

H G
�n.X IKZ/D 0

for every n> 1. For dim X D 0, we have

H G
�n.X IKZ/Š

M
x2X

K�n.ZŒGx �/D 0;

where the stabilizers Gx are virtually cyclic by assumption. Assume the above holds
for m and let dim X DmC 1. Then we have the exact sequence

0DH G
�n.X

.m/
IKZ/!H G

�n.X IKZ/!H G
�n.X;X

.m/
IKZ/;

and
H G
�n.X;X

.m/
IKZ/Š

M
c2Cm

K�n�m�1.ZŒGc �/D 0;

where Cm denotes the set of m–cells of X and Gc the (virtually cyclic) stabilizer of
the cell c . Since every virtually abelian group A satisfies the Farrell–Jones conjecture,
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we have
K�n.ZŒA�/ŠH A

�n.X IKZ/Š colim
K

H A
�n.AKIKZ/D 0;

where X is an A–CW-complex model for EVcycA, and the colimit is taken over all
finite subcomplexes K �X .

7 Inheritance under colimits

In this section we want to show that Theorem 1.1 and Theorem 6.1 hold without the
assumption that G is finitely generated.

By Bartels, Echterhoff and Lück [3, Lemma 2.4 and Lemma 6.2] for every system G˛
of finitely generated subgroups of G such that colim˛ G˛ ŠG , the assembly map

H G
n .EGIKA/!Kn.AŒG�/

is the colimit of the assembly maps

H G˛
n .EG˛IKA/!Kn.AŒG˛ �/;

for any additive G –category A. The same statement holds in L–theory for any additive
G–category with involution. Note that the statement in [3] is formulated for rings
with G–action instead of additive G–categories, but the statement for G–categories
holds in the same way. Furthermore, a finite-dimensional model for EG gives a finite-
dimensional model for EG˛ by restricting the action to G˛ . So taking the colimit over
all finitely generated subgroups proves that injectivity holds without the assumption
that G is finitely generated. For the construction of a splitting we need to see that the
splittings for the finitely generated subgroups are natural with respect to the structure
maps of the colimit. In the proof of Theorem 1.1 and Theorem 6.1 the assumption that
G is finitely generated is only needed to apply [21, Corollary 3] and its L–theoretic
analog, respectively. So it suffices to see that the splittings constructed in [21] are
natural with respect to the structure maps of the colimit.

We will use the definitions of controlled categories and bounded mapping spaces from
[21, Sections 5 and 7]. In the following let X denote a finite dimensional simplicial
model for EG . By Bartels, Farrell, Jones and Reich [5, Section 6] the assembly map

H G
n .EGIKA/!Kn.AŒG�/

can be identified with the map

colim
K�X fin.

�nC1.KAG.GK/1/G! colim
K�X fin.

�n.KAG.GK/0/
G :
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Now consider the diagram

colim
K�X fin.

�nC1.KAG.GK/1/G

f

��

// colim
K�X fin.

�n.KAG.GK/0/
G

j

��

colim
K�X fin.

�nC1 Mapbd
G .X;KAG.GK/1/

h

// colim
K�X fin.

�n Mapbd
G .X;KAG.GK/0/:

By [21, Remark 7.7] the map f is an isomorphism and the map h is an isomorphism
in the situation of [21, Corollary 3].

Let � ! ƒ be an injective group homomorphism. For every ƒ–set J and every
subcomplex K �X we can define a map

� bdY
J

A�.�K/1
��
!

� bdY
J

Aƒ.ƒK/1
�ƒ

as follows. A controlled module .Mj / 2 .
Qbd

J A�.�K//� is sent to .M 0
j /j with

.M 0
j /h0;x;t WD

L
Œh�2ƒ=�.Mh�1j /h�1h0;h�1x;t and analogously on morphisms. This

map is well defined since .Mj / is � –invariant. The above maps induce a map

Mapbd
� .X;KA�.�K//!Mapbd

ƒ .X;KAƒ.ƒK//

for every finite subcomplex K �X , and in the special case where J D fptg we obtain
a map

.KA�.�K/1/� ! .KAƒ.ƒK/1/ƒ:

The same maps can be constructed with A�.�K/1 and Aƒ.ƒK/1 replaced by
A�.�K/0 and Aƒ.ƒK/0 , respectively. So they induce maps from the above diagram
for � to the same diagram for ƒ. We will omit the technical proofs that the maps of
the diagram are natural with respect to these maps and that under the identification
with the assembly map they correspond to the structure maps of the colimit from [5].
This shows that the splitting f �1 ıh�1 ıj is natural with respect to the structure maps
of the colimit.

Now let us consider the L–theoretic version. For [21, Remark 7.7] it was used that the
category �Y

j2J

KAG.GK/1
�G

'

Y
Œj �2GnJ

KAGj
G
.GK/1
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is weakly equivalent to�
K
Y
j2J

AG.GK/1
�G

'K
Y

Œj �2GnJ

AGj
G
.GK/1

for every G –set J with finite stabilizers and every finite subcomplex K �X , where
Gj is the stabilizer of j 2 J . Let H �G be finite; then

Kn.A
Gj
G
.G=H /1/Š

Y
Gj nG=H

Kn.A
Gj
G
.Gj=.Gj\H //1/Š

Y
Gj nG=H

Kn�1.AŒGj\H �/:

If for each finite subgroup H � G there exists N 2 N such that for each n � N

the groups K�nAŒH � vanish, then by induction on the cells this implies that for
every finite subcomplex K �X there exists N 2N such that for n�N the groups
K�n.A

Gj
G
.GK/1/ vanish. Therefore, under this assumption, L–theory commutes

with the above product, and we get that the map

�W Mapbd
G .X;LAG.GK/1/!MapG.X;LAG.GK/1/

is an isomorphism. Also, under the above assumption,

 W .LAG.GK/1/G!MapG.X;LAG.GK/1/

is an isomorphism; see [21, Section 9]. Since  factors over � , the map

.LAG.GK/1/G!Mapbd
G .X;LAG.GK/1/

is an isomorphism as well. Therefore, we obtain the naturality of the splitting as in the
case for K–theory.
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