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Restriction to finite-index subgroups as étale extensions
in topology, KK–theory and geometry

PAUL BALMER
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For equivariant stable homotopy theory, equivariant KK–theory and equivariant
derived categories, we show how restriction to a subgroup of finite index yields
a finite commutative separable extension, analogous to finite étale extensions in
algebraic geometry.

13B40, 18E30; 55P91, 19K35, 14F05

1 Introduction and main results

In linear representation theory of discrete groups, the first-named author proved that
restriction to a finite-index subgroup can be realized as a finite étale extension; see
Balmer [3, Part I]. (The exact statement is a special case of Theorem 1.3 below.)
A priori, this result of [3] seems very module-theoretic in nature. The goal of the
present article is horizontal generalization to a broad array of equivariant settings, from
topology to analysis. Specifically, we prove the following three results, in which the
reader should feel free to assume that the group G is finite, if so inclined.

1.1 Theorem Let G be a compact Lie group and let H � G be a closed sub-
group of finite index. Then the suspension G–spectrum AG

H
WD †1G=HC is a

commutative separable ring object in the equivariant stable homotopy category SH.G/.
Moreover, there is an equivalence of categories SH.H / Š AG

H
– ModSH.G/ between

SH.H / and the category of left AG
H

–modules in SH.G/ under which the restriction
functor SH.G/ ! SH.H / becomes isomorphic to the extension-of-scalars functor
SH.G/!AG

H
– ModSH.G/ .

1.2 Theorem Let G be a second-countable locally compact Hausdorff group and
let H � G be a closed subgroup of finite index. Then the finite-dimensional algebra
AG

H
WD C.G=H / is a commutative separable ring object in the equivariant Kasparov

category KK.G/ of G–C�–algebras. Moreover, there is an equivalence of categories
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3024 Paul Balmer, Ivo Dell’Ambrogio and Beren Sanders

KK.H / Š AG
H

– ModKK.G/ between KK.H / and the category of left AG
H

–modules
in KK.G/ under which the restriction functor KK.G/!KK.H / becomes isomorphic
to the extension-of-scalars functor KK.G/!AG

H
– ModKK.G/ .

1.3 Theorem Let G be a discrete group acting on a ringed space S (for instance,
a scheme) and let H � G be a subgroup of finite index. Then the free OS –module
AG

H
WDOS .G=H / on G=H is a commutative separable ring object in the derived cate-

gory D.GIS/ of G –equivariant sheaves of OS –modules. Moreover, there is an equiva-
lence of categories D.H IS/ŠAG

H
– ModD.GIS/ between D.H IS/ and the category of

left AG
H

–modules in D.GIS/ under which the restriction functor D.GIS/!D.H IS/
becomes isomorphic to the extension-of-scalars functor D.GIS/!AG

H
– ModD.GIS/ .

These theorems are proved in Sections 3, 4 and 5 respectively. In all three cases, the
multiplication �W AG

H
˝AG

H
!AG

H
on the ring object AG

H
is characterized by the rule

(1.4) �.
 ˝ 
 0/D

�

 if 
 D 
 0

0 if 
 ¤ 
 0
for all 
; 
 0 2G=H:

Let us provide some explanations and motivation.

If not familiar with [3], the reader might be surprised to see that restriction can be
interpreted as an extension. When we consider a category CD C.G/ depending on a
group G , like the above SH.G/, KK.G/ or D.GIS/, and when H �G is a subgroup,
the rough intuition is that the H–equivariant category C.H / should only be a “piece”
of the corresponding G –equivariant category C.G/. At first, one might naively hope
that C.H / is a localization of C.G/, as a category. Although this naive guess essentially
always fails, we are going to prove that this intuition is actually valid if one uses a
broader, more flexible notion of “localization”. This broader notion is conceptually
analogous to localization with respect to the étale topology in algebraic geometry rather
than the Zariski topology. Seen from the perspective of Galois theory, it is not so
surprising that extension should be connected to restriction to a smaller group.

Let us be more precise. Consider a category C, like our C.G/, equipped with a tensor
˝W C�C�!C and consider, as above, a ring object A in C with associative and
unital multiplication �W A˝A!A (details are recalled in Section 2). The A–modules
in C are simply objects x in C together with an A–action A˝ x ! x satisfying
the usual rules. We can form the category A– ModC of A–modules in C and we
have an extension-of-scalars functor FAW C! A– ModC , which maps y to A˝ y ,
as one would expect. As in commutative algebra, the ring object A is said to be
separable if � admits a section � W A! A˝A which is A–linear on both sides. A
very special example of separability occurs if � is an isomorphism (with inverse � )
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in which case the extension-of-scalars C!A– ModC is just a localization of C. But
general separable extensions are more flexible than localizations. For instance, in
algebraic geometry they include finite étale extensions of affine schemes by Balmer [1,
Corollary 6.6].

Separable extensions are particularly nice for another reason, beyond the analogy with
the étale topology, namely, they can be performed on triangulated categories without
resorting to models; see [1]. Since all the above categories C.G/ are triangulated,
our results establish a connection between these equivariant theories and the “tensor-
triangular geometry” of étale extensions, as initiated in Balmer [2].

Understanding restriction as an étale extension has already found applications in
modular representation theory (see [3, Part II]) and it is legitimate to expect similar
developments in our new examples. This will be the subject of further work.

Let us say a word about our hypothesis that G=H is finite. In Section 6, we prove the
following result which shows that Theorem 1.1 cannot hold without some finiteness
assumption on G=H :

1.5 Theorem Let G be a connected compact Lie group and let H �G be a nontrivial
finite subgroup. Then the right adjoint to the restriction functor ResG

H W SH.G/ !
SH.H / is not faithful. In particular, ResG

H is not an extension-of-scalars.

Let us explain what is going on. The proofs of Theorems 1.1–1.3 all follow a similar
pattern that we isolate in the preparatory Section 2. In technical terms, we prove
separable monadicity of the standard restriction-coinduction adjunction and then show
that the monad associated to this adjunction is given by a separable ring object. In an
ideal world, for a general subgroup H of a general group G , we would expect the first
property (monadicity) to hold when G=H is discrete and the second (the ring object)
when G=H is compact. Then our hypothesis that G=H is finite would simply result
from assuming simultaneously that G=H is discrete and compact. That would be the
ideal treatment. However, things turn out to be more complicated, mostly due to the
current state-of-development of our examples.

Firstly, G –equivariant stable homotopy theory is simply not developed for non-compact
groups. Similarly, G–equivariant KK–theory, although defined for locally compact
groups, lacks enough adjoints if we do not assume G=H compact (see the technical
reasons in Remark 4.4). These restrictions prevent a uniform treatment beyond the case
of G=H finite. Trying to lift those restrictions would be a massive undertaking, going
way beyond the goal of the present paper. We found our results diverse enough as they
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are, without trying to push them into unnecessary complications. For instance, Theo-
rems 1.1–1.3 are already interesting for finite groups, where they hold unconditionally.
For the same reasons, we renounced treating the G –equivariant derived category over
nondiscrete groups, à la Bernstein and Lunts [4].

Our goal is to show that restriction to a subgroup can be understood as an étale extension
in a broad range of settings beyond representation theory. The above sample should
provide convincing evidence of this ubiquity and should encourage our readers to try
proving similar results for their favorite equivariant categories. It is likely that future
investigations will produce further examples of this phenomenon and we are confident
that the method of proof presented in Section 2 will be useful for such generalizations.

Acknowledgements P B was supported by NSF grant number DMS-1303073. I D’A
was partially supported by the Labex CEMPI (ANR-11-LABX-0007-01).

2 General approach

Separable monadicity

Let us briefly recall some standard facts about monads and separability; we refer the
reader to [1] and [3] for further details. A monad on a category C consists of an
endofunctor AW C! C equipped with natural transformations �W A ıA! A and
�W IdC!A such that � is an associative multiplication (�ıA�D �ı�A) for which
� is a two-sided identity (�ıA�D idD�ı�A). An A–module in C consists of a pair
.x; �/ where x is an object of C and �W Ax! x is a morphism (the “action” of A
on x ) making the evident associativity and unit diagrams commute in C. A morphism
of A–modules .x; �/ and .x0; �0/ is a morphism f W x! x0 in C commuting with the
actions. We denote by A– ModC the resulting category of modules, which is part of
the Eilenberg–Moore adjunction FAW C � A– ModC WUA . The left adjoint FA sends
an object c 2 C to the free A–module FA.c/ WD .Ac; �c W AAc!Ac/, and the right
adjoint sends a module .x; �/ to its underlying object UA.x; �/ WD x .

Any adjunction F W C � D WU with unit �W IdC ! UF and counit �W F U ! IdD

defines a monad AD .UF;U�F; �/ on C and we can consider the Eilenberg–Moore
adjunction associated with this monad as above. There is a unique “comparison” functor
EW D!A– ModC such that E ıF D FA and UA ıE D U

(2.1)

C
F

�� FA $$
D

U

??

E
// A– ModC

UA

dd
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and we say that the adjunction F a U is monadic if the comparison functor EW D!

A– ModC is an equivalence of categories. Concretely, E is given by

E.d/D .Ud;U�d W UF Ud ! Ud/

on objects d 2 D and by U.f / on morphisms f W d ! d 0 .

We stress that, although the construction of E is formal, the property that it is an
equivalence is highly nontrivial and simply fails in general. At the extreme, taking D

arbitrary and CD 0 (hence A– ModC D 0) shows that E can get as bad as one wants.
Hence, monadicity is a nontrivial property. Note that since UA is faithful, a necessary
condition for E to be an equivalence is faithfulness of U .

A monad AW C!C is said to be separable if the multiplication �W AıA!A admits
a natural section � W A!A ıA which is A;A–linear: �A ıA� D � ı�DA� ı �A.

2.2 Lemma Let F W C � D WU be an adjunction between idempotent-complete
additive categories, and assume that the counit �W F U ! IdD admits a section, ie, a
natural morphism �W IdD! F U such that � ı � D id. Then the adjunction is separably
monadic. That is, the monad UF on C is separable and the Eilenberg–Moore com-
parison functor E in (2.1) is an equivalence. A quasi-inverse E�1W A– ModC�!

� D

is obtained by sending .x; �/ 2 A– ModC to the image E�1.x; �/ WD Im.e/ of the
idempotent e2 D e WD F.�/ ı �F.x/ on F.x/ 2 D.

Proof The fact that E is an equivalence is [3, Lemma 2.10]. In order to show
that the described E�1 is quasi-inverse to E , it suffices to show that it is a well-
defined functor and that E�1E Š IdD . The latter is a straightforward verification.
For the former, it suffices to show that e D F.�/ ı �F.x/ is idempotent; then its
image exists because C is idempotent-complete, and the assignment .x; �/ 7! Im.e/
extends to a well-defined functor in the evident way, by sending f W .x; �/! .x0; �0/

to e0F.f /eW Im.e/! Im.e0/. To see why e2 D e , consider the following diagram:

F.x/

�F x

��

�F x // F UF.x/

F U.�F x/

��

id

((
F UF.x/

F.�/

��

�F UF x

// F UF UF.x/
F U.�F x/

//

F UF.�/

��

F UF.x/

F.�/

��
F.x/

�F x

// F UF.x/
F.�/

// F.x/

The two left squares commute by naturality of � , the right square because � is an
action and the triangle because � is a section of � . The perimeter reads e2 D e .
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2.3 Example Assume that .C;˝; 1/ is a tensor category, by which we mean a
symmetric monoidal category with tensor ˝ and unit object 1. Let AD .A; �; �/ be a
ring object (aka monoid) in C, that is, an object A 2 C equipped with a multiplication
�W A˝A! A and unit �W 1! A such that the associativity axiom �.�˝ idA/ D

�.idA˝�/ and unit axioms �.�˝ idA/D idAD�.idA˝�/ hold in C. Then A defines
a monad ADA˝�W C! C with multiplication �˝� and unit �˝� (adjusted by
the associativity and unit constraints of ˝). In this case, we use the notation

FAW C � A– ModC WUA

for the resulting Eilenberg–Moore adjunction and call FA the extension-of-scalars
functor, as in Section 1. Thus an A–module .x; �/ 2A– ModC consists of an object
x 2 C equipped with a map �W A˝ x! x such that �.�˝ idx/ D �.idA˝�/ and
�.�˝ idx/ D idx in C. If the multiplication �W A˝A! A admits an A;A–linear
section � W A! A˝A then A is said to be separable. In this case the associated
monad A˝� will be a separable monad.

The projection formula

Assume that both C and D are tensor categories and that F W C!D is a tensor functor
(D strong symmetric monoidal functor), ie it comes with coherent isomorphisms
1�!� F.1/ and F.x/˝F.y/�!� F.x˝y/. A right adjoint U of F inherits the structure
of a lax tensor functor, consisting of coherent maps �W 1!U.1/ and �W U.x/˝U.y/!

U.x˝y/. They are defined by

�W 1
�
�! UF.1/

�
�! U.1/;

�W U.x/˝U.y/
�
�! UF.Ux˝Uy/

�
�! U.F Ux˝F Uy/

U.�˝�/
�����! U.x˝y/;(2.4)

and they are not necessarily invertible. Lax monoidal functors preserve ring objects.
In particular, we obtain a commutative ring object A WD .U.1/; �; �/ in C, where we
endow U.1/ with the unit map � as above and the multiplication

(2.5) �W U.1/˝U.1/
�
�! U.1˝ 1/

�
�! U.1/:

The lax monoidal structure of U also defines a natural transformation

(2.6) � W U.y/˝x
id˝�
���! U.y/˝UF.x/

�
�! U.y˝F.x//

for all x 2 C and y 2 D, which we call the projection morphism.

2.7 Definition We say that the projection formula holds for the adjunction F a U

when the natural morphism � W U.x/˝y! U.x˝F.y// of (2.6) is an isomorphism
for all x 2 C and y 2 D.
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Even when the morphism � is not an isomorphism, it compares two monads on C: the
monad A˝ .�/ induced by the ring object AD .U 1; �; �/ and the monad AD UF

induced by the adjunction. We now prove that the natural transformation � is always
compatible with those additional structures:

2.8 Lemma With the above notation, the natural map

� W U.1/˝x! U.1˝Fx/Š UF.x/

is a morphism A˝ .�/!A of monads on C.

Proof We must verify that � identifies the units and multiplications of the two monads.
Concretely, we must show that the following diagrams commute in C:

1˝x Š x

�˝ id

xx

�

%%
U.1/˝x

� // UF.x/

U.1/˝U.1/˝x

�˝ id
��

�.2/
// UF.UFx/

U�F
��

U.1/˝x
� // UF.x/

Here �.2/ WD .�UFx/.id˝�x/D .id˝�x/.�U.1/˝x/ denotes the two-fold application
of � . The commutativity of the above triangle follows from that of the diagram

x
� //

�

��

1˝x

id˝�
��

�˝id // U.1/˝x

id˝�
��

�

''
UFx

� // 1˝UF.x/
�˝ id // U.1/˝UF.x/

def.

� // U.1˝Fx/
� // UFx

once we note that the bottom row is the identity; the latter holds because the following
diagram commutes (since U is lax monoidal)

1˝Uy

�

��

�˝ id // U 1˝Uy

�
��

Uy
� // U.1˝y/

for all y (plug y WD Fx ). Next we check the commutativity of the diagram

U 1˝U 1˝x

�˝ id
��

id ˝� // U 1˝UFx
� //

�

''

UF UFx

U�F
��

U 1˝x
� // UFx
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by using the definition of � D � .id˝�/ in (2.6), commutativity of the diagram

U 1˝U 1˝x

�˝ id
��

id˝ id˝� // U 1˝U 1˝UFx

�˝ id
��

id˝� // U 1˝UFx

�
��

U 1˝x
id˝� // U 1˝UFx

� // UFx

which reads � .�˝ id/D �.id˝�/, and commutativity of the diagram

U 1˝UFx

id ))

id˝�UF // U 1˝UF UFx

id˝U�F
��

� // UF UFx

U�F
��

U 1˝UFx
� // UFx

which reads �D U�F � . We have suppressed unital isomorphisms for readability.

We now prove an analogue of Beck monadicity in our framework :

2.9 Theorem Let F W C � D WU be an adjunction of idempotent-complete additive
tensor categories, where F is a tensor functor. Assume moreover that:

(a) The counit of the adjunction �W F U ! IdD admits a natural section.

(b) The projection formula holds U.x/˝y Š U.x˝F.y//; see Definition 2.7.

Then the adjunction is monadic and the associated monad is isomorphic to the one
induced by the commutative ring object AD .U.1/; �; �/ in C; see (2.5). Thus there is
a (unique) equivalence EW D�!� A– ModC identifying the given adjunction F a U

with the free-forgetful adjunction FA a UA , up to isomorphism; see (2.1).

Proof Just combine Lemmas 2.2 and 2.8. Explicitly, the equivalence EW D �!�

U.1/– ModC sends d 2 D to the U.1/–module E.d/ WD U.d/ with action given by

U.1/˝U.d/
�
�!U.1˝ d/' Ud:

Recall now the situation of Section 1. In each of the three examples discussed there,
we are given suitable groups G and H , where H is a subgroup of finite index in G .
We have associated tensor triangulated categories C WD C.G/ and D WD C.H / and a
tensor exact restriction functor F WD ResG

H W C.G/! C.H / admitting a right adjoint
U WD CoIndG

H W C.H / ! C.G/. In the remaining three sections, we are going to
deduce Theorems 1.1, 1.2 and 1.3 from Theorem 2.9, by verifying in each case that the
hypotheses (a) and (b) hold. We will sometimes abbreviate the corresponding monad
as ADAG

H
WD CoIndG

H ıResG
H .
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2.10 Remark Although the splitting of the counit implies (see Lemma 2.2) that the
monad UF ' U.1/˝ .�/ is separable, it does not follow a priori that the ring object
U.1/ is itself separable. However, in all examples, the ring object AD AG

H
' U.1/

will be separable with an obvious A;A–linear section � W AG
H
! AG

H
˝AG

H
of its

multiplication, which will always be induced by the diagonal map G=H!G=H�G=H .

This is clearly the simplest explanation for separability of U.1/ in the examples.
However, one could also expand the above abstract treatment to obtain separability
of U.1/ from general arguments. Indeed, in all our examples, the functor F also has a
left adjoint L which is isomorphic to U and the section x! F U.x/ we construct of
the counit of F aU coincides with the unit x!FL.x/ of the LaF adjunction under
this isomorphism L' U . Using compatibility of left and right projection formulas,
one can then show that U.1/ is indeed separable in that case. Further details are left to
the interested reader.

3 Equivariant stable homotopy theory

Let G be a compact Lie group and let SH.G/ denote the stable homotopy category
of (genuine) G–spectra, in the sense of [10]. This is a compactly generated tensor
triangulated category with the smash product of G –spectra, �^�, and unit SD†1S0 .
For any closed subgroup H �G , we have a restriction tensor functor ResG

H W SH.G/!
SH.H / which admits a left adjoint, induction, denoted GC ^H �, and a right adjoint,
coinduction, denoted FH .GC;�/. The two adjoints are related by the Wirthmüller
isomorphism, which is a natural isomorphism

(3.1) !X W FH .GC;X /�!
� GC ^H .X ^S�L/;

defined for any H–spectrum X , where L is the tangent H–representation of G=H at
the identity coset eH . (See [11, Section XVI.4] and [12].) Note that if H has finite
index in G then L D 0 and in this case !X provides an isomorphism between the
induction and coinduction functors: FH .GC;X /�!

� GC ^H X .

3.2 Lemma The restriction-coinduction adjunction

ResG
H W SH.G/� SH.H / WFH .GC;�/

between the equivariant stable homotopy categories satisfies the projection formula
(Definition 2.7).

Proof As noted in [12, Remark 1.2], this follows from the Wirthmüller isomorphism.
We briefly recall the argument. By [6, Proposition 3.2] the projection map

� W Y ^FH .GC;X / �! FH .GC;ResG
H .Y /^X /

Algebraic & Geometric Topology, Volume 15 (2015)
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as in (2.6) is invertible whenever X is a dualizable (ie compact) object of SH.H /.
Smashing with any object preserves coproducts. Hence so does FH .GC;�/, by the
Wirthmüller isomorphism (3.1). Thus the two functors (in X ) that are compared by �
are both exact and commute with coproducts. Since SH.H / is compactly generated, it
follows that � is invertible for arbitrary X as well.

3.3 Lemma Let G be a compact Lie group and let H �G be a closed subgroup of
finite index in G . Then the counit of the restriction-coinduction adjunction between
SH.G/ and SH.H / has a natural section.

Proof Since G=H is finite, hence discrete, the H–space GC decomposes as a co-
product .G �H /tHC and we can define for any based H–space X a continuous
H–equivariant map �X W X ! FH .GC;X / by

�X .x/.g/D

�
gx if g 2H;

� if g 62H:

This map is natural in X and defines a section of the counit

�X W FH .GC;X /�!X; ' 7�! '.1/

of the space-level restriction-coinduction adjunction. At the level of spectra, recall
from [10, Section II.4, page 77] that coinduction is defined spacewise without the
need to spectrify; that is, for an H–spectrum D , the G–spectrum FH .GC;D/ is
defined for every G –representation V in the indexing universe by FH .GC;D/.V / WD

FH .GC;D.V // where the right-hand side is the space-level coinduction functor. One
checks that the maps �D.V / define a map of H–spectra D! FH .GC;D/ by using
the definition of the structure maps of FH .GC;D/ and the commutativity of

(3.4)
F.SV ;X /

�
F.SV ;X/ //

F.SV ;�X / ))

FH .GC;F.S
V ;X //

Š ��1

��
F.SV ;FH .GC;X //:

Here ��1 is the G –homeomorphism defined on page 76 of [10] and the commutativity
of diagram (3.4) follows immediately from the definitions. In this way, we have
constructed a section of the counit of the restriction-coinduction adjunction between
the categories of G –spectra and H–spectra. Coinduction preserves weak equivalences
so this splitting passes without difficulty to a splitting of the counit of the adjunction
between homotopy categories: SH.G/� SH.H /.
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Proof of Theorem 1.1. The theorem follows from Theorem 2.9, since its hypothe-
ses (a) and (b) have been verified in Lemmas 3.3 and 3.2. It remains only to describe
the ring object AD .A; �; �/ in SH.G/. By definition, we have AD FH .GC;S/ and
the Wirthmüller isomorphism identifies it with the G –equivariant suspension spectrum
GC^H S Š†1.G=H /C . Under this isomorphism, the multiplication in FH .GC;S/

becomes the multiplication AG
H
˝AG

H
!AG

H
announced in the Introduction. Under

the isomorphism †1.G=H /C ^†
1.G=H /C Š †

1.G=H �G=H /C it is given by
the map .
; 
 0/ 7! 
 when 
 D 
 0 and � otherwise; see (1.4). An obvious section �
is given by 
 7! .
; 
 /, showing that AG

H
is indeed separable as a ring object. See

Remark 2.10.

4 Equivariant KK–theory

We begin with some recollections on equivariant KK–theory. Details can be found
in [14] and the references therein.

Let G be a second countable locally compact Hausdorff group. For short, we use the
term G–algebra to mean a (topologically) separable1complex C�–algebra equipped
with a continuous left G–action G � A ! A by �–isomorphisms. We denote by
Alg.G/ the category of G –algebras and G –equivariant �–homomorphisms (morphisms
for short). It is a symmetric monoidal category when equipped with the minimal
tensor product �˝� (ie, the completion of the algebraic tensor product �˝C �

with respect to the minimal C�–norm), where G acts diagonally on tensor products:
g.a˝ b/ WD ga˝gb .

The G–equivariant Kasparov category, here denoted KK.G/, has the same objects
as Alg.G/ and its Hom sets are Kasparov’s G –equivariant bivariant K–theory groups
HomKK.G/.A;B/DKKG.A;B/ with composition given by the so-called Kasparov
product. It is a tensor triangulated category admitting all countable coproducts, so in
particular it is an idempotent-complete additive category. It comes equipped with a
canonical tensor functor Alg.G/! KK.G/ which is the identity on objects. We will
not distinguish notationally between a morphism of Alg.G/ and its canonical image
in KK.G/.

4.1 Construction Let H be a closed subgroup of G and assume already, for sim-
plicity, that the quotient G=H is a finite discrete space (see Remark 4.4 for more
general results). By restricting G–actions to H , we obtain a restriction functor

1A C�–algebra is separable if it admits a countable subset which is dense (for the norm topology).
This is not related to the separability of monads and rings discussed in Section 2.
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ResG
H WAlg.G/!Alg.H /. Define coinduction CoIndG

H W Alg.H /!Alg.G/ as follows.
Its value on an H–algebra B is the G –algebra

CoIndG
H .B/ WD Cb.G;B/

H

of those bounded continuous functions f W G ! B that are H–invariant: f .hx/ D

hf .x/ for all h 2 H and x 2 G . This is again a separable C�–algebra with the
supremum norm and the pointwise algebraic operations. The left G–action is given
by .g � f /.x/ WD f .xg/. The functoriality is obtained by composing functions with
morphisms B ! B0 . For all A 2 Alg.G/ and B 2 Alg.H /, we define the unit and
counit natural transformations by the “usual” formulas

�AW A! CoIndG
H ResG

H .A/; a 7! �A.a/ WD .G 3 t 7! ta 2A/

�BW ResG
H CoIndG

H .B/! B; f 7! �B.f / WD f .1/

for a 2A and f 2 CoIndG
H .B/.

4.2 Lemma The functor

ResG
H W Alg.G/! Alg.H /

is left adjoint to
CoIndG

H W Alg.H /! Alg.G/;

with the above � and � as unit and counit. Moreover:

(a) The counit � admits a natural section.

(b) The adjunction satisfies the projection formula (Definition 2.7).

Proof This adjunction is well-known (see [16, page 231] or [15, Proposition 38]) and
works equally fine with G=H compact, although we could not locate the explicit unit
and counit in the literature. The verifications that the above � and � are well-defined
and satisfy the triangle equalities are immediate.

Since G=H is assumed discrete, for each b 2 B the formula

(4.3) G 3 t 7! �B.b/.t/ WD

�
tb if t 2H;

0 if t 62H;

yields a well-defined map �B.b/ 2 Cb.G;B/
H . Moreover, the assignment b 7! �B.b/

defines an H–equivariant morphism �BW B ! Cb.G;B/
H and therefore a natural

transformation �W IdAlg.H /! ResG
H CoIndG

H . Since �B�B.b/ D �B.b/.1/ D 1b D b

for all b 2 B , we see that � provides the natural section claimed in part (a).
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Let us prove part (b). By unfolding the definitions, we see that the present incarnation
of the projection map (2.6) is the following morphism of G –algebras,

� W CoIndG
H .B/˝A �! CoIndG

H .B˝ResG
H .A//;

f ˝ a 7�! �.f ˝ a/D
�
G 3 t 7! f .t/˝ ta

�
;

for all B 2 Alg.H / and A 2 Alg.G/. The above formula defines � on simple
algebraic tensors, and extends uniquely to the minimal tensor product by linearity and
continuity. Once again, the fact that this is an isomorphism is well-known to the experts
but the details are hard to find in the literature. For G=H finite it is actually easy.
Choose a full set R�G of representatives modulo H . Then, forgetting actions, the
inclusion R ,!G induces a natural (!) isomorphism of (nonequivariant) C�–algebras
�W CoIndG

H .D/�!
� Q

r2R D for all D 2Alg.H /, by �.f /D .f .r//r . We thus obtain
the following commutative square of C�–algebras

CoIndG
H .B/˝A

�˝id

Š
//

�

��

�Y
r2R

B

�
˝A

��

CoIndG
H .B˝ResG

H A/
�

Š
//
Y
r2R

.B˝A/

where the right vertical map is defined, on simple tensors, by .br /r ˝ a 7! .br ˝ ra/r .
The latter is invertible because R is finite, hence so is � .

4.4 Remark If G=H is compact, but not necessarily discrete, Construction 4.1 still
works verbatim to provide the right adjoint of restriction, but some nontrivial analysis
(using that H acts properly on G ) is needed to prove that the functor yields separable
C�–algebras and satisfies the projection formula. When H is any closed subgroup,
without any hypothesis on G=H , it is convenient to consider an “induction” functor
IndG

H W Alg.H /! Alg.G/ defined by the subalgebra

IndG
H .B/ WD ff 2 Cb.G;B/

H
j .t 7! kf .t/k/ 2 C0.G=H /g

of CoIndG
H .B/. The same analytical arguments apply to show that IndG

H takes separable
values and satisfies the projection formula, in full generality. Clearly IndG

H D CoIndG
H

when G=H is compact, so it is right adjoint to ResG
H in this case. If instead G=H is

discrete then IndG
H becomes, at the level of the Kasparov categories, left adjoint to

restriction, thus earning its name; see [15, Section 2.6]. It is not known whether there
exists, unconditionally, a left or right adjoint to restriction on the Kasparov categories. In
our view, this anomalous behavior — quite unlike the situation in representation theory
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or equivariant stable homotopy — is a cost of the endemic countability hypotheses
required by the analytical constructions traditionally involved with KK–theory, which
prevent the Kasparov categories from admitting arbitrary small coproducts.

Proof of Theorem 1.2 We are assuming that G=H is finite, hence discrete, so we can
apply Lemma 4.2. We claim that the conclusions of Lemma 4.2 still hold at the level
of KK–theory, not only at the level of algebras and algebra morphisms.

Indeed, recall that the canonical functor Alg.G/ ! Alg.G/ŒW �1
G
� D KK.G/ is a

localization of categories, obtained by inverting precisely the set WG of G –equivariant
KK–equivalences, and similarly for H . This follows immediately from Meyer’s
universal property of equivariant KK–theory [13], and from the following easy (and well-
known) observation: each of the three properties of an additive functor F W Alg.G/!C

for which KK.G/ is universal — namely, homotopy invariance, C�–stability, and split
exactness — can be expressed by the property that F sends a suitable class of morphisms
of algebras to isomorphisms of C.

It is known that ResG
H .WG/�WH and CoIndG

H .WH /�WG (see [14, Section 4.1]).
Hence restriction and coinduction yield well-defined functors ResG

H W KK.G/!KK.H /

and CoIndG
H W KK.H /! KK.G/, which are again adjoint by the (canonical images

of the) same unit and counit � and � . Similarly, the projection isomorphism � and
the section � of the counit also pass to KK. We therefore have separable monadicity
EW KK.H /�!� A– ModKK.G/ by Theorem 2.9, where AD CoIndG

H .C/D C.G=H /

is the G –algebra of continuous functions on G=H equipped with its pointwise multi-
plication and identity. This is simply the usual underlying ring structure of C.G=H / as
a C�–algebra, which is isomorphic to its C–linear dual algebra C.G=H / as announced
in Theorem 1.2. Multiplication on AG

H
DC.G=H / is again given by Equation (1.4).

Its separability is again guaranteed by the morphism � W AG
H
!AG

H
˝AG

H
given by


 7! 
 ˝ 
 .

4.5 Remark We can describe the Eilenberg–Moore equivalence more explicitly.
By construction, the Eilenberg–Moore functor E for the monad AD CoIndG

H ResG
H

is given by E.B/ D .CoIndG
H .B/;CoIndG

H .�B// for all B 2 KK.H /. Under the
isomorphism of monads � W A˝.�/�!� A, this C.G=H /–action becomes the morphism

C.G=H /˝CoIndG
H .B/

�

�
// CoIndG

H ResG
H CoIndG

H .B/
CoIndG

H
.�B/// CoIndG

H .B/

which sends u˝f to the function �B ı.x 7!u.x/xf /2CoIndG
H .B/, ie, to the product

uf D .x 7!u.x/f .x//. Thus the action is simply given by the pointwise multiplication
of functions. The quasi-inverse E�1 is described in Lemma 2.2.
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4.6 Remark An equivalence quite like our functor E�1 has already been described,
under the name compression, both for G –C�–algebras in [7, Lemma 12.3 ff] and also in
the purely algebraic context of G –rings in [5, Section 10.3]. For H a (finite) subgroup
of a (countable) discrete G , but with G=H not necessarily finite, the compression
functor is defined for G –algebras that are “proper over G=H ” and yields a quasi-inverse
of induction (at least at the level of algebras). Here induction refers to a certain functor
from H–algebras to G–algebras which is usually not right adjoint to restriction. We
suspect this induction-compression equivalence is related to our Theorem 1.2, although
the details are not yet clear to us.

5 Equivariant derived categories

Let G be a discrete group, eg a finite one, which acts on a (locally) ringed space S D

.S;OS /, eg a scheme. For every g 2G , we simply denote by gW S �!� S the corre-
sponding isomorphism of ringed spaces, which involves compatible ring isomorphisms
g]W OS .V /�!

� OS .gV / for all g 2 G and V � S open. For every sheaf M on S ,
the sheaf g�M is given by g�M .V /DM.gV /. For every g1;g2 2G , we have an
equality .g1g2/

�D g�
2
g�

1
, where we could also accept an isomorphism with coherence.

This equality will lighten some of the discussion below.

5.1 Definition A G –equivariant sheaf of OS –modules is a pair .M; '/ where M 2

OS – Mod is a sheaf of OS –modules and ' D .'g/g is a collection of OS –linear
isomorphisms

'gW M �!
� g�M

indexed by g 2 G such that 'g1g2
D g�

2
.'g1

/ ı 'g2
for every g1;g2 2 G . As usual,

we often write M instead of .M; '/ and we call ' the “action” of G on M , keeping
in mind that G moves the underlying sheaf. A morphism of G–equivariant sheaves
f W .M; '/! .M 0; '0/ is a morphism f W M!M 0 of OS –modules such that '0gıf D
g�.f / ı'g for every g 2G . We denote by Shv.GIS/ the category of G –equivariant
sheaves of OS –modules on S . It is an abelian category, with a faithful exact functor
ResG

1 W Shv.GIS/!OS – Mod, which forgets the G –equivariance.

Since G is discrete, we can define the G –equivariant derived category of S to be the
derived category D.GIS/ WD D.Shv.GIS// of the above abelian category.

5.2 Remark Everywhere below, one can replace OS –modules by quasi-coherent
ones (or coherent ones) if S is a (noetherian) scheme. Similarly, one can put bound-
edness conditions on the derived categories, or conditions on the homology, etc. The
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statements remain true as long as the restriction-coinduction adjunction preserves those
subcategories. Note that the ring AG

H
that we are going to produce is a complex having

a finite-dimensional free OS –module concentrated in degree zero; so it will usually
belong to all such choices of subcategories. We leave such variations on the theme to
the interested readers.

Also, the OS –module structure on the various equivariant sheaves that we will construct
is not problematic, and it always comes as a second layer, once the “sheaf-part” and
the “G –part” of the story are clear. We shall therefore emphasize the latter and leave
most of the former as easy verifications.

5.3 Remark The category Shv.GIS/ is monoidal via the tensor product of OS –
modules and “diagonal action”: modulo the identification

g�.M ˝OS
M 0/Š g�M ˝OS

g�M 0;

one defines .'˝'0/g as 'g˝'
0
g . This induces a left-derived tensor product on the

derived category (that we do not really use in this glorious generality, since we really
only need to tensor with the flat object AG

H
).

5.4 Construction Let H � G be a subgroup. We have an obvious exact restric-
tion functor ResG

H W Shv.GIS/ ! Shv.H IS/ which induces the equally obvious
ResG

H W D.GIS/! D.H IS/. We construct the right adjoint CoIndG
H W Shv.H IS/!

Shv.GIS/ by explicit formulas. Let N D .N;  / 2 Shv.H IS/; in particular we have
 hW N �!

� h�N for every h 2H . For every open V � S , we define the OS –module

(5.5) .CoIndG
H N /.V / WD

�
.st /t 2

Y
t2G

t�N.V /

ˇ̌̌̌
t� h.st /D sht 8t 2G; h 2H

�
whose G–action is given on each open by 'g

�
.st /t2G

�
WD .stg/t2G , observing that

stg 2 .tg/
�N.V / D g�t�N.V / D t�N.gV /. It is easy to verify that CoIndG

H N

remains a sheaf (it is a limit), ie we do not need sheafification. The definition of
CoIndG

H on morphisms is straightforward.

We define the counit �N W ResG
H CoIndG

H N !N by mapping .st /t2G to s1 2N.V /

on each open V � S . We define the unit �M W M ! CoIndG
H ResG

H M by mapping
m 2M.V / to .'t .m//t2G . These define natural transformations

�W IdShv.GIS/�!CoIndG
H ResG

H and �W ResG
H CoIndG

H �! IdShv.GIS/ :
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5.6 Lemma The functor

ResG
H W Shv.GIS/! Shv.H IS/

is left adjoint to
CoIndG

H W Shv.H IS/! Shv.GIS/;

with the above � and � as unit and counit. Moreover:

(a) The counit � admits a natural section.

(b) If moreover G=H is finite, then the adjunction satisfies the projection formula
(Definition 2.7).

Proof Set �W IdShv.H IS/! ResG
H CoIndG

H on an object .N;  / 2 Shv.H IS/ and on
an open V to be the homomorphism N.V / ! .CoIndG

H N /.V /, n 7! .�.n/t /t2G

defined by the formula

(5.7) �.n/t WD

�
 t .n/ if t 2H

0 if t 62H:

The H–equivariance of this morphism is easy to check and it is clearly natural in N

and splits � , since �.n/1 D  1.n/D n. This proves (a).

For the projection formula, let us assume that G=H is finite. Recall that

ResG
1 W Shv.GIS/!OS – Mod

detects isomorphisms. So it will suffice to prove that ResG
1 .�/ is an isomorphism,

where � W .CoIndG
H N /˝M !CoIndG

H .N ˝ResG
H M / is the morphism of (2.6), and

this for every N 2 Shv.H IS/ and M 2 Shv.GIS/. One can verify that the morphism
� is given by (the sheafification of)

.CoIndG
H N /˝M �!CoIndG

H .N ˝ResG
H M /;

.st /t2G ˝m 7�!
�
st ˝'t .m/

�
t2G

on simple tensors. We need to check that the above is an isomorphism of sheaves
on S , ignoring the G–equivariance. Let R � G be a full set of representatives
for G=H . We claim that we have an isomorphism projRW ResG

1 CoIndG
H �!
� Q

r2R r� ,
which is given on every open V � S by the composite of obvious inclusion and
projection .ResG

1 CoIndG
H N /.V / ,!

Q
t2G t�N.V /�

Q
r2R r�N.V /, ie simply by

.st /t2G 7! .sr /r2R on elements. Its inverse maps .sr /r2R to .r� h.sr //t2G where
each t 2 G is written in a unique way as t D hr for some hD h.t/ 2 H and some
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r D r.t/ 2R. The defining property of the elements in .CoIndG
H N /.V / shows that

this is a bijection. Moreover, the following diagram of OS –modules commutes:

ResG
1 .CoIndG

H N /˝ResG
1 .M /

Š

��

proj˝1

' //
�Y

r2R

r�N

�
˝M

Š.|/
��

ResG
1 ..CoIndG

H N /˝M /

ResG
1
.�/

��

Y
r2R

.r�N ˝M /

'
Q

r id˝'r

��

ResG
1

�
CoIndG

H .N ˝ResG
H M /

� proj

'
//
Y
r2R

r�N ˝ r�M

Note that the isomorphism .|/ uses finiteness of R'G=H to commute product and
tensor. We conclude that ResG

1 .�/, hence � , is an isomorphism as wanted.

Proof of Theorem 1.3 We can use Theorem 2.9 on the sheaf level (before deriving),
since its hypotheses were checked in Lemma 5.6. Let us identify the ring object
A D CoInd.1/, where the ˝–unit 1 of Shv.H IS/ is OS equipped with the trivial
H–action: each  h is the isomorphism h]W OS �!

� h�OS given with the isomorphism
of ringed spaces hW S �!� S . Explicitly,

A.V /D

�
.st /t 2

Y
t2G

OS .tV /

ˇ̌̌̌
sht D h]st for all t 2G; h 2H

�
;

where h]W OS .tV / �!
� h�OS .tV / D OS .htV / is as above on the open tV . Its

multiplication (2.5) is simply mapping .st /t ˝ .s
0
t /t to .sts

0
t /t . To show that this

ring object A D CoInd.1/ is isomorphic to the announced one AG
H
D
L

G=H OS ,
we need to clarify the latter. On each open, if we name the basis fe
 g
2G=H , it is
given by AG

H
.V /D

L

2G=H OS .V / � e
 . The G –action 'g on AG

H
simply maps e


to eg
 and applies g]W OS .V /�!
� g�OS .V / on the coefficients. The isomorphism

AG
H
�!
� A can now be given on each open V by mapping e
 to .st /t , where st D 0

if t 62 
 and st D 1 if t 2 
 . An inverse is then given by mapping .st /t 2 A.V / toP

2G=H s
 e
 , where s
 WD .t

]/�1.st /2OS .V / for any choice of t 2
 . The condition
on .st /t 2A.V / shows that these coefficients s
 are well-defined. Following the above
isomorphism, one sees that the multiplication on AG

H
is given on the OS –basis by

the now familiar formula (1.4). Separability again follows from the AG
H
;AG

H
–linear

morphism � W AG
H
!AG

H
˝AG

H
, defined on the OS –basis by e
 7! e
 ˝ e
 .

Finally, we need to derive the adjunction. This is easy since both functors ResG
H and

CoIndG
H are exact (the latter can be checked by postcomposing with ResG

1 ). Similarly,
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AG
H
˝� is exact since AG

H
is flat, the underlying OS –module being a finite sum of

copies of OS . It follows that all adjunctions, units, counits, sections thereof (� ), etc,
derive on the nose, without needing any resolution.

5.8 Remark By construction (2.1), the equivalence EW D.H IS/!AG
H

– ModD.GIS/
is given explicitly by E.N /D .CoIndG

H .N /;CoIndG
H .�N // for all N 2 Shv.H IS/,

and similarly for complexes N 2 D.H IS/, degreewise. Under the isomorphism of
monads � W AG

H
˝ .�/�!� A, this OS .G=H /–action becomes the morphism

OS .G=H /˝CoIndG
H .N /

�
�! CoIndG

H ResG
H CoIndG

H .N /
CoIndG

H
.�N /

��������! CoIndG
H .N /:

It is given for every 
 2 G=H and every .st /t 2 .CoIndG
H N /.V / as in (5.5) by the

formula 
 ˝ .st /t 7! .s


t /t where s



t D st when t 2 
 and zero otherwise. The

quasi-inverse E�1 can be described as in Lemma 2.2.

6 Counterexamples

The goal of this section is to prove Theorem 1.5. We consider a connected compact Lie
group G and a nontrivial finite subgroup H �G . We want to show that the restriction-
coinduction adjunction SH.G/� SH.H / is not monadic. For this, it suffices to show
that the right adjoint CoIndG

H W SH.H /!SH.G/ is not faithful. This reduces to proving
that the counit �D W ResG

H CoIndG
H D! D is not split for some object D 2 SH.H /.

This reduction is well-known: the morphism � appearing in a distinguished triangle
�

�
�! �

�
�! � �! � maps to zero under CoIndG

H (since CoIndG
H .�/ is split, by the

unit-counit relation) but � is not zero (since � itself is not split).

First we reduce the problem to a statement about spaces.

6.1 Lemma Let C and D be model categories in which every object is fibrant, let
d be a cofibrant object in D , and let f �W C � D Wf� be a Quillen adjunction. If the
counit �d W Lf

� Rf�d! d of the derived adjunction is split epi as a morphism in HoD
then the original counit �d W f

�f�d ! d is split epi up to homotopy: there is a map
�d W d ! f �f�d in D such that �d ı �d is homotopic to idd .

Proof If 
 W �c! c is the cofibrant replacement then Lf �c D f ��c while Rf�d D

f�d since every object is fibrant. Recall (eg from the proof of [8, Theorem 8.5.18])
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that the derived adjunction Lf �W Ho C � HoD WRf� is given as

HoD.Lf �c; d/D HoD.f ��c; d/D �.�f ��c; �d/

Š �.�f ��c; d/Š �.f ��c; d/

Š �.�c; f�d/Š �.�c; �f�d/

D Ho C.c; f�d/D Ho C.c;Rf�d/:

Taking c D Rf�d and chasing the identity we find that the counit Lf � Rf�d ! d is
the homotopy class of a map �d W �f

��f�d ! �d with the property that

�f ��f�d

 //

�d

��

f ��f�d
f �
 // f �f�d

�d

��
�d



// d

commutes up to homotopy. A section d ! Lf � Rf�d of �d is the homotopy class
of a map �d W �d ! �f ��f�d such that �d ı �d� id�d . If d is cofibrant then the
cofibrant replacement 
 W �d ! d is a homotopy equivalence. For any quasi-inverse
ıW d ! �d of 
 , the composite

d
ı
�! �d

� d

�! �f ��f�d


�! f ��f�d

f �

�! f �f�d

defines a map �d W d ! f �f�d such that �d ı �d� idd .

6.2 Lemma Let H be a closed subgroup of a compact Lie group G . If D is an
H–CW spectrum such that the counit �D of the restriction-coinduction adjunction
SH.G/� SH.H / is a split epi as a morphism in SH.H /, then the space-level counit
��1.D/ is a split epi up to homotopy in the category of based H–spaces.

Proof Let GS denote the category of G –spectra (in the sense of [10]) so that SH.G/D
Ho GS and let GT denote the category of based G –spaces. For any closed subgroup
H � G , we have restriction-coinduction adjunctions at the level of spaces and at
the level of spectra. In both cases, we denote coinduction by FH .GC;�/. One
checks immediately from the definition of FH .GC;�/W HS!GS [10, Section II.4,
page 77] that �1FH .GC;D/ D FH .GC; �

1D/ for any H–spectrum D and that
�1.�D/D ��1D where � denotes the counit of the restriction-coinduction adjunction.
If D is an H–CW spectrum such that the derived counit �D in SH.H / D Ho HS
is a split epi, then Lemma 6.1 implies that the counit �D in HS is a split epi up to
homotopy. The functor �1W HS!HT preserves homotopy and so we conclude that
�1.�D/D ��1D is split epi up to homotopy in HT .
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6.3 Lemma Let H be a closed subgroup of a connected topological group G ,
and let X be a discrete based H–space. If there exists a continuous map �W X !
FH .GC;X / such that the composite

X
�
�! FH .GC;X /

�X
�!X

is homotopic to idX then X is a trivial H–space.

Proof Let x 2X and consider its image �x W GC!X . Homotopic maps to X are
equal since X is discrete, so �x.e/D �X .�x/D x . It follows that �x.g/D �x.e/D x

for all g2G since G is connected and X is discrete. Hence, since �x is H–equivariant,
x D �x.h/D h:�x.e/D h:x for all h 2H .

Proof of Theorem 1.5 Armed with Lemma 6.2 and Lemma 6.3 we need only show
that there exists an H–spectrum D such that the based H–space �1D is H–homotopy
equivalent to a discrete based H–space with nontrivial H–action. Indeed, if 
 W �D!

D denotes an H–CW–approximation then Lemma 6.2 implies that the counit of �1�D

splits up to homotopy in the category of based H–spaces. The map �1
 W �1�D!

�1D is a weak H–equivalence between spaces having the H–homotopy type of an
H–CW–complex and hence is an H–homotopy equivalence by Whitehead’s theorem.
Moreover, it is clear that the splitting up to homotopy of the counit for a based H–
space X implies the splitting of the counit up to homotopy for any based H–space
H–homotopy equivalent to X , so we can apply Lemma 6.3 to obtain our contradiction.

Note that we can’t just take DD†1HC since �1†1HC is Q.HC/D
Q

H Q.S0/

rather than HC . Nevertheless, recall that for any H–Mackey functor M, there exists
an equivariant Eilenberg–MacLane spectrum HM having the property that

�q.HM/D

�
M if q D 0;

0 if q ¤ 0;

so that �1HM is an equivariant Eilenberg–MacLane space of type K.M; 0/. The
original construction [9] is elegant but indirect (involving a Brown representability
argument). A very concrete construction has been provided by [17; 18]. Applied to
the “fixed point” Mackey functor M .H=K/ WDM K associated to a ZH –module
M one obtains an H–spectrum HM whose zeroth space �1HM is H–homotopy
equivalent to M regarded as a discrete based H–space (having 0 as the base point).
Taking M D ZH to be the regular representation, we thus obtain a discrete nontrivial
based H–space — provided H itself is nontrivial — and this completes the proof.
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