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The Morava K–theory of BO.q/ and MO.q/

NITU KITCHLOO

W STEPHEN WILSON

We give an easy proof that the Morava K–theories for BO.q/ and MO.q/ are in even
degrees. Although this is a known result, it had followed from a difficult proof that
BP�.BO.q// was Landweber flat. Landweber flatness follows from the even Morava
K–theory. We go further and compute an explicit description of K.n/�.BO.q// and
K.n/�.MO.q// and reconcile it with the purely algebraic construct from Landweber
flatness.

55R45, 55N15; 55N20, 55N22

1 Introduction

We are concerned with the (co)homology theory, Morava K–theory K.n/�.�/, where
K.n/� D Z=2Œv˙1

n � with the degree of vn equal to 2.2n� 1/ (we are only concerned
with p D 2).

What brought us to the problem of computing the Morava K–theories of the spaces
BO.q/ was a real need to have BP�.BO.q// be Landweber flat [5] for Kitchloo and
Wilson’s [2]. BP�.BO.q// had been computed by Wilson [9] and was shown to be
Landweber flat by Kono and Yagita [3], with some seriously complex computations.
They went on to show that K.n/�.BO.q// was concentrated in even degrees because
BP�.BO.q// was.

The computation in [3] does not give an explicit answer to what K.n/�.BO.q// is, only
that it is even degree. If it is known that K.n/�.BO.q// is even degree for all n, then
the results of Ravenel, Wilson, and Yagita [7] show that BP�.BO.q// is Landweber
flat, without having to compute it.

We present here an easy proof that K.n/�.BO.q// is even degree and then go further
and give a basis. Duality for Morava K–theory is straightforward, so K.n/�.BO.q//
is also even degree.

Theorem 1-1 [3] (i) K.n/�.BO.q// and K.n/�.MO.q// are even degree for
all n.

(ii) BP�.BO.q// is Landweber flat.
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As mentioned, (ii) follows directly from (i) using [7] but Kono and Yagita prove (ii)
first and then (i). We prove (i) in Section 3.

We work with the homology version of the theories and have:

Theorem 1-2 (i) There are elements b2i 2K.n/2i.BO.1// for 0< i < 2n coming
from K.n/2i.RP1/.

(ii) There are elements c4i 2K.n/4i.BO.2// for 2n � i .

(iii) Using products from the standard maps BO.i/�BO.j /! BO.i C j /, a basis
for the reduced homology AK.n/�.BO.q// is

fb2i1
b2i2
� � � b2ik

c4j1
c4j2
� � � c4jm

g;

where 0< kC 2m� q , and 0< i1 � i2 � � � � � ik < 2n � j1 � j2 � � � � � jm .

(iv) AK.n/�.MO.q// is as above with kC 2mD q .

In [9], it was shown that

(1-3) BP�.BO.q//' BP�ŒŒc1; c2; : : : ; cq ��=.c1� c�1 ; c2� c�2 ; : : : ; cq � c�q /;

where cj is the Conner–Floyd Chern class and c�j is its complex conjugate. In [3],
Kono and Yagita show that BP�.BO.q// is Landweber flat and that

(1-4) K.n/�.BO.q//'K.n/� b̋BP�BP�.BO.q//:

This shows that the Morava K–theory is even degree. We have computed Morava
K–theory directly to show it is even degree, so the results of [7] also give us Landweber
flatness for BP�.BO.q//. Either approach gives us

(1-5) K.n/�.BO.q//'K.n/�ŒŒc1; c2; : : : ; cq ��=.c1� c�1 ; c2� c�2 ; : : : ; cq � c�q /:

This is a purely algebraic construct that looks nothing like the answer given in this
paper. A direct independent proof of this can also be found in Kriz [4]. In Section 5
we reconcile it with our direct computation of K.n/�.BO.q// by finding a basis for it
that is consistent with what we find for K.n/�.BO.q//.

By Kriz [4], there are finite groups G with K.2/�.BG/ not concentrated in even
degrees. It seems conceivable that BP�.BG/ may still be concentrated in even degrees
for all compact Lie groups G . This is part of Yagita’s conjecture [10, Conjecture 12.2]
that for a complex algebraic group G (not necessarily connected), the Levine–Morel
algebraic cobordism of BG maps isomorphically to MU�.BG/. Yagita’s conjecture in
turn would imply a conjecture by Totaro [8] that for a complex algebraic group, the
Chow ring of BG maps isomorphically to MU�.BG/˝MU� Z.
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This paper is about a good situation where Totaro’s conjecture is valid, by the calculation
of CH�BO.n/ [8, Section 15] and Wilson’s calculation of MU�.BO.n// [9].

The authors thank the referee for pointing out the connection with Totaro’s work and
Totaro for his help in describing the connection.

We review some facts about the standard homology of BO.q/ in Section 2 and prove
the details of Theorem 1-2 in Section 4.

2 The standard homology of BO.q/ and MO.q/

We begin with some review of basic facts about the homology of BO and BO.n/. All
of our (co)homology will be with Z=2 coefficients. We start with elements

bi 2
zHi.RP1 D BO.1//; i > 0:

We have
zH�.BO.1//D Z=2fbi W i > 0g

and maps
BO.1/! � � � ! BO.q� 1/! BO.n/! � � � ! BO:

The image of the above bi in H�.BO/ give us the well-known homology of BO as a
polynomial algebra:

H�.BO/D Z=2 Œb1; b2; : : :�:

We also have the usual maps

(2-1) BO.q/�BO.k/ �! BO.qC k/:

For homology we only need
qY

BO.1/ �! BO.q/:

Because bibj D bj bi , we have elements

bi1
bi2
� � � bik

2 zH�.BO.q// for 0< k � q and 0< i1 � i2 � � � � � ik .

These elements form a basis for the reduced homology of BO.q/.

As an aside, if that is not commonly understood, we can quickly use the better-known
cohomology of BO.q/ to see that the size is right. We have

H�.BO.q//D Z=2 Œw1; w2; : : : ; wq �
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as a polynomial algebra on the Stiefel–Whitney classes. If, by induction, we know
H�.BO.q � 1//, all we have to do to see the size is right is show that the elements
with k D q above are in one-to-one correspondence with the ideal generated by
wq 2H�.BO.q//. That correspondence is easily given by

0< i1 � i2 � � � � � iq 7! wi1
q w

i2�i1

q�1
w

i3�i2

q�2
� � �w

iq�iq�1

1
:

The Steenrod algebra operates on the mod 2 homology of BO and BO.q/. As an
element of the Steenrod algebra operates on an element bi1

bi2
� � � bik

, it does not alter
the number of b ’s, so we can define

Mq D Z=2fbi1
bi2
� � � biq

g for 0< i1 � i2 � � � � � iq

and we get the reduced homology

zH�.BO.q//D
qM

jD1

Mj ;(2-2)

zH�.BO/D
1M

jD1

Mj(2-3)

as modules over the Steenrod algebra.

From [6] we know that stably BO.q/'
W

1�i�q MO.i/, so stably we have

BO.q/' BO.q� 1/_MO.q/:

From this we see that Mq DH�.MO.q//.

3 The Morava K–theories of BO.q/ and MO.q/ are even

The first differential in the Atiyah–Hirzebruch spectral sequence (AHSS) H�.X IK.n/�/

is just the Milnor primitive Qn , which is easy to evaluate in H�.BO.1// as it just takes
b2k to b2kC1�2nC1 as long as 2k > 2nC1� 1.

Remark 3-1 After the first differential, the AHSS collapses for K.n/�.BO.1// be-
cause the AHSS is even degree. The reduced homology is K.n/� , which is free on
fb2; b4; : : : ; b2nC1�2g.

Remark 3-2 More interesting is that after the first differential for BO we are also
done, with the polynomial result, from the AHSS:

K.n/�.BO/'K.n/� Œb2; b4; : : : ; b2nC1�2�˝K.n/� Œb
2
2i W i � 2n�;
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which was done in [7]. The differential, or as we prefer to say, the Qn homology, is
computed by pairing up what is missing above as

P .b2iC1/˝E.b2iC2nC1/:

Each of these has trivial Qn homology. This collapses after this first differential because
it is even degree. Since b2i , i � 2n , is not an element, the notation is misleading.
Later, we will give this generator the name c4i . The element exists in k.n/�.BO/ and
reduces to b2

2i
in H�.BO/.

Proof of Theorem 1-1 Now we know that the first differential of the AHSS is all it
takes to get K.n/�.BO/ and see that it is all in even degrees. The first differential is
just an operation from the Steenrod algebra Qn . By Equation (2-3), we must have the
Qn homology of each Mj in even degrees. From this we see that K.n/�.BO.q// and
K.n/�.MO.q// must be in even degrees, and by standard Morava K–theory duality,
K.n/�.BO.q// is in even degrees. This completes the proof of Theorem 1-1.

4 The details of the Morava K–theories of BO.q/ and MO.q/

All of the homology of BO.q/ came from products of elements from BO.1/. For
Morava K–theory we have to use elements from BO.2/ as well.

Two kinds of elements in K.n/�.BO.2// come from K.n/�.BO.1//. First we have the
image coming from the map BO.1/! BO.2/, ie K.n/�fb2; b4; : : : ; b2nC1�2g. Our
second kind comes from the product BO.1/�BO.1/! BO.2/, which gives

K.n/�fb2i1
b2i2
g; 0< i1 � i2 < 2n:

There are more elements that come from M2 in K.n/�.BO.2//. In particular, from the
computation of K.n/�.BO/ we know that all b2

2j
survive. These elements live in M2 ,

and so actually survive to K.n/�.BO.2//. Consequently, between K.n/�.BO.1// and
K.n/�.BO.2// we have all the multiplicative generators of K.n/�.BO/. We easily see
which Mq these multiple products live in by the number of b ’s.

We can now pretty much read off the description of a basis for K.n/�.BO.q//. To
make the description a little easier to read, we can consider the part that comes from
Mq and call it M K

q DK.n/�.MO.q//. Then we have

K.n/�.BO.q//'K.n/�.BO.q� 1//˚K.n/�.MO.q//:

We are not using the splitting from [6] to compute K.n/�.BO.q//, only to compute
K.n/�.MO.q//.
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Let’s give new names to the elements in K.n/�.BO.2// represented by b2
2j

so we
won’t have the nonexistent product hanging around. Let’s set c4j D b2

2j
for j � 2n .

We can now give an explicit description of M K
q DK.n/�.MO.q// as

M K
q 'K.n/�fb2i1

b2i2
: : : b2ik

c4j1
c4j2

: : : c4jm
g;

where k C 2m D q and 0 < i1 � i2 � : : : � ik < 2n � j1 � j2 � : : : � jm . This
completes the proof of Theorem 1-2.

There is still one bit of structure unaccounted for that we should mention. Although
K.n/�.BO.q// is not an algebra, it is a coalgebra. The coalgebra structure for the b ’s
comes from BO.1/, so for p < 2n we get

 .b2p/D
X

iCjDp

b2i ˝ b2j :

The c4j are written in terms of the b ’s in the AHSS, so we also know their coproduct
modulo .vn/. It is just

 .c4p/D  .b
2
2p/D

X
iCjDp

b2
2i ˝ b2

2j mod .vn/:

If i �2n , replace b2
2i

with c4i . Do the same with j . We can work modulo .vn/ because
this single differential also computes k.n/�.BO.q// where we only have nonnegative
powers of vn .

We know that K.n/�.BO/ � K.n/�.BU/. In [1], there are elements of K.n/�.BU/
named zq that are our c4.2nCq/ . In [1, Theorem 3.14], the zq are computed in terms
of K.n/�.BU/ modulo .v2

n/, and their complexity, and consequently the complexity
of the coproduct, shows up here already. This is to be expected given the complexity
of the dual algebra structure from Equation (1-5).

5 Reconciliation

The map BO.q/! BU.q/ automatically gives a map of the algebraic construct on the
right side of Equation (1-3) to BP�.BO.q//. The work of [9] first involves showing the
map is surjective, which is done with the Adams spectral sequence. To show injectivity,
the algebraic construct is analyzed. We can use that analysis here to show what we
want. We have to establish some notation first.

Algebraic & Geometric Topology, Volume 15 (2015)
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We have BP�.CP1/' BP�ŒŒx��, x 2 BP2.CP1/ and

BP�
� qY

CP1
�
' BP�ŒŒx1;x2; : : : ;xq ��

[ [

BP�.BU.q// ' BP�ŒŒc1; c2; : : : ; cq ��:

The inclusion is given by all of the symmetric functions, which are generated by the
elementary symmetric functions given by the ck .

For I D .i1; : : : ; iq/, let xI D x
i1

1
� � �x

iq

q . Two monomials are equivalent if some
permutation of the xi takes one to the other. Define the symmetric function

sI D

X
xI ;

where the sum goes over all monomials equivalent to xI . The elementary symmetric
function is ck D

P
x1 � � �xk . [9, Theorem 1.30, page 358] computes c�

k
for BP as

c�k D .�1/kck C

X
i>0

vis2i ;1; 1; : : : ; 1„ ƒ‚ …
q�1

mod J 2;

where J D .2; v1; v2; : : :/. We know that the generators of BP�.BO.q// all map
nontrivially to the cohomology H�.BO.q//. As a result, we can look at this relation
using only the coefficients of k.n/� D Z=2Œvn� and consider the relation modulo .v2

n/.
Inductively, the only relation we need is k D q . This reduces to

cq � c�q D vns2n;1; 1; : : : ; 1„ ƒ‚ …
q�1

mod .v2
n/:

Note that for BU.q/, our relation is divisible by cq D x1 � � �xq , ie

s2n;1;1;:::;1 D cqs2n�1:

Because K.n/�.BU.q// ' K.n/� b̋BP�.BU.q//, we can be quite sloppy with our
powers of vn because we are going to invert vn to get our algebraic description in the
end. The degree of vn is negative, so the more powers of vn , the higher the degree of
the symmetric function.

The following theorem will reconcile our two different descriptions of K.n/�.BO.q//.

Theorem 5-1 A basis for K.n/�ŒŒc1; : : : ; cq ��=.c1� c�
1
; : : : ; cq � c�q / in terms of sym-

metric functions is given by

sIJ D

X
x

i1

1
� � �xim

m x
j1

mC1
� � �x

jp

mCp;

where 0< i1 < � � �< im < 2n and 0� j1 � � � � � jp with j2i�1D j2i and mCp � q .
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Remark 5-2 The definition forces p to be even. If we drop the im < 2n condition,
any sK can be written in this form. First, just find all the pairs of equal exponents and
create J . Finding I is easy after that.

Remark 5-3 All we do in our proof is reduce arbitrary elements to those in our
theorem. Because we know K.n/�.BO.q//, we know that there can be no further
reduction, so this is a basis. This does reconcile the two descriptions though.

Proof The proof is by double induction. First, it is by induction on q . This is easy to
start with q D 1 where the result is well known and straightforward, but worth talking
about anyway as it illustrates things to come in the proof.

The relation in k.n/�.BU.1// that gives k.n/�.BO.1// and then K.n/�.BO.1// is just
0 D c1 � c�

1
D vns2n D vnx2n

modulo .v2
n/. The induction is on the degree of the

symmetric function, which in this case is just powers of x . Inverting vn , we see that
x2n

is zero modulo higher powers of x .

For any s2nCk D x2nCk , we have

0D s2nsk D s2nCk mod higher powers of x :

That is, each s2nCk is zero modulo higher degree symmetric products. By induction on
the degree of the symmetric product (ie induction on k ) we push the relation to higher
and higher degrees. In the topology on K.n/�.BU.1//'K.n/�ŒŒx��, this converges to
zero, and so each s2nCk , k � 0, is really zero. We remind the reader that our relation
isn’t really s2n;1;:::;1D 0 modulo higher degree symmetric functions. The relation has a
vn in front. Since our relation really is in k.n/�.�/ because it comes from BP�.�/, all
powers of vn are positive. Since we are going to invert vn at the end to get K.n/�.�/,
we can be quite loose with our vn ’s.

The same thing will happen in the general, arbitrary q case. However, for q > 1, there
are nontrivial basis elements in high degrees, so this process doesn’t have to go to zero
in the limit, but could settle on a basis element. Either way, it works for our proof.

From our induction on q , we assume the result for q�1. From [6], we know that stably

BO.q/' BO.q� 1/_MO.q/;

BU.q/' BU.q� 1/_MU.q/:

From [9], we know that BP�.MO.q// is the ideal in BP�.BO.q// generated by cq , and
so the same is true for K.n/�.BO.q//. Of course, the same is true for BP�.MU.q//,
BP�.BU.q// and K.n/�.BU.q//. Consequently, we can focus our attention on the
symmetric functions divisible by cq when there are only q variables.
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We know that H�.BU.q// is free on the symmetric functions sI with I D .i1; : : : ; iq/.
If all ik > 0, this is a basis for H�.MU.q// and if some are not greater than 0, they are
part of the basis for H�.BU.q� 1//. This splitting is only additive, not multiplicative.
Because there is no torsion, this is all also true for BP�.�/, k.n/�.�/ and K.n/�.�/.

Our next induction is on the degree of the symmetric functions. We will show that
elements not of the form in our theorem are zero modulo higher degree elements. We
know that K.n/�.BO.q// is K.n/�.BU.q// modulo the relations already described
and that K.n/�.BU.q// is just given by the usual symmetric functions. To prove our
result, we will not mod out our relations, but work with BU.q/ and just describe
how the relations accomplish what we want. This will suffice for our purposes. We
begin our induction by noticing that all elements in degrees less than the degree of
s2n;1;:::;1D cqs2n�1 are in our desired basis. The only element in the degree of s2n;1;:::;1

not in the basis is our relation element, which is zero modulo higher degree symmetric
functions (ignoring the vn as discussed above).

An arbitrary element not of the form in the theorem simply has im � 2n instead of
im < 2n . Having fixed a degree, we first consider the cases where im D 2nC k , with
k > 0. Since we are working with elements divisible by cq , we can divide by cq to
get a new symmetric function, sI 0J 0 , with each is replaced by is � 1 and the same for
the js . This symmetric function has i 0m D 2nC k � 1. Since k > 0, this is known to
be zero modulo higher degrees by our induction on degree. Multiplying by ck to get
our original symmetric function, we see it must be zero modulo higher degrees. Note
that we are using our induction on q here. If i1 or j1 (or both) are equal to 1, then
sI 0J 0 is in K.n/�.BU.q� 1// because it is not divisible by cq . By our induction, we
know the behavior of the relations here.

In our fixed degree, we have eliminated all of the bad elements except those with
im D 2n . From such a symmetric function sIJ , we create a new symmetric function
sI 0J 0 by eliminating the x

im
m D x2n

m term and subtracting 1 from all of the other is and
js . We want to analyze

s2n;1;1;:::;1sI 0J 0 :

Since s2n;1;1;:::;1 is zero modulo higher degrees, this product is too. Multiplying
symmetric functions can be tricky because the result can be a sum of symmetric
functions. The easy one to deal with is when i1 and j1 are greater than one (recall
that mCp D q ). In this case, if your x2n

term is multiplied by any power of x , we
are in the situation where our product has x2nCk , with k > 0, and we have dealt with
those terms already. The only thing left is to multiply the x2n

back into the place it
was removed from and then all of the other exponents are raised by 1, giving us back
our original sIJ .
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Things are slightly more complicated if i1 or j1 is 1. (They must be at least 1 because
everything is divisible by cq .) Again, if our x2n

is multiplied by a nonzero power of
x , we get x2nCk and these terms have been handled already. Our x2n

must hit an x0

term, but by the definition of symmetric functions, these are all equivalent, so the other
xi all just have their exponent raised by 1 in our product and we get our sIJ back,
showing it is zero modulo higher degrees.
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