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A colored operad for string link infection

JOHN BURKE

ROBIN KOYTCHEFF

Budney constructed an operad that encodes splicing of knots and further showed
that the space of (long) knots is generated over this splicing operad by the space of
torus knots and hyperbolic knots. This generalized the satellite decomposition of
knots from isotopy classes to the level of the space of knots. Infection by string links
is a generalization of splicing from knots to links. We construct a colored operad
that encodes string link infection. We prove that a certain subspace of the space of
2–component string links is generated over a suboperad of our operad by its subspace
of prime links. This generalizes a result from joint work with Blair from isotopy
classes of string links to the space of string links. Furthermore, all the relations in the
monoid of 2–string links (as determined in our joint work with Blair) are captured by
our infection operad.

57M25, 18D50, 55P48, 57R40, 57R52

1 Introduction

This paper concerns operations on knots and links, particularly infection by string
links. Classically, knots and links are considered as isotopy classes of embeddings of a
1–manifold into a 3–manifold, such as R3 , D3 , or S3 . Instead of considering just
isotopy classes, we consider the whole space of links, that is the space of embeddings of
a certain 1–manifold into a certain 3–manifold. We also consider spaces parametrizing
the operations and organize all of these spaces via the concept of an operad (or colored
operad). The operad framework is in turn convenient for studying spaces of links
and generalizing statements about isotopy classes to the space level. Finding such
statements to generalize was the motivation for recent work of the authors and R Blair
on isotopy classes of string links [1].

Our work closely follows the work of Budney. Budney first showed that the little
2–cubes operad C2 acts on the space K of (long) knots, which implies the well-known
commutativity of connect-sum of knots on isotopy classes. He showed that K is freely
generated over C2 by the space P of prime knots, generalizing the prime decomposition
of knots of Schubert from isotopy classes to the level of the space of knots [2]. Later,
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he constructed a splicing operad SP which encodes splicing of knots. He showed that
K is freely generated over a certain suboperad of SP by the subspace of torus and
hyperbolic knots, thus generalizing the satellite decomposition of knots from isotopy
classes to the space level [4].

Infection by string links is a generalization of splicing from knots to links. This
operation is most commonly used in studying knot concordance. One instance where
string link infection arises is in the clasper surgery of Habiro [15], which is related to
finite-type invariants of knots and links. In another vein, Cochran, Harvey, and Leidy
observed that iterating the infection operation gives rise to a fractal-like structure [9].
This motivated our work, and we provide another perspective on the structure arising
from string link infection. We do this by constructing a colored operad which encodes
this infection operation. We then prove a statement that decomposes part of the space
of 2–component string links via our colored operad.

Splicing and infection are both generalizations of the connect-sum operation. The latter
is always a well defined operation on isotopy classes of knots, but if one considers long
knots, it is even well defined on the knots themselves. This connect-sum operation
(ie “stacking”) is also well defined for long (aka string) links with any number of
components. Thus we restrict our attention to string links.

1.1 Basic definitions and remarks

Let I D Œ�1; 1� and let D2 �R2 ŠC be the unit disk with boundary.

Definition 1.1 A c–component string link (or c–string link) is a proper embedding
of c disjoint intervals a

c

I ,! I �D2

whose values and derivatives of all orders at the boundary points agree with those of
a fixed embedding ic . For concreteness, we take ic to be the map which on the i th

copy of I is given by t 7! .t;xi/, where xi D ..i �1/=c; 0/. We will call ic the trivial
string link. Another example of a string link is shown in Figure 1.

In our work [1], our definition of string links allowed more general embeddings, and
the ones defined above were called “pure string links”. We choose the definition above
in this paper because infection by string links behaves more nicely with this more
restrictive notion of string link. (Specifically, it preserves the number of components in
the infected link.)
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D2 � f0g

D2 � f1g

Figure 1: A string link

The condition on derivatives is not always required in the literature.1 We impose it
because this allows us to identify a c–string link with an embedding

`
c R ,!R�D2

which agrees with a fixed embedding outside of I�D2 . Let LcDEmb.
`

c R;R�D2/

denote the space of c–string links, equipped with the C1 Whitney topology. An isotopy
of string links is a path in this space, so the path components of Lc are precisely the
isotopy classes of c–string links. Often we will write K for the space L1 of long knots.

The braids which qualify as string links under Definition 1.1 are precisely the pure
braids. There is a map from Lc to the space Emb.

`
c S1;R3/ of closed links in R3

by taking the closure of a string link. When c D 1, this map is an isomorphism on �0 .
In other words, isotopy classes of long knots correspond to isotopy classes of closed
knots. In general, this map is easily seen to be surjective on �0 , but it is not injective
on �0 . For example, any string link and its conjugation by a pure braid yield isotopic
closed links, and for c � 3, there are conjugations of string links by braids which are
not isotopic to the original string link. We will sometimes write just “link” rather than
“string link” or “closed link” when the type of link is either clear from the context or
unimportant.

1.2 Main results

Our first main result is the construction of a colored operad encoding string link infection.
An operad O consists of spaces O.n/ of n–ary operations for all n 2 N . Roughly,
an operad acts on a space X if each O.n/ can parametrize ways of multiplying n

elements in X . (We provide thorough definitions in Section 3.) A colored operad
arises when different types of inputs must be treated differently. In our case, we have
to treat string links with different numbers of components differently, so the colors in

1The homotopy type of the space of such embeddings would be unchanged by omitting the condition on
derivatives, since the space of possible tangent vectors and higher-order derivatives at the boundary is
contractible.

Algebraic & Geometric Topology, Volume 15 (2015)



3374 John Burke and Robin Koytcheff

our colored operad are the natural numbers. This theorem is proven as Theorem 5.6
and Proposition 6.3.

Theorem 1 There is a colored operad I which encodes the infection operation and
acts on spaces of string links Lc for c D 1; 2; 3; : : : .

� When restricting to the color 1, the (ordinary) operad If1g which we recover is
Budney’s splicing operad, and the action of If1g on K is the same as Budney’s
splicing operad action.

� For any c , the operad Ifcg obtained by restricting to c is an operad which admits
a map from the little intervals operad C1 . The resulting C1 –action on Lc encodes
the operation of stacking string links.

� On the level of �0 , our infection operad encodes all the relations in the whole
2–string link monoid.

We then use our colored operad to decompose part of the space of string links. We rely
on an analogue of prime decomposition for 2–string links proven in our joint work
with R Blair [1], so we must restrict to c D 2. We consider a “stacking operad” I# ,
which is a suboperad of If2g and which is homeomorphic to the little intervals operad.
This operad simply encodes the operation of stacking 2–string links in I �D2 , with
the little intervals acting in the I factor. The theorem below is proven as Theorem 6.8.

Theorem 2 Let �0S2 denote the submonoid of �0L2 generated by those prime 2–
string links which are not central. (By [1], this monoid is free.) Let S2 be the subspace
of L2 consisting of the path components of L2 that are in �0S2 . Then �0S2 is freely
generated as a monoid over the stacking suboperad I# . The generating space is the
subspace consisting of those components in S2 which correspond to prime string links.

1.3 Organization of the paper

In Section 2, we review the definition of string link infection.

In Section 3, we review the definitions of an operad and the particular example of the
little cubes operad. We then give the more general definition of a colored operad.

In Section 4, we review Budney’s operad actions on the space of knots. This includes
his action of the little 2–cubes operad, as well as the action of his splicing operad.

In Section 5, we define our colored operad for infection and prove Theorem 1. We
make some remarks about our operad related to pure braids and rational tangles, and
we briefly discuss a generalization to embedding spaces of more general manifolds.
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In Section 6, we focus on the space of 2–string links. We prove Theorem 2, which
decomposes part of the space of 2–string links in terms of a suboperad of our infection
colored operad. We conclude with several other statements about the homotopy type of
certain components of the space of 2–string links.

Notation

�
`

c X means

c times‚ …„ ƒ
X t � � � tX .

� f jA means the restriction of f to A.

� X denotes the closure of X ; X
ı

denotes the interior of X .

� Œa� denotes the equivalence class represented by an element a; Œa1; : : : ; an�

denotes the equivalence class of a tuple .a1; : : : ; an/.
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work which inspired this project. They thank Ryan Blair for useful conversations and
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Krushkal for suggesting terminology and for pointing out the work of Habiro. Finally,
they thank David White for introducing the authors to each other. The second author
was supported partly by NSF grant DMS-1004610 and partly by a PIMS Postdoctoral
Fellowship.

2 Infection

Infection is an operation which takes a link with additional decoration together with a
string link and produces a link. This operation is a generalization of splicing which
in turn is a generalization of the connect-sum operation. Infection has been called
multi-infection by Cochran, Friedl, and Teichner [8], infection by a string link by
Cochran [7] and tangle sum by Cochran and Orr [10]. Special cases of this construction
have been used extensively since the late 1970s, for example in the work of Gilmer [14],
Livingston [22], Cochran, Orr, and Teichner [11; 12], Harvey [16], and Cimasoni [6].
The operad we define in this paper will encode a slightly more general operation than
the infection operation that has been defined in previous literature. This section is meant
to inform the reader of the definition in previous literature and provide motivation for
the infection operad.
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2.1 Splicing

Consider a link R 2 S3 and a closed curve � 2 S3 n R such that � bounds an
embedded disk in S3 (� is unknotted in S3 ) which intersects the link components
transversely. Given a knot K , one can create a new link R�.K/, with the same number
of components as R, called the result of splicing R by K at �. Informally, the splicing
process is defined by taking the disk in S3 bounded by �, cutting R along the disk,
grabbing the cut strands, tying them into the knot K (with no twisting among the
strands) and regluing. The result of splicing given a particular R, � and K is show in
Figure 2. Note that if � simply linked one strand of R then the result of the splicing
would be isotopic to the connect-sum of R and K .

R

�

K

R�.K/

Figure 2: An example of the splicing operation

Formally, R�.K/ is arrived at by first removing a tubular neighborhood, N.�/, of �
from S3 . Note S3 nN.�/� S3 is a solid torus with R embedded in its interior. Let
CK denote the complement in S3 of a tubular neighborhood of K . Since the boundary
of CK is also a torus, one can identify these two manifolds along their boundary. In
order to specify the identification, we use the terminology of meridians and longitudes.
Recall that the meridian of a knot is the simple closed curve, up to ambient isotopy,
on the boundary of the complement of the knot which bounds a disk in the closure of
the tubular neighborhood of the knot and has C1 linking number with the knot. Also
recall that the longitude of a knot is the simple closed curve, up to ambient isotopy, on
the boundary of the complement of the knot which has C1 intersection number with
the meridian of the knot and has zero linking number with the knot.

The gluing of S3 n N.�/ to CK is done so that the meridian of the boundary of
S3 nN.�/ is identified with the meridian of K in the boundary of CK . Note that this
process describes a Dehn surgery with surgery coefficient 1 along K � S3 where
the solid torus glued in is S3 nN.�/. Thus, the resulting manifold will be a 3–sphere
with a subset of disjoint embedded circles whose union is R�.K/ (the image of R

under this identification). Although the embedding of R�.K/ in S3 depends on the
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identification of the surgered 3–manifold with S3 , its isotopy class is independent of
this choice of identification.

2.2 String link infection

Although there is a well-studied generalization of the connect-sum operation from
closed knots to closed links, there is no generalization of splicing by a closed link.
There is, however, a generalization of splicing called infection by a string link, which
we will now define. See the work of Cochran, Friedl, and Teichner [8, Section 2.2] for
a thorough reference.

By an r –multi-disk D we mean the oriented disk D2 together with r ordered embedded
open disks D1; : : :Dr (see Figure 3). Given a link L� S3 we say that an embedding
'W D ! S3 of an r –multi-disk into S3 is proper if the image of the multi-disk,
denoted by D , intersects the link components transversely and only in the images of
the disks D1; : : :Dr as in Figure 3. We will refer to the image of the boundary curves
of '.D1/; : : : ; '.Dr / by �1; : : : ; �r .

D

D1
D2

Dr

D

�1 �r

Figure 3: An r –multi-disk and a properly embedded multi-disk

Suppose R� S3 is link, D � S3 is the image of a properly embedded r –multi-disk,
and L is an r –component string link. Then informally, the infection of R by L at
D , denoted by RD.L/, is the link obtained by tying the r collections of strands of R

that intersect the disks '.D1/; : : : ; '.Dr / into the pattern of the string link L, where
the strands linked by �i are identified with the i th component of L, such that the i th
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collection of strands are parallel copies of the i th component of L. Figure 5 shows an
example of this operation.

We now define this operation formally. Given a string link LW
`

r I ,! I �D2 , let
CL denote the complement of a tubular neighborhood of (the image of) L in I �D2 .
In Figure 4, an example of a string link is shown with its complement to the right. The
meridian of a component of a string link is the simple closed curve, up to ambient isotopy,
on the I � @D2 boundary of the closure of the tubular neighborhood of the component
which bounds a disk and has C1 linking number with the component. We call the set
of such meridians the meridians of the string link. The longitude of a component of a
string link is a properly embedded line segment f W I! I�@D2 , up to ambient isotopy,
on the I �@D2 boundary of the closure of the tubular neighborhood of the component;
it is required to have C1 intersection number with the meridian of that component, to
have zero linking number with that component, and to satisfy f .0/D .1; 0/2 f0g�@D2

and f .1/D .1; 1/ 2 f1g�@D2 . We call the set of such longitudes the longitudes of the
string link. In Figure 4 the meridians �i and longitudes `i are shown on the boundary
of the complement. Note that the boundary of the complement of any r –component
string link is homeomorphic to a genus-r orientable surface.

`1

�1

�2

`2

Figure 4: A string link and its complement

Let R� S3 be a link, and let LW
`

r I ,! I �D2 � S3 be a string link. Fix a proper
embedding of a thickened r –multidisk I �D in S3 nR. Formally the infection of R

by L at D is obtained by removing I � .D n
F

i '.Di// from S3 and gluing in the
complement of L. Note that I � .Dn

F
i '.Di// is the complement of a r –component

trivial string link T (see Figure 5), and thus the boundary of S3n.I�.Dn
F

i '.Di/// is
a genus-r orientable surface. One identifies the boundary of S3n.I �.Dn

F
i '.Di///

and the boundary of the complement of L, @CL , by
� identifying I � @D � S3 n .I � .D n

F
i '.Di/// with I � @D2 � @CL ,

� identifying f0; 1g� .D n
F

i '.Di//� S3 n .I � .D n
F

i '.Di/// with .f0; 1g�
D2/ nN.L/� @CL , and
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� identifying I � @'.Di/ � S3 n .I � .D n
F

i '.Di/// with the boundaries of
the tubular neighborhoods of the components of L in @CL in such a way that
the meridians �i and longitudes `i of L are identified with f1

2
g � @'.Di/ and

I � f0g respectively.

D

R

Figure 5: Infection of the string link R along D by the string link L from Figure 4

We claim that the resulting manifold is S3 containing a link RD.L/ (which is the
image of R under this identification). The resulting manifold is homeomorphic to S3

because

S3
n Int

�
I �

�
D n

G
i

'.Di/

��
[ .I �D2/ nN.L/

D
�
S3
n .I �D/

�
[

�
I �

G
i

'.Di/[ .I �D2/ nN.L/

�
Š S3;

where the last homeomorphism follows form the observation that the previous space is
the union of two 3–balls. Again, the specific embedding of RD.L/ will depend on the
choice of homeomorphism, but all choices will yield isotopic embeddings.
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3 Operads

We start by reviewing the definitions of an operad OD fO.n/gn2N , and an action of
O on X (aka an algebra X over O ). We then proceed to colored operads. Technically,
the definition of a colored operad subsumes the definition of an ordinary operad, but
for ease of readability, we first present ordinary operads. Readers familiar with these
concepts may safely skip this section.

3.1 Operads

Operads can be defined in any symmetric monoidal category, but we will only consider
the category of topological spaces. In this case, the rough idea is as follows. An algebra
X over an operad O is a space with a multiplication X �X ! X , and the space
O.n/ parametrizes ways of multiplying n elements of X , ie maps X n!X . In other
words, O.n/ captures homotopies between different ways of multiplying the elements,
as well as homotopies between these homotopies, etc. Thus an element of O.n/ is an
operation with n inputs and one output. This can be visualized as a tree with n leaves
and a root, and in fact, free operads are certain spaces of decorated trees. For a more
detailed introduction, the reader may wish to consult the book of Markl, Shnider, and
Stasheff [23], May’s book [24], or the expository paper of McClure and Smith [25].

Definition 3.1 An operad O (in the category of spaces) consists of

� a space O.n/ for each nD 1; 2; : : : with an action of the symmetric group †n ,

� structure maps

(1) O.n/�O.k1/� � � � �O.kn/!O.k1C � � �C kn/;

such that the following three conditions are satisfied:

Associativity The following diagram commutes:

O.n/�
nY

iD1

O.ki/�

nY
iD1

kiY
jD1

O.`i;j / //

��

O.n/�
nY

iD1

O
� kiX

jD1

`i;j

�

��

O.k1C � � �C kn/�

nY
iD1

kiY
jD1

O.`i;j / // O
� nX

iD1

kiX
jD1

`i;j

�

Algebraic & Geometric Topology, Volume 15 (2015)



A colored operad for string link infection 3381

Symmetry Let � � � denote the diagonal action on the product

O.n/� .O.k1/� � � � �O.kn//

coming from the actions of †n on O.n/ and on O.k1/� � � � �O.kn/ by permuting
the factors. For a partition Ek D .k1; : : : ; kn/ of a natural number k1C � � � C kn , let
� Ek 2†k1C���Ckn

denote the “block permutation” induced by � and Ek .

We require that the following composition agrees with the map of Equation (1):

O.n/�
nY

iD1

O.ki/
���
�!O.n/�

nY
iD1

O.k�.i// �!O
� nX

iD1

ki

�
��1
Ek
�!O

� nX
iD1

ki

�
:

We also require that for �i 2†ki
for i D 1; : : : ; n, the following diagram commutes:

O.n/�
nY

iD1

O.ki/

id��1������n

��

// O
� nX

iD1

ki

�
�1������n

��

O.n/�
nY

iD1

O.ki/ // O
� nX

iD1

ki

�
Identity There exists an element 1 2O.1/ (ie a map �!O.1/) which induces the
identity on O.k/ via

O.1/�O.k/!O.k/;
.1;L/ 7!L;

and which induces the identity on O.n/ via

O.n/�O.1/�O.1/� � � � �O.1/!O.n/;
.L; 1; 1; : : : ; 1/ 7!L:

Some authors define the structure maps via ıi operations, ie plugging in just one
operation into the i th input, as opposed to n operations into all n inputs. These
ıi maps can be recovered from the above definition by setting kj D 1 for all j ¤ i

and using the identity element in O.1/.

Definition 3.2 Given an operad O , an action of O on X (also called an algebra X

over O) is a space X together with maps

O.n/�X n
!X
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such that the following conditions are satisfied:

Associativity The following diagram commutes:

O.n/�O.k1/� : : :�O.kn/�X k1C���Ckn //

��

O.n/�X n

��
O.k1C � � �C kn/�X k1C���Ckn // X

Symmetry For each n, the action map is †n –invariant, where †n acts on O.n/ by
definition, on X n by permuting the factors, and on the product diagonally. In other
words, the action map descends to a map

O.n/�†n
X n
!X:

Identity The identity element 1 2O.1/ together with the map

O.1/�X !X

induce the identity map on X , ie the map takes .1;x/ 7! x .

3.2 The little cubes operad

Our infection colored operad extends Budney’s splicing operad, which in turn was an
extension of Budney’s action of the little 2–cubes operad on the space of long knots.
Thus the little 2–cubes operad is of interest here.

Definition 3.3 The little j –cubes operad Cj is the operad with Cj .n/ the space of
maps

.L1; : : : ;Ln/W
a

n

Ij ,! Ij

which are embeddings when restricted to the interiors of the Ij and which are increasing
affine-linear maps in each coordinate. The structure maps are given by composition:

Cj .n/� Cj .k1/� : : :� Cj .kn/ �! Cj .k1C � � �C kn/;

.L1; : : : ;Ln/; .L
1
1; : : : ;L

1
k1
/; : : : ;.Ln

1; : : : ;L
n
kn
/

7! .L1ı .L
1
1; : : : ;L

1
k1
/; : : : ;Lnı .L

n
1; : : : ;L

n
kn
//:

Note that for all j � 2, the multiplication induced by choosing (any) element in Cj .2/

is commutative up to homotopy, which can be seen via the same picture that shows
that �j X is abelian for j � 2.
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3.3 Colored operads

Now we present the precise definitions of a colored operad and an action of a colored
operad on a space. This generalization of an operad is necessary to generalize Budney’s
operad from splicing of knots to infection by links.

Definition 3.4 A colored operad OD .O;C / (in the category of spaces) consists of:

� A set of colors C .

� A space O.c1; : : : ; cnI c/ for each .nC1/–tuple .c1; : : : ; cn; c/2C together with
compatible maps O.c1; : : : ; cnI c/!O.c�.1/; : : : ; c�.n/I c/ for each � 2†n .

� (Continuous) maps

O.c1; : : : ; cnI c/�O.d1;1; : : : ; d1;k1
I c1/� � � � �O.dn;1; : : : ; dn;kn

I cn/

�!O.d1;1; : : : ; dn;kn
I c/:

Here the maps satisfy the following three conditions:

Associativity The map below is the same regardless of whether one first applies the
structure maps to the first two factors or the last two factors on the left-hand side:

O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/�

nY
iD1

kiY
jD1

O.ei;j ;1; : : : ; ei;j ;`i;j
I di;j /

�!O.e1;1;1; : : : ; en;kn;`1;kn
/:

Symmetry The following diagram below commutes. The vertical map is induced
by � in both the first factor and the last n factors, and � Ek 2†k1C���Ckn

is the block
permutation induced by � and the partition .k1; : : : ; kn/:

O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/ //

���
��

O.d1;1; : : : ; dn;kn
I c/

�Ek

��
O.c�.1/; : : : ; c�.n/I c/

�

nY
iD1

O.d�.i/;1; : : : ; d�.i/;k�.i/ I c�.i// // O.d1;1; : : : ; dn;kn
I c/
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We also require that, for �i 2†ki
, i D 1; : : : ; n, the following diagram commutes:

O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/ //

id��1������n

��

O.d1;1; : : : ; dn;kn
I c/

�1������n

��
O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/ // O.d1;1; : : : ; dn;kn

I c/

Identity For every c 2 C , there is an element 1c 2O.cI c/ which together with

O.cI c/�O.c1; : : : ; cnI c/!O.c1; : : : ; cnI c/

induces the identity map on O.c1; : : : ; cnI c/. We also require that the elements
1c1
; : : : ; 1cn

together with

O.c1; : : : ; cnI c/�O.c1I c1/� � � � �O.cnI cn/!O.c1; : : : ; cnI c/

induce the identity map on O.c1; : : : ; cnI c/.

The colors c1; : : : ; cn can be thought of as the colors of the inputs, while c is the color
of the output. A colored operad with C D fcg is just an operad, where

O.c; : : : ; c„ ƒ‚ …
n times

I c/

is O.n/. Sometimes, for brevity, we write “operad” to mean “colored operad”.

Note that if we have a colored operad O with colors C and a subset C 0 � C , we can
restrict to another colored operad OC 0 consisting of just the spaces O.c1; : : : ; cnI c/

with ci ; c 2 C 0 (and the same structure maps as O).

Definition 3.5 Given a colored operad OD .O;C /, an action of O on A (also called
an O–algebra A) consists of a collection of spaces fAcgc2C together with maps

(2) O.c1; : : : ; cnI c/�Ac1
� � � � �Acn

!Ac

satisfying the following conditions:
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Associativity The following diagram commutes:

O.c1; : : : ; cnI c/

�

nY
iD1

O.di;1; : : : ; di;ki
I ci/�

nY
jD1

Adj ;kj
//

��

O.c1; : : : ; cnI c/�

nY
iD1

Aci

��
O.d1;1; : : : ; dn;kn

I c/�

nY
jD1

Adj ;kj
// Ac

Symmetry For each � 2 †n , the following diagram commutes, where the vertical
map is induced by the †n –action and permuting the factors of A:

O.c1; : : : ; cnI c/�Ac1
� � � � �Acn

//

��

Ac

O.c�.1/; : : : ; c�.n/I c/�Ac�.1/ � � � � �Ac�.n/

44

Identity The map induced by 1c 2O.c; c/ together with O.cI c/�Ac!Ac is the
identity on Ac .

If we have a subset C 0 � C , the restriction colored operad OC 0 acts on the collection
of spaces fAcgc2C 0 .

Example 3.6 A planar algebra as in the work of Jones [20] is an algebra over a certain
colored operad. In fact, planar diagrams form a colored operad called the planar operad
P . The colors C are the even natural numbers, and P.c1; : : : ; cnI c/ is the space of
diagrams with n holes, ci strands incident to the i th boundary circle, and c strands
incident to the outer boundary circle. If Ac denotes the space of tangle diagrams in D2

with c endpoints on @D2 , then the collection fAcgc2C is an example of an algebra
over P (aka a planar algebra).

4 A review of Budney’s operad actions

4.1 Budney’s 2–cubes action

The operation of connect-sum of knots is always well defined on isotopy classes of
knots. If one considers long knots, one can further define connect-sum (or stacking) of
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knots themselves, rather than just the isotopy classes. That is, there is a well-defined
map

#W K�K! K;

where K D Emb.R;R�D2/ is the space of long knots. If one descends to isotopy
classes, this operation is commutative, ie # is homotopy-commutative. See Budney’s
paper [2, page 4, Figure 2] for a beautiful picture of the homotopies involved. This
picture suggests that one can parametrize the operation # by S1 ' C2.2/. Thus it
suggests that the little 2–cubes operad C2 acts on K .

Budney succeeded in constructing such a 2–cubes action, but to do so, he had to
consider a space of fat long knots

EC.1;D2/ WD ff W R1
�D2 ,!R1

�D2
j supp.f /� I �D2

g;

where supp.f / is defined as the closure of fx 2R1 �D2 j f .x/¤ xg. The notation
EC.1;D2/ stands for (self-)embeddings of R1 �D2 with cubical support. This space
is equivalent to the space of framed long knots, but one can restrict to the subspace
where the linking number of the curves f jR�.0;0/ and f jR�.0;1/ is zero; this subspace
is then equivalent to the space of long knots.

The advantage of EC.1;D2/ is that one can compose elements. In the 2–cubes action
on this space, the first coordinate of a cube acts on the R factor in R�D2 , while the
second factor dictates the order of composition of embeddings. Precisely, the action is
defined as follows. For one little cube L, let Ly be the embedding I ,! I given by
projecting to the last factor. Let Lx be the embedding I ,! I given by projecting to the
first factor(s). Let � 2†n be a permutation (thought of as an ordering of f1; : : : ; ng)
such that L

y

�.1/
.0/� � � � �L

y

�.n/
.0/. The action

C2.n/�EC.1;D2/n! EC.1;D2/

is given by

.L1; : : : ;Ln/�.f1; : : : ; fn/ 7!Lx
�.n/ıf�.n/ı.L

x
�.n//

�1
ı� � �ıLx

�.1/ıf�.1/ı.L
x
�.1//

�1:

4.2 The splicing operad

In the above 2–cubes action, the second coordinate is only used to order the embeddings.
Thus instead of the 2–cubes operad, one could consider an operad of “overlapping
intervals” C0

1
. An element in C0

1
.n/ is n intervals in the unit interval, not necessarily

disjoint, but with an order dictating which interval is above the other when two intervals
do overlap. Precisely, an element of C0

1
.n/ is an equivalence class .L1; : : : ;Ln; �/

where each Li is an embedding I ,! I and where � 2†n . Elements .L1; : : : ;Ln; �/
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and .L0
1
; : : : ;L0n; �

0/ are equivalent if Li D L0i for all i and if whenever Li and
Lj intersect, ��1.i/ � ��1.j / () .� 0/�1.i/ � .� 0/�1.j /. It is not hard to see
what the structure maps for the operad are (and they are given in Budney’s paper [4]).
Budney then easily recasts his 2–cubes action as an action of the overlapping intervals
operad C0

1
.

The splicing operad SCD2

1
(which we abbreviate for now as SC ) is formally similar

to the overlapping intervals operad, in that SC.n/ consists of equivalence classes of
elements .L0;L1; : : : ;Ln; �/ with the same equivalence relation as for C0

1
. In the

splicing operad, however, L0 is in EC.1;D2/, L1; : : : ;Ln are embeddings

Li W I �D2 ,! I �D2;

and all the Li are required to satisfy a “continuity constraint”, as follows. One considers
� 2 †n as an element of †nC1 D Autf0; : : : ; ng which fixes 0. If ��1.i/ < ��1.k/

one can think of Li as inner (or first in order of composition) with respect to Lk .
One wants the “round boundary” of Lk not to touch Li , but for the operad to have
an identity element, one needs to allow for Lk to be flush around Li . The precise
requirement needed is that for 0� ��1.i/ < ��1.k/,

im Li n im Lk \Lk.I
ı

� @D2/D∅:

Note that SC is a much “bigger” operad than C0
1

. One can think of L0 as the “starting
(thickened long) knot” for the splicing operation and of the other Li as n “hockey
pucks” with which one grabs L0 and ties up into n knots. This gives a map

SC.n/�Kn
! K

which will define the action of the splicing operad on K . To fully construct SC as an
operad, one needs the operad structure maps, which also come from the map above.
Roughly speaking, the structure maps are as follows. Given one splicing diagram with
n pucks and n other splicing diagrams each with ki pucks (i D 1; : : : ; n), put the i th

splicing diagram into the i th puck by composing the “starting knots” L0 and “taking
the pucks along for the ride”. For a precise definition and pictures, the reader may
either consult [4] or read the next section, which closely follows Budney’s construction
and subsumes the splicing operad.

5 The infection colored operad

Definition 5.1 Fix for each c D 1; 2; 3; : : : a trivial c–component fat string link

ic W
a

c

I �D2 ,! I �D2;
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with image denoted Sc WD im.ic/� I �D2 .

We will be more concerned with this image of the fixed trivial fat string link rather
than the embedding itself.

A convenient way of choosing an ic is to fix an embedding
`

c D2 ,!D2 and then
take the product with the identity map on I . For c� 2, we choose an embedding which
takes the centers of the c copies of D2 to the points x1; : : : ;xc from our Definition 1.1
of string links. Beyond that, we remain agnostic about this fixed embedding. For cD 1,
we choose i1 to be the identity map. This will recover Budney’s splicing operad from
our colored operad when all the colors are 1.

Now we define the space of c–component fat string links to be

FSLc WD

�
f W
a

c

I �D2 ,! I �D2

ˇ̌̌̌
f agrees with ic on @I �D2

�
:

These are the spaces on which the infection colored operad will act. An element of
FSL3 is displayed in Figure 6. By our condition on the fixed trivial fat string link,
we can restrict f to the cores of the solid cylinders to obtain an ordinary string link
f jI�fx1;:::;xcg as in Definition 1.1.

Figure 6: A fat string link, or more precisely, an element of FSL3

5.1 The definition of the infection colored operad

We now define our colored operad I D .I;C /. We put C DNC , so each color c is a
positive natural number.

Definition 5.2 (The spaces in the colored operad I ) An infection diagram is a tuple
.L0;L1; : : : ;Ln; �/ with L0 2 FSLc , � 2†n , and Li an embedding Li W I �D2 ,!

I �D2 (for i D 1; : : : ; n) satisfying a certain continuity constraint. The constraint is
that if 0� ��1.i/ < ��1.k/, then

(|) Li.I �D2/ nLk.Sck
/\Lk.I

ı

� .D2
n S
ı

ck
//D∅;
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where Sck
is the image of a fixed trivial string link, as in Definition 5.1. As in the

splicing operad, we think of � 2 †n as a permutation in †nC1 D Autf0; 1; : : : ; ng
which fixes 0.

The space I.c1; : : : ; cnI c/ is the space of equivalence classes ŒL0; : : : ;Ln; � � of infec-
tion diagrams, where .L0; : : : ;Ln; �/ and .L0

0
; : : : ;L0n; �

0/ are equivalent if Li DL0i
for all i , and if whenever the images of Li and Lk intersect, ��1.i/� ��1.k/ if and
only if .� 0/�1.i/� .� 0/�1.k/.

L0

L4

L1

L2

L3 L5

L4.S3/

L1.S1/

Figure 7: An infection diagram, or more precisely, an element of I.1; 2; 2; 3; 1I 3/

Informally, the Li are like the hockey pucks in Budney’s splicing operad, and the
permutation � is a map that sends the order of composition to the index i of Li . The
difference is that instead of re-embedding a hockey puck into itself, we will re-embed
the image of Sci

, a subspace of thinner inner cylinders, into the puck. Thus we keep
track of the image of Sci

, and our pucks can be thought of as having cylindrical holes
drilled in them, the holes with which we will grab the string link (or long knot) L0 .
Following a suggestion of V Krushkal, we call the restrictions of the

Li to .I �D2/ n S
ı

ci

“mufflers” (motivated by the picture for ci D 2).

The generalization of Budney’s continuity constraint to the constraint .|/ is the key
technical ingredient in defining our colored operad. The need for this constraint is
explained precisely in Remark 5.4 below. The rough meaning of this condition is that
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a muffler which acts earlier should be inside a hole of a muffler that acts later; in other
words, the “solid part” of a higher Lk (which remains after drilling out the trivial string
link) should not intersect any part of a lower Li , where “higher” and “lower” are in
the semi-linear ordering determined by � . However, we must allow for the possibility
of the boundaries of the mufflers intersecting in certain ways. Figure 8 displays the
cross-section of a set of mufflers which satisfy constraint .|/.

Figure 8: The cross-section of a set of thirteen mufflers, including seven
one-holed mufflers (or hockey pucks), satisfying the constraint .|/ . Each
grey area is the “forbidden region” Lk.I

ı
� .D2 nS

ı

ck
// of the k th muffler,

ie the region where no other muffler may lie.

So far we haven’t finished defining the operad, since we haven’t defined the structure
maps. We start by defining the action on the space of fat string links. Only after that
will we define the structure maps and check that they form a colored operad and that
the definition below is a colored operad action.

Definition 5.3 (The action of I on fat string links) Consider ŒL0;L1 : : : ;Ln; � � 2

I.c1; : : : ; cnI c/ and fat string links f1; : : : ; fn where fk 2 FSLck
. Let Lin

k
be the

map obtained from Lk by restricting the domain to Sck
and restricting the codomain

to its image. We use the shorthand notation Lk �fk to denote the map

Lk ıfk ı .L
in
k /
�1
W Lk.Sck

/! I �D2:

Then we define

I.c1; : : : ; cnI c/�FSLc1
� � � � �FSLcn

�! FSLc ;

.ŒL0;L1; : : : ;Ln; � �; f1; : : : ; fn/ 7! .L�.n/ �f�.n// ı � � � ı .L�.1/ �f�.1// ıL0:
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Remark 5.4 Strictly speaking, each map L�.k/ �f�.k/ is only defined on

L�.k/.Sc�.k//D im Lin
�.k/;

so one might worry whether the above composition is well defined. We claim that the
conditions on the support of the f�.k/ and the continuity constraint (|) guarantee that
we can continuously extend each L�.k/ �f�.k/ by the identity on im L0 n im Lin

�.k/
.

In fact, first write

@
�
im Lin

�.k/

�
D

�
@I �

a
ck

D2

�
[

�
I � @

a
ck

D2

�
:

Since each f�.k/ is the identity on the @I �
`

ck
D2 part of its domain (the “flat

boundary”), the map L�.k/ �f�.k/ is the identity on the @I �
`

ck
D2 part of im Lin

�.k/
.

The constraint (|) says that

im L0 n im Lin
�.k/
\L�.k/

�
I
ı

� @
a
ck

D2

�
D∅;

hence
im L0 n im Lin

�.k/
\ im L�.k/ � @I �

a
ck

D2:

So the continuity constraint guarantees that we don’t need to worry about extending
past the I � @

`
D2 part of the boundary (the “round boundary”).

Hence this defines the composition on the whole image of L0 .

Definition 5.5 (The structure maps in I ) The structure maps

(3) I.c1; : : : ; cnI c/� I.d1;1; : : : ; d1;k1
I c1/� � � � � I.dn;1; : : : ; dn;kn

I cn/

�! I.d1;1; : : : ; d
n;kn I c/;

.J0; : : : ;Jn; �/� .L1;0; : : : ;L1;k1
; �1/� � � � � .Ln;0; : : : ;Ln;kn

; �n/

7! ..J � EL/0; .J � EL/1;1; : : : ; .J � EL/n;kn
; �/

are defined as follows. (Here EL D .L1;�; : : : ;Ln;�/, which can be thought of as n

infection diagrams, and J � EL is just shorthand for the result on the right-hand side.)
The “starting” fat string link is

.J � EL/0 WD

�
n




iD1

J�.i/ �L�.i/;0

�
ıJ0

WD .J�.n/ ıL�.n/;0 ı .J
in
�.n//

�1/ ı � � � ı .J�.1/ ıL�.1/;0 ı .J
in
�.1//

�1/ ıJ0:
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f1 f2

f3

L0

L1

L3

L2

.L3 �f3/ ı � � � ı .L1 �f1/ ıL0

L1 �f1

L3 �f3

L2 �f2

Figure 9: The action of an infection diagram on three fat string links via the
map I.1; 3; 2I 2/ � FSL1 � FSL2 � FSL3 ! FSL2 . The 2–component fat
string link at the bottom is the result of this action.
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Given a 2 f1; : : : ; ng and b 2 f1; : : : ; kag, the .a; b/th puck is

.J � EL/a;b WD

�
n




iD��1.a/C1

J�.i/ �L�.i/;0

�
ı .Ja ıLa;b/:

Finally, the permutation � associated to J � EL is given by

��1.a; b/ WD ��1

�
bC

a�1X
iD1

ki

�
WD ��1

a .b/C

�.a/�1X
iD1

k�.i/:

In other words

(4) ��1
W .1; 1/; .1; 2/; : : : ; .n; kn/

7�! .��1.1/; ��1
1 .1//; .��1.1/; ��1

1 .2//; : : : ; .��1.n/; ��1
n .kn//;

where the set acted on can be thought of as a set of ordered pairs (though not a cartesian
product) with a lexicographical ordering as on the left.

Notice that the action maps are just special cases of the structure maps. In fact, FSLc

is precisely I.∅I c/ where ∅ is 0–tuple of positive integers (or the sequence of zero
elements). Thus each action map can be written as

I.c1; : : : ; cnI c/� I.∅I c1/� � � � � I.∅I cn/! I.∅I c/:

Thus we can make just a slight modification to Figure 9 to produce a picture of a
structure map (that is not an action map), as in Figure 10.

Theorem 5.6 (A) The spaces and maps in Definitions 5.2 and 5.5 make I a colored
operad with an action on the space of fat string links given by Definition 5.3.

(B) When restricting to the single color cD 1, one recovers Budney’s splicing operad
SCD2

1
. Thus C2 maps to this part of the colored operad.

(C) There is a map of the little intervals operad C1 to the restriction Ifcg of I to any
single color c .

Proof For (A), we can first see that a composed operation (ie an infection diagram on
the right-hand side I.d1;1; : : : ; dn;kn

I c/ of Equation (3)) satisfies the constraint .|/,
as follows. Any two non-disjoint mufflers in the composed diagram are the images
of mufflers in some I.di;1; : : : ; di;ki

I ci/ under a composition of embeddings. But if
the constraint .|/ holds for Li ;Lk , then it holds for the compositions of Li ;Lk with
these embeddings, since “image under an embedding” commutes with complement,
closure, and intersection.
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J2

L1 �J1

L3 �J3

L2 �J2

Figure 10: A slight variation of Figure 9, using the same .L0;L1;L2;L3/

but replacing the fat string link f2 in Figure 9 by the infection diagram
J2 shown above, gives an example of the operad structure maps. The
infection diagrams J1 and J3 have zero mufflers, and their 0th compo-
nents are respectively f1 and f3 . Thus the picture above is the image of
..L0; : : : ;L3/;J1;J2;J3/ under the structure map I.1; 3; 2I 2/� I.∅I 1/�
I.1I 3/� I.∅I 2/! I.1I 2/ .

Now we need to check the conditions of (a) associativity, (b) symmetry, and (c) identity
for the structure maps. The corresponding conditions for the action maps will then
follow because the action maps are special cases of the structure maps.

(a) Suppose we have

J D .J0; : : : ;Jj ; �/; ELD ..L1;0; : : : ;L1;`1
; �1/; : : : ; .Lj ;0; : : : ;Lj ; j̀ ; �j //;

EM D ..M1;1;0; : : : ;M1;1;m1;1
; �1;1/; : : : ; .Mj ; j̀ ;0; : : : ;Mj ; j̀ ;mj ; j̀

; �j ; j̀ //:

Then .J � EL/ � EM has 0th component�
��1.j ; j̀ /




.h;k/D��1.1;1/

��
j




iD��1.h/C1

J�.i/ �L�.i/;0

�
ıJh ıLh;k

�
�Mh;k;0

�
ı

�
j




iD1

J�.i/ �L�.i/;0

�
ıJ0;
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where � is the permutation for JL, and where the order of the terms in the leftmost
composition is given by the indices ��1.1; 1/; ��1.1; 2/; : : : ; ��1.j ; j̀ /. On the other
hand, the 0th component of J � . EL � EM / is

j




iD1

J�.i/ �

��
`�.i/




kD1

L�.i/;�.k/ �M�.i/;�.k/;0

�
ıL�.i/;0

�
ıJ0:

These two expressions agree by canceling adjacent terms

J�.i/; .J
in
�.i//

�1 and L�.i/;0; .L�.i/;0/
�1

in the expression for ..J � EL/ � EM /0 . For example, if

J D .J0;J1;J2; �/; ELD ..L1;0;L1;1/; .L2;0;L2;1/; �/;

EM D ..M1;1;0;M1;1;1/; .M2;1;0;M2;1;1/; �/;

with � denoting the identity permutation, then

..J � EL/ � EM /0

D Œ.J � EL/2;1 �M2;1;0� ı Œ.J � EL/1;1 �M1;1;0� ı ŒJ2 �L2;0� ı ŒJ1 �L1;0� ıJ0

D ŒJ2 ıL2;1 ıM2;1;0 ı .L
in
2;1/
�1
ı�

��J�1
2 �

ı Œ��J2 ıL2;0 ı .J
in
2 /
�1
ıJ1 ıL1 ıM1;1;0 ı .L

in
1;1/
�1
ı�

��J�1
1 ı��J2 ı�����

.L2;0/
�1
ı�

��J�1
2 �

ı Œ��J2 ı���L2;0 ı��
��.J in

2 /
�1� ı Œ��J1 ıL1;0 ı .J

in
1 /
�1� ıJ0

D ŒJ2 � . EL � EM /2;1;0� ı ŒJ1 � . EL � EM /1;1;0� ıJ0

D .J � . EL � EM //0:

Checking that the .a; b; c/th mufflers of these two infection diagrams agree similarly
involves canceling adjacent terms in the expression for ..J � EL/ � EM /a;b;c . (Also cf [4].)

Finally, to check that the permutations for these two infection diagrams agree, note
that the inverse of either one is given (with notation as in Equation (4)) by

.i; k; h/ 7! .��1.i/; ��1
i .k/; ��1

i;k .h//:

(b) We need to check that both diagrams in the symmetry condition in Definition 3.4
commute for OD I . The maps involved consist of permutations of labels on mufflers
and labels on infection diagrams. The commutativity of these diagrams is easily verified.

(c) The identity 1c 2 I.cI c/ is an element ŒL0;L1; e� with L0 the fixed trivial
c–component fat string link, L1 the identity map on I �D2 , and e the element in †1 .

Part (B) of the theorem follows quickly from our definitions. One can check that by
choosing the identity map for the trivial fat 1–string link, our constraint .|/ reduces
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to Budney’s continuity constraint. The rest of our definitions are then exactly as in
Budney’s splicing operad.

For part (C), the map C1 ! Ifcg is easy to construct. An element of C1.n/ is
.a1; : : : ; an/ where each ai W I ,! I is the restriction of an affine-linear, increasing
map. The map C1! Ifcg is given by .a1; : : : ; an/ 7! .ic ; a1� idD2 ; : : : ; an� idD2 ; �/

where ic was the trivial fat c–string link, and where � is the identity permutation.
(Actually, we could choose any permutation since the mufflers are disjoint.)

Remark 5.7 For c ¤ 1, it is clear that C2 cannot map to the operad Ic , for then
connect-sum of string links would be (homotopy-)commutative. But this is not the
case. For c � 3, the pure braid group is not abelian, and for c D 2, the monoid of
string links up to isotopy is nonabelian. The latter result can be deduced either from
our recent results on the structure of this monoid [1] or from work of Le Dimet in the
late 1980s [21] on the group of string links up to cobordism.

Just as Budney’s fat long knots are equivalent to framed long knots, our fat string links
are equivalent to framed string links. In more detail, given a fat string link L2FSLc , we
can restrict to the “cores of the tubes” to get an ordinary string link Lj.I�fx1; : : : ;xcg/.
Thus we have a map FSLc ! Lc , which is a fibration, since in general restriction
maps are fibrations. The fiber FibL over L is the space of tubular neighborhoods of
im L which are fixed at the boundaries. We express such a neighborhood as a map
�W
`

c I �D2! I �D2 and associate to � a collection of c loops in SO.2/; these
are obtained by taking the derivative at .0; 0/ of the map ftg�D2! I �D2 , for each
t 2

`
c I . Thus we can map the fiber FibL to .�SO.2//c . This “derivative map” is a

homotopy equivalence (by shrinking � to a small neighborhood of
`

c I � f0g). Since
�SO.2/Š Z, we can write the fibration as

Zc
�! FSLc �! Lc :

For L 2 FSLc , there are c framing numbers !1; : : : ; !c , one for each component. The
j th framing number is given by the linking number of Ij�.0; 0/ with Ij�.1; 0/, where
Ij is the j th copy of I in

`
c I . The map !1� � � ��!c W FSLc!Zc gives a splitting

of the above fibration. Then we consider the product fibration Zc!Lc�Zc!Lc and
the map from the above fibration to this one induced by the splitting. The long exact
sequence of homotopy groups for a fibration together with the five lemma imply that
the map from FSLc to Lc �Zc is a weak equivalence, hence a homotopy equivalence.
Thus yLc WD .!1 � � � � �!c/

�1f.0; 0; : : : ; 0/g is equivalent to Lc .

Corollary 5.8 By restricting to the subspaces yLc � FSLc of fat string links with zero
framing number in every component, we obtain an action of I on spaces homotopy
equivalent to the spaces of c–component string links.
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5.2 Mufflers, rational tangles, and pure braids

We now briefly discuss how general an infection our operad I encodes. Informally,
one might wonder how twisted the inner cylinders (ie the holes) Lin of a muffler could
be. Clearly, a fat string link can appear as Lin if and only if the pair .I �D2;Lin/

is homeomorphic to the pair .I �D2; ic/ where ic is the trivial fat c–string link.
The purpose of the following well-known proposition is just to show an alternative
and perhaps more intuitive way of thinking about such string links. Recall from
Definition 5.1 that Sc is the image of ic .

Proposition 5.9 The following are equivalent:

(i) There is a diffeomorphism of pairs .I �D2;Sc/ �!
Š
.I �D2; im.L//.

(ii) There is an isotopy from L to the trivial link which takes @
�`

c I
�

into @.I�D2/.
Note that the isotopy need not fix the endpoints of

`
c I .

Proof (i) D) (ii) Suppose we have a diffeomorphism of pairs h as in (i). It
suffices to show that the identity can be connected to this diffeomorphism by a path
of diffeomorphisms of I �D2 , for then we can restrict to Sc to obtain the desired
isotopy.

By Cerf’s theorem [5], the space of diffeomorphisms of S3 is connected. As a corollary,
so is the space of diffeomorphisms of D3 whose values and derivatives agree with the
identity on the boundary. In fact, this follows by considering the fibration

Diff.D3; @D3/! Diff.S3/! Emb.D3;S3/

given by restricting to a hemisphere of S3 . The base space is homotopy-equivalent
to SO.3/, which is connected, while the fiber is the space of diffeomorphisms of D3

fixed on the boundary.

Now a diffeomorphism 'W .I �D2;Sc/�!
Š
.I �D2; im.L// is clearly isotopic to one

that is the identity outside of a ball D3 contained in I �D2 . Combining this with
Cerf’s Theorem, we get a path from ' to the identity, as desired.

(ii) D) (i) By the isotopy extension theorem (see for example Hirsch’s text [19]),
an isotopy as in (ii) can be extended to a diffeotopy of the whole space I �D2 . The
diffeotopy at time 1 then gives the desired diffeomorphism.

The 2–string links which satisfy the above condition(s) are by definition precisely
the 2–string links which are also rational 2–tangles. (Here we consider only string
links, not arbitrary tangles; the reader may consult the work of Conway [13] for more
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details about rational tangles in general.) Note that pure braids are examples of rational
2–tangles, since it is easy to see that a pure braid satisfies (ii) above. We immediately
have the following result, which informally says that “a muffler can grab the string link
in the shape of any rational 2–tangle”.

Proposition 5.10 A fat 2–string link Lin ,

Sc Š

a
c

I �D2 Lin

,�! I �D2;

extends to a diffeomorphism L of I �D2 if and only if the core Linj.I �fx1;x2g/ of
Lin is a rational tangle.

5.3 Generalizations to other embedding spaces

For j 2NC and M a compact manifold with boundary, let EC.j ;M / be the space of
“cubical embeddings” Rj �M ,!Rj �M , that is, all such embeddings which are the
identity outside Ij �M . Budney constructs the actions of the little 2–cubes operad Cj

and the splicing operad SCD2

1
on the space of long knots as special cases of actions of

the operads Cj and SCM
j on EC.j ;M /. Our extension of the splicing operad to string

links also gives an extension of the more general splicing operad SCM
j to a colored

operad acting on spaces of embeddings Ij �
`

c M ,! Ij �M .

For each c 2NC fix an embedding

ic W
a

c

Ij
�M ,!

a
c

Ij
�M

by fixing an embedding
`

c M ,!M . Let Sc be the image of ic .

Let

EC
`

c .j ;M / WD
n
f W
a

c

Ij
�M ,! Ij

�M
ˇ̌̌
f agrees with ic on @I �M

o
:

Definition 5.11 (The spaces in the colored operad IM
j ) An element in

IM
j .c1; : : : ; cnI c/

is an equivalence class of tuples .L0;L1; : : : ;Ln; �/, where L0 2 EC
`

c .j ;M /,
� 2†n , and for i D 1; : : : ; n, Li is an embedding Li W I

j �M ,! Ij �M subject to
the constraint that for 0� ��1.i/ < ��1.k/,

im Li nLk.Sc/\Lk.I
ı

j
� .M n S

ı

c//D∅:
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Here we think of � 2†n as a permutation in †nC1 D Autf0; 1; : : : ; ng which fixes 0.

Tuples .L0; : : : ;Ln; �/ and .L0
0
; : : : ;L0n; �

0/ are equivalent if Li DL0i for all i and
if whenever the images of Li and Lk intersect, ��1.i/ � ��1.k/ if and only if
.� 0/�1.i/� .� 0/�1.k/.

The structure maps of IM
j , and an action of IM

j on the spaces fEC
`

c .j ;M /gc2NC ,
can be defined exactly as in the special case where j D 1 and M DD2 .

6 Decomposing the space of 2–string links using the infection
operad

6.1 The monoid of 2–string links

Note that given any monoid M and subset C of central elements, the quotient monoid
M=C is well defined. We are interested in the monoid MD �0Lc of isotopy classes
of c–string links, especially for c D 2. The units in �0Lc are precisely the pure braids
[1, Proposition 2.7]. We say that a non-unit c–string link L is prime if LDL1 # L2

implies that either L1 or L2 is a unit (pure braid).

Definition 6.1 (i) A string link L is split if there exists a properly embedded 2–
disk .D; @D/ ,! .I �D2; @.I �D2// whose image is disjoint from L and such
that the two 3–balls into which D separates I �D2 each contain component(s)
of L. Such a 2–disk is called a splitting disk. See Figure 11.

(ii) A 1–strand cable is a string link L which has a neighborhood N Š I �D2

such that L considered as a link in N is a (pure) braid B . In other words, “all
the strands are tied into a knot”. We call @N n @.I �D2/ a cabling annulus for
L. See Figure 12.

Figure 11: An example of a split link

Since we are now focusing on 2–string links, we need not consider (or even define)
k –strand cables for k > 1. Hence we will often refer to 1–strand cables as just cables.
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Figure 12: An example of a 1–strand cable, shown together with a cabling annulus

Theorem 6.2 (Proven in [1]) The monoid �0L2 has center C generated by the pure
braids, split links, and 1–strand cables. The quotient �0L2=C is free. Furthermore,
every 2–component string link can be written as a product of prime factors

L1 # � � � # Lm # K1 # � � � # Kn�m;

where the Ki are precisely the factors which are in the center. Such an expression is
unique up to reordering the Ki and multiplying any of the factors by units (pure braids).

6.2 Removing twists

Next note that the linking number gives a map `W L2!Z which descends to a monoid
homomorphism �0`W �0L2 ! Z. For n 2 Z, let Ln

2
D `�1fng. We might like to

think of this as 0! L0
2
! L2! Z! 0, though if we wanted this to be a short exact

sequence of monoids, we should instead write

0! �0L0
2! �0L2! Z! 0;

since L2 is only a monoid up to homotopy. There is an action of Z on L2 where the
generator 1 2Z acts by following the embedding in L2 by the map D2�I !D2�I

given by .z; t/ 7! .e2�itz; t/. The action of any m 2 Z thus gives a continuous map2

Ln
2
! LnCm

2
with continuous inverse given by the action of �m. Thus L2 Š L0

2
�Z,

and it suffices to study L0
2

to understand L2 . Note that Theorem 6.2 above implies that
an element of �0L0

2
can be written as a product of primes L1#� � �#Lm#K1#� � �#Kn�m

which is unique up to only reordering the Ki . We similarly define a subspace yL0
2
� yL2

in the space of fat string links with zero framing number; note that yL0
2
' L0

2
.

2We can see that the map does indeed have this codomain because the resulting twisted link can be taken
by an isotopy to a link where the twists are on one end, in which case the linking number is clearly
increased by m .

Algebraic & Geometric Topology, Volume 15 (2015)



A colored operad for string link infection 3401

Proposition 6.3 The isotopies that yield the commutativity relations in �0L0
2

(which
by Theorem 6.2 are all the relations in �0L0

2
) can be realized as paths in the spaces

I.c1; : : : ; cnI 2/, where ci 2 f1; 2g.

Proof Note that by Theorem 6.2 any 2–string link can be obtained from infections
of the trivial 2–string link by prime knots and non-central prime 2–string links; these
infections can be chosen to commute with each other (so that they can be carried out
“all at once”). In terms of fat string links in yL0

2
.'L0

2
/, we can express these operations

using a relatively small class of 2–holed mufflers and hockey pucks, as follows.

Recall that an element a2 C1.1/ is just an affine-linear map I ,! I . Let e1; e2W D
2 ,!

D2 denote the restrictions of the trivial fat 2–string link i2W
`

2 I �D2 ,! I �D2 to
the two components in the 0–time slice:

e1 t e2W .f0g �D2/t .f0g �D2/ ,! f0g �D2:

(Equivalently, e1; e2 are the restrictions of i2 to the two components of a time-slice
at any time t 2 I ). Consider infection diagrams .L0;M1; : : : ;Mn; �/ representing
classes in I.c1; : : : ; cnI 2/ which satisfy the following three conditions (see Figure 13):

� L0 is the trivial 2–string link.

� If ci D 1, then either
(A1) Li D ai � e1 for some ai 2 C1.1/, or
(A2) Li D ai � e2 for some ai 2 C1.1/, or

(B) Li D ai � idW I �D2 ,! I �D2 for some ai 2 C1.1/.

� If ci D 2, then Li D ai � idW I �D2 ,! I �D2 for some ai 2 C1.1/.

Figure 13: An element of I.1; 1; 2; 1I 2/ , where the Li are ordered from left
to right. In this element, we have a hockey puck of type (B), then a hockey
puck of type (A1), then a two-holed muffler, then a hockey puck of type (A2).
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Figure 14: An element of I#.3/ (Š C1.3/)

Notice that plugging knots into pucks of types (A1) and (A2) produces a split link,
while plugging a knot into a puck of type (B) produces a cable. Hockey pucks of types
(A1) and (A2) can move through the inside of the two-holed mufflers, while the pucks
of type (B) can move through the two-holed mufflers on the outside. These two motions
correspond to the centrality of split links and cables, which by Theorem 6.2 are all the
commutativity relations in �0L0

2
. This proves the proposition. (Since L2 Š L0

2
�Z,

this is fairly close to a statement about all of L2 .)

6.3 A suboperad of the 2–colored restriction

Let If2g denote the suboperad of I corresponding to the color f2g �NC . Note that
If2g is an ordinary operad.

Definition 6.4 We define the stacking suboperad I# � If2g as the suboperad where
each space I#.n/ consists of elements of I.2; : : : ; 2I 2/ represented by infection dia-
grams .L0;M1; : : : ;Mn; �/ satisfying the following conditions:

� L0 is the trivial 2–string link.

� Mi D ai � idW I �D2 ,! I �D2 for some ai 2 C1.1/.

See Figure 14 for a picture of an element of this suboperad.

The following is obvious:

Proposition 6.5 For each n, the space I#.n/ is homeomorphic to C1.n/. Thus I#.n/

has contractible components and is equivalent to †n .
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6.4 A decomposition theorem

Recall that yLc is the space of fat c–string links with zero framing number in each
component; yL0

c �
yLc is the subspace where the linking number is 0 (defined in

Section 6.2); and we have homotopy equivalences yLc 'Lc and yL0
c 'L0

c . Let Pc � yLc

be the subspace of prime c–component fat string links. We will decompose a certain
subspace of yL2 in terms of our infection operad and the prime links in this subspace.

Definition 6.6 Define S2 to be the subspace of yL2 consisting of certain components
of yL2 : the component of yL2 corresponding to a string link L is in S2 if and only if L

is a product of prime string links, each of which is not in the center of �0L2 . (In other
words, each prime factor of L is neither a split link nor a cable.) Let PS2 WD P2\S2 ,
let S0

2
WD S2\ yL0

2
, and let PS0

2
WD PS2\ yL0

2
D P2\S2\ yL0

2
.

Before stating our decomposition theorem, we review a useful lemma, well known to
embedding theorists. Before proving the lemma, we need to set some more definitions.

� Let yLD
`1

cD1
yLc .

� For L 2 yL, let yL.L/ denote the component of L in yL.
� Recall that if L is an embedding of a 3–manifold with boundary into I �D2 ,

CL WDD3
n

ı

.im L/;

where we identify I �D2 with D3 .
� For a manifold with boundary M , let Diff.M I @/ denote the space of diffeo-

morphisms of M which are the identity on the boundary.
� For a group G , let BG denote the classifying space of G .

Lemma 6.7 For any L 2 yL, yL.L/' BDiff.CLI @/.

Proof Given a diffeomorphism in Diff.D3; @/, we can restrict to the image of L to
get a fibration

Diff.CLI @/ �! Diff.D3
I @/ �! yL.L/:

Hatcher showed that Diff.D3I @/ is contractible (the Smale conjecture [18]), which
implies the result.

Theorem 6.8 The subspace S0
2

is freely generated over the stacking suboperad I# by
its subspace PS0

2
of non-split, non-cable prime string links. More precisely,

S0
2 ' I#.PS0

2 t f�g/ WD

1a
nD0

I#.n/�†n
.PS0

2 t f�g/
n

�
'

1a
nD0

.PS0
2 t f�g/

n

�
;
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where f�g corresponds to the component of the trivial 2–string link. Furthermore
S2 Š S0

2
�Z.

Proof First note that by Theorem 6.2 we have a bijection on �0 . In fact, a prime
decomposition LD L1 # � � � # Ln corresponds to an isotopy class of an equivalence
class of infection diagram in I# with n mufflers exactly as in Definition 6.4.

Now we will check that we have an equivalence on each component of S0
2

. So fix
L 2 S0

2
. Let CL denote the complement of L in D3 , as above.

Definition 6.9 For a c–component string link L, a decomposing disk D � CL is a
2–disk with c open 2–disks removed which is properly embedded in CL in such a
way that c of its boundary components are (isotopic to) the c meridians of L.

Note that a decomposing disk D is incompressible in CL [1, Lemma 2.9].

A prime decomposition L D L1 # � � � # Ln corresponds to a maximal collection of
decomposing disks D1; : : : ;Dn�1 such that no two Di are isotopic. Thus the decom-
posing disks D1; : : : ;Dn�1 cut CL into n pieces that are precisely CL1

; : : : ;CLn
.

Recall the uniqueness of prime decompositions for L 2 S0
2

given by Theorem 6.2.
The proof of this theorem implies that (the image of) such a maximal collection of
decomposing disks is unique up to isotopy. Note that the prime factors of L 2 S0

2

cannot even be reordered.

Now consider the fibration

(5) Diff
� na

iD1

CLi
I @

�
�! Diff.CLI @/ �! Emb

� na
iD1

Di ; CL

�
:

Hatcher proved [17] that for a 3–manifold M and a properly embedded incompressible
surface S �M , the space Emb.S;M / has contractible components unless S is a
torus. (Strictly speaking, Hatcher proves this for connected S , but for S D

`n
iD1 Si

with each Si a connected surface, one can use the fibration

Emb
�

Sn; M n

� n�1a
iD1

Si

��
�! Emb

� na
iD1

Si ; M

�
�! Emb

� n�1a
iD1

Si ; M

�
and induction on n to get the result, noting that Hatcher’s theorem applies when the
3–manifold is a component of M n .

`n�1
iD1 Si/.)

Thus the components of the base space in Equation (5) are contractible. Since the
images of the Di are determined up to isotopy, we may replace Emb.

`n
iD1 Di ;CL/
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by Diff.
`n

iD1 Di/ (since the latter space also has contractible components). Note that
the fiber in Equation (5) is

Qn
iD1 Diff.CLi

/. So we have

Diff
� na

iD1

Di

�
�! Diff.CLI @/ �! Diff

� na
iD1

Di

�
:

Now apply the classifying space functor B.�/ to the above fibration. By Lemma 6.7,
we get

nY
iD1

yL.Li/ �! yL.L/ �!
nY

iD1

Conf2.D
2/;

where Conf2.D
2/ is the space of ordered distinct pairs in D2 (or the classifying space

of the braid group on two strands). The base space is a K.�; 1/, ie it has trivial �i for
i > 1. We claim that on �1 , the fibration is the zero map: in fact, if ˛ 2 �1.yL.L//
produced a nontrivial braid (say, in the i th factor), then in ˛.1/, at least one of the two
summands determined by Di would have nonzero ` (number of twists), contradicting
the fact that ˛ is a loop (in S0

2
).

So by the long exact sequence in homotopy groups for a fibration, the map from fiber
to total space is an isomorphism on �i for all i � 0. Then by the Whitehead theorem,

yL.L/'
nY

iD1

yL.Li/:

The right-hand space can be rewritten as †n�†n

Qn
iD1
yL.Li/, which by Proposition 6.5

is equivalent to I#.n/�†n

Qn
iD1
yL.Li/. This proves the main assertion of the theorem.

The remaining assertion, that S2 Š S0
2
�Z, follows immediately from Section 6.2.

6.5 Final remarks and future directions

We have described the components of links in S2 in terms of the components of the
prime links in S2 . In general, we do not have descriptions of the components of the
prime links in S2 themselves. However, we can describe some components of L2 . We
believe that at least some of these descriptions have been known to experts.

Proposition 6.10 The component of a 2–string link R 2 yL2 which is a rational tangle
is contractible.

Proof We have a fibration

(6) Diff.CRI @/ �! Diff.D3
I @/ �! yL.R/
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given by restricting to the image of R. The total space is contractible by the Smale
conjecture. So it suffices to show that the fiber Diff.CRI @/ is contractible. Note that
CR is a genus-2 handlebody.

We claim that for any 3–dimensional handlebody H , Diff.H I @/ is contractible. This
can be proven by induction on the genus. The basis case of genus 0 is the Smale
conjecture. For the induction step, let S be a meridional disk in H . Consider the
fibration

F �! Diff.H I @/ �! Emb.S;H /;

where the base is the space of proper embeddings of S with fixed behavior on @S . The
fiber F is the space of diffeomorphisms of a handlebody whose genus is 1 less than
that of H , and it is contractible by the induction hypothesis. Hatcher’s result on incom-
pressible surfaces says that Emb.S;H / has contractible components. Furthermore, we
claim that any two such embeddings of S are isotopic; this can be proven using the
fact that handlebodies are irreducible (ie every 2–sphere in H bounds a 3–ball) and
standard “innermost disk” arguments from 3–manifold theory. Hence Emb.S;H / is
connected, hence contractible. Thus Diff.H I @/ is contractible. Thus the base space in
the fibration of Equation (6) is also contractible.

Recall the definitions of split links and splitting disks from Definition 6.1.

Proposition 6.11 If L is a split string link which splits as links L1;L2 , then

yL.L/' yL.L1/� yL.L2/:

Proof Let D be a splitting disk for L. Consider the fibration

Diff.CL1
I @/�Diff.CL2

I @/ �! Diff.CLI @/ �! Emb.D;CL/;

where Emb.D;CL/ is the space of embeddings of D which agree on @D with the
given embedding of D . By Hatcher’s theorem on incompressible surfaces, this space
has contractible components. Irreducibility of CL implies further that any two such
embeddings of D in CL are isotopic, showing that the base space is connected, hence
contractible. This gives us the desired equivalence.

If we restrict our attention to 2–string links, the split links are just those links which
are obtained by tying a knot in one or both strands. So Budney’s work [3] together with
Proposition 6.11 gives a description of the homotopy type of each such component
of L2 .

We conclude by mentioning two open problems that immediately stand out as follow-ups
to Theorem 6.8:
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Problem 1 To determine the homotopy types of components of prime non-central
2–string links.

Problem 2 To understand how different types of 2–string links interact, ie find a
generalization of Theorem 6.8 from the subspace S2 to the space of all 2–string links.
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