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Convex cocompactness and stability in mapping class groups

MATTHEW GENTRY DURHAM

SAMUEL J TAYLOR

We introduce a strong notion of quasiconvexity in finitely generated groups, which
we call stability. Stability agrees with quasiconvexity in hyperbolic groups and is
preserved under quasi-isometry for finitely generated groups. We show that the stable
subgroups of mapping class groups are precisely the convex cocompact subgroups.
This generalizes a well-known result of Behrstock and is related to questions asked
by Farb and Mosher and by Farb.

20F65, 51H05; 57M07, 30F60

1 Introduction

In order to understand the structure of a finitely generated group G , one often investi-
gates subgroups H �G whose geometry reflects that of G . One successful application
of this approach is to the study of quasiconvex subgroups of hyperbolic groups. In this
setting, H is finitely generated and undistorted in G and these properties are preserved
under quasi-isometries of G . Quasiconvexity, however, is not as useful for arbitrary
finitely generated groups. Without hyperbolicity of G , quasiconvexity depends on a
choice of generating set for G and, in particular, is not preserved under quasi-isometry.
To address this situation, we introduce the stronger notion of stability, which agrees
with quasiconvexity when G is hyperbolic. Specifically, we define the following:

Definition 1 Let G be a finitely generated group. A finitely generated subgroup H �G

is stable if H is undistorted in G and for all L � 0 there exists an R D R.L/ � 0

satisfying the following: for any pair of L–quasigeodesics of G that share common
endpoints in H , each is contained in the R–neighborhood of the other.

Our primary motivation for defining stable subgroups of a finitely generated group is
the mapping class group Mod.S/ of a connected, orientable surface S . In this note,
we relate stable subgroups of Mod.S/ to convex cocompact subgroups of the mapping
class group, introduced by Farb and Mosher in [10]. These are much-studied subgroups
of Mod.S/ that have important connections to the geometry of Teichmüller space, the
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curve graph, and surface group extensions. (See Section 2.3 for definitions.) Our main
result can be interpreted as a generalization of a theorem of Behrstock [1] (also see
Drut,u, Mozes and Sapir [6]). Behrstock proves that the stable (or Morse) elements of
Mod.S/ are exactly the pseudo-Anosov mapping classes.

Our main theorem provides a purely group-theoretic characterization of convex com-
pactness which does not involve the geometry of either Teichmüller space or the
curve graph. This distinguishes our characterization of convex cocompact subgroups
of mapping class groups from those appearing in Farb and Mosher [10], Kent and
Leininger [13], and Hamenstädt [11]. We prove:

Theorem 1.1 A subgroup G �Mod.S/ is stable if and only if it is convex cocompact.

Theorem 1.1 partially answers questions appearing in Farb and Mosher [10] and Farb [8].
In particular, Farb and Mosher ask how their notion of convex cocompactness (which
they define as having quasiconvex orbit in Teichmüller space) is related to quasiconvexity
in the mapping class group [10]. Also, in [8, Problem 3.8], Farb asks what subgroups of
mapping class groups are quasiconvex with respect to fixed generating sets. Theorem 1.1
characterizes the subgroups of the mapping class group that satisfy our strong notion
of quasiconvexity and implies that convex cocompact subgroups are quasiconvex in
Mod.S/ with respect to any generating set (Corollary 5.6). It is our hope that this
notion of stability will also be useful in other finitely generated groups.

Motivation There are many constructions of convex cocompact subgroups of Mod.S/
that appear in the literature. (See, for example, Farb and Mosher [10], Kent and
Leininger [13], Kent, Leininger and Schleimer [14], Dowdall, Kent and Leininger [5],
Mangahas and Taylor [15], and Min [19].) A theme of several such constructions is
the following: One begins with a finitely generated group G and a quasi-isometric
embedding �W G!Mod.S/ coming from a geometric source. For example, G can
be the fundamental group of a hyperbolic 3–manifold fibering over the circle (as
in [5]), or a right-angled Artin group (as in [15]). Given this homomorphism, one
then characterizes those subgroups H � G which have convex cocompact image
�.H / �Mod.S/. As we show, convex compactness of the image �.H / �Mod.S/
imposes strong structural consequences on H �G :

Proposition 1.2 (see Proposition 3.2 and Theorem 5.5) Suppose �W G!Mod.S/ is
a quasi-isometric embedding and that �.H /�Mod.S/ is convex cocompact for some
H �G . Then H is stable in G .

Hence, to aid in the search for examples of convex cocompact subgroups of mapping
class groups, we should understand the consequences of stability in other finitely
generated groups.
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2 Background

We keep this section brief and refer the reader to [3] for background on coarse geometry
and [9] for mapping class group basics. Throughout, we assume that the reader has
some familiarity with subsurface projections and hierarchies for the mapping class
group, as introduced by Masur and Minsky in [17]. See [20; 1] for additional references.

2.1 Coarse geometry

Let .X; dX / and .Y; dY / be metric spaces. Recall that f W X ! Y is a K–quasi-
isometric embedding if, for all x1;x2 2X ,

1

K
dX .x1;x2/�K � dY .f .x1/; f .x2//�KdX .x1;x2/CK:

We remark that what we have defined is usually called a .K;K/–quasi-isometric
embedding in the literature, but our definition will reduce the number of constants
appearing throughout this note. If f W X ! Y has the additional property that every
point in Y is within K of the image f .X /, then f is a K–quasi-isometry and X

and Y are quasi-isometric.

If I is a subinterval of either R or Z, then a K–quasi-isometric embedding f W I!X

is called a K–quasigeodesic. We will often refer to f as a quasigeodesic and call K

the quasigeodesic constant for f . When f is an isometric embedding, it is called
a geodesic. The metric space X is called geodesic if for any x1;x2 2 X there is
a geodesic f W Œ0;N �! X with f .0/ D x1 and f .N / D x2 , ie there is a geodesic
joining x1 to x2 . We will sometimes write Œx1;x2� to denote an arbitrary geodesic
joining x1 and x2 . For any path 
 W I !X , we will continue to use the symbol 
 to
denote the image of 
 in X , as what is meant will be clear from context.

Recall that a subset C of a geodesic metric space X is K–quasiconvex if, for any
c1; c2 2 C and any geodesic Œc1; c2� in X , we have Œc1; c2��NK .C /. Here, NK .C /

denotes the closed K–neighborhood of C . For any � > 0, two subsets A and B

of X have Hausdorff distance no greater than � if A�N�.B/ and B �N�.A/. The
infimum over all such � is the Hausdorff distance between A and B , denoted by
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dHaus.X /.A;B/. Throughout this note, we reserve the notation d.A;B/ to denote the
diameter of the union of A and B . In symbols, d.A;B/D diam.A[B/.

We make one further remark on notation. The expression A� B is defined to mean
that there exists a K � 1 so that A�K �BCK . In different contexts the constant K

will depend on particular parameters but not on the numbers A and B directly. We
define A�B similarly and write A�B if both A�B and B �A. When using this
notation below, we will be clear about the dependence of K .

2.2 Hyperbolic geometry

A geodesic metric space X is ı–hyperbolic if, for any x;y; z 2X and any geodesic
segments Œx;y�; Œy; z�; Œx; z� joining them, Œx; z��Nı.Œx;y�[ Œy; z�/. That is, X has
ı–thin triangles. In this note, we will need a few well-known properties about the
nearest point retraction from a hyperbolic metric space X to a quasigeodesic 
 in X .
See [3] for additional details.

Let 
 W Œ0;N �!X be a K–quasigeodesic. The nearest point retraction from X to 

is a map n D n
 W X ! im.
 / defined as follows: for x 2 X , n.x/ is any point in
the image of 
 such that dX .x;n.x//D mini2Œ0;N � dX .x; 
 .i//. In the case that X

is ı–hyperbolic, there is a p � 0 depending only on K and ı such that if 
 .j / is a
different point on 
 minimizing distance to x , then dX .n.x/; 
 .j //� p . Moreover,
n.
 .i//D 
 .i/ for any i 2 Œ0;N �, and for any x;y 2X ,

dX .n.x/;n.y//� p � d.x;y/Cp:

In Section 5, the nearest point retraction will be used to define a projection from the
space X to the domain interval of a quasigeodesic.

2.3 Curves, markings and hierarchy paths

In this section, we recall the work of Masur and Minsky on the curve and marking
graphs. Fix an orientable surface S with genus g � 0 and p � 0 punctures so that
!.S/ D 3g � 3C p � 1; !.S/ is called the complexity of S . The curve graph,
denoted C.S/, is a locally infinite simplicial graph whose vertices are isotopy classes
of essential simple closed curves on S , and where two (isotopy classes of) curves
are joined by an edge if they can be realized disjointly on S . The curve graph is the
1–skeleton of a simplicial complex introduced by Harvey in [12].

Remark 2.1 The above definition is for S with !.S/ � 2. When !.S/ D 1, the
definition is modified so that C.S/ is the Farey graph. See [17, §2.4] for when S is an
annulus, ie !.S/D�1.

Algebraic & Geometric Topology, Volume 15 (2015)



Convex cocompactness and stability in mapping class groups 2841

Endow C.S/ with the graph metric. We frequently use the following foundational
result of Masur and Minsky:

Theorem 2.2 [16] For any S , there is a ı > 0 so that C.S/ is ı–hyperbolic.

A (complete clean) marking, �, on S is a pants decomposition called the base of �,
base.�/, and, for each ˛ 2 base.�/, a transversal t˛ 2 C.S/ which intersects ˛ and
no other base curve. The marking graph, M.S/, is a simplicial graph whose vertices
are markings, with two markings connected by an edge if they differ by a Dehn (half)
twist around a base curve .˛; t˛/ 7! .˛;T˛ � t˛/ called a twist move, or a flip move,
which switches a base curve and its transversal, .˛; t˛/ 7! .t˛; ˛/ (see [17, §2.5] for
more details). Masur and Minsky show:

Theorem 2.3 [17] Mod.S/ is Mod.S/–equivariantly quasi-isometric to M.S/.

Often we want to compare two curves or markings on a subsurface. For any curve
˛ 2 C.S/ and nonannular subsurface Y � S , the subsurface projection of ˛ to Y

is the subset �Y .˛/ � C.Y / obtained by restricting ˛ to Y and completing the
resulting arcs to curves along @Y in a natural way (see [17, §2.3] for more details
and the definition when Y is an annulus). In the case of a marking � 2M.S/, one
projects only the base, that is �Y .�/D �Y .base.�//. For �1; �2 2M.S/, we write
dY .�1; �2/D diamC.Y /.�Y .�1/[�Y .�2//.

One of the main constructions from [17] is the hierarchy machinery, from which we need
only a few features of the induced hierarchy paths (see [17, §4]). Given two markings
�1; �2 2M.S/, a hierarchy J between �1 and �2 is a collections of geodesics
in various subsurface curve graphs whose interrelations encode the combinatorial
relationship between �1 and �2 .

For any A� 0 we call a subsurface Y � S (possible Y D S ) an A–large link for �1

and �2 if dY .�1; �2/�A. The following theorem says that the distance between any
two markings is coarsely determined by the large links between them:

Theorem 2.4 (The distance formula [17, Theorem 6.12]) There is a constant A0 � 0,
depending only on S , so that for all A�A0 there exists K � 1 such that for any pair
of markings �1; �2 2M.S/, we have

1

K
� dM.S/.�1; �2/�K �

X
Y�S

ŒdY .�1; �2/�A �K � dM.S/.�1; �2/CK;

where ŒX �A DX if X �A and 0 otherwise.
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By contrast, we say that two markings �1; �2 2M.S/ are E–cobounded if we have
dY .�1; �2/ �E for every proper subsurface Y ¤ S . More generally, we say that a
collection of markings B �M.S/ is E–cobounded if every pair of markings in B is
E–cobounded. Coboundedness is a strong condition, and paths between cobounded
markings have hyperbolic behavior, a central idea in Section 5.

Though hierarchies are technical objects with many applications, for this note their
utility lies in their ability to be built into hierarchy paths. We collect some properties
of hierarchy paths in the following theorem:

Theorem 2.5 There are M;M1;M2 � 0 depending only on S , such that for any
�1; �2 2M.S/, the following hold:

(1) There is a hierarchy path H W Œ0;N �!M.S/ with H.0/D�1 and H.N /D�2 ,
and every hierarchy path is an M–quasigeodesic.

(2) For each Y � S , the projection of the hierarchy path H to C.Y / via subsurface
projection is an unparametrized quasigeodesic with uniform constants.

(3) If dY .�1; �2/�M1 , then the set of markings in H whose bases contain @Y is
a contiguous subpath denoted HY . Further, if ˛Y and ˇY denote the initial and
terminal markings of HY , respectively, then

dY .˛Y ; ˇY /� dY .�1; �2/� 2M2:

(4) For any E > 0 there is an E0 > 0 depending only on E and S such that, if
�1; �2 are E–cobounded, H is a hierarchy path between them, and �0

1
; �0

2
2H ,

then �0
1

and �0
2

are E0–cobounded.

Remark 2.6 This theorem essentially follows from the work in [17], with (1) being
[17, Theorem 6.10], (2) following from the construction, and (3) a consequence of [20,
Lemma 5.16]. Part (4) follows from (2) and (3). These statements also appear in [4].

Remark 2.7 (Hierarchy paths between cobounded markings) Given a pair of E–
cobounded markings �1; �2 2M.S/, Theorem 2.4 implies that dM.S/.�1; �2/ �

dC.S/.�1; �2/. It follows then from Theorem 2.5(2) that the projection to C.S/ of any
hierarchy path between �1 and �2 is a genuine quasigeodesic. See Section 5 below.

2.4 Convex cocompactness in Mod.S /

Convex cocompact subgroups of mapping class groups were introduced by Farb and
Mosher in [10]. A finitely generated G �Mod.S/ is convex cocompact if for some
x 2 T .S/ the orbit G � x is quasiconvex with respect to the Teichmüller metric
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on T .S/. Farb and Mosher verify that convex cocompactness is independent of the
chosen x 2 T .S/ and relate convex cocompact subgroups of mapping class groups to
hyperbolic extensions of surfaces groups. See [10; 11] for details.

Kent and Leininger and, independently, Hamenstädt gave a characterization of convex
cocompactness in terms of the curve graph C.S/:

Theorem 2.8 [13; 11] Let G � Mod.S/ be finitely generated. Then G is con-
vex cocompact if and only if some (any) orbit map G ! C.S/ is a quasi-isometric
embedding.

Our main goal in this note is to provide a characterization of convex cocompactness in
Mod.S/ that uses only the geometry of Mod.S/ itself, and neither Teichmüller space
nor the curve graph. This geometric characterization leads us to define the notion of
stability, which is defined for arbitrary finitely generated groups.

Remark 2.9 (The orbit map Mod.S/! T .S/ is exponentially distorted) As dis-
cussed in the final remark on page 119 of Farb and Mosher [10], because the orbit
map from the mapping class group to Teichmüller space is exponentially distorted,
quasiconvexity of the orbit G �x�T .S/ does not immediately imply any quasiconvexity
properties of the subgroup G �Mod.S/. In particular, Farb and Mosher remark that it
may be the case that a particular cyclic subgroup (constructed by Masur and Minsky
in [18]) may be quasiconvex in Mod.S/, even though Masur and Minsky showed that
it does not have quasiconvex orbit in T .S/.

3 Stability

In this section, we define stability and provide some basic properties. Informally, a
quasi-isometrically embedded subspace is stable if all quasigeodesics beginning and
ending in the space are forced to fellow-travel. This strong notion of convexity forces
hyperbolic-like behavior around the subspace.

Definition 2 Let f W Y !X be a quasi-isometric embedding between geodesic metric
spaces. We say Y is stable in X if for any L� 0 there is an RDR.L/� 0 so that if

 W Œa; b�!X and 
 0W Œa0; b0�!X are L–quasigeodesics with 
 .a/D 
 0.a0/ 2 f .Y /
and 
 .b/D 
 0.b0/ 2 f .Y /, then

dHaus.
; 

0/�R:

Note that when we say Y is stable in X we mean that Y is stable in X with respect to
a particular quasi-isometric embedding f W Y !X . Such a quasi-isometric embedding
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will always be clear from context, for example an undistorted subgroup H of a finitely
generated group G .

Remark 3.1 Suppose that f W Y ! X is a K–quasi-isometric embedding for some
K � 1 and that Y is stable in X . Let 
 be an L–quasigeodesic that begins and ends
on the image of Y . If � is a geodesic in Y whose end points map under f to the end
points of 
 , then f .�/ is a K–quasigeodesic and stability implies dHaus.
; �/�R0 ,
where R0 DR.maxfK;Lg/. Thus 
 remains within an R0–neighborhood of f .Y /.
In particular, f .Y / is quasiconvex in X .

It is well-known that when X is ı–hyperbolic the preimage of a quasiconvex subspace
through a quasi-isometric embedding is itself quasiconvex. This property, however,
fails when the space X is not hyperbolic. An important property of stability is that
it is preserved under quasi-isometric embeddings. This will be especially important
when characterizing stable subgroups of mapping class groups.

Proposition 3.2 Suppose that X;Y;Z are geodesic metric spaces and X ! Y !Z

are quasi-isometric embeddings. If X is stable in Z , then X is stable in Y .

Proof Let 
1 and 
2 be L–quasigeodesics in Y which share endpoints in X .
If f W Y ! Z is a K–quasi-isometric embedding, then f .
1/ and f .
2/ are L0–
quasigeodesics in Z that share endpoints in X , where L0 depends only on L and K .
By stability of X in Z , these quasigeodesics remain within an R–neighborhood of
one another, for R depending on L0 . We conclude that 
1 and 
2 have Hausdorff
distance no greater than K.RCK/. Since these constants depend only on K and L,
this completes the proof.

Lemma 3.3 If Y is stable in X then Y is ı–hyperbolic for some ı � 0.

Proof This follows from well-known arguments, so we only provide a sketch. See
[16, Lemma 6.2] for details. Fix a K–quasi-isometric embedding f W Y ! X . Let
x;y; z 2 Y and consider geodesics Œx;y�; Œy; z�; Œx; z� in Y joining these points. It
suffices to show that Œx;y� is contained in the ı–neighborhood of the other two
geodesics, for ı depending only on K and the stability constants.

If z0 denotes a point on Œx;y� nearest to z in Y , then both Œz; z0�[ Œz0;x� and Œz; z0�[
Œz0;y� are 3–quasigeodesics, where Œx;y� D Œx; z0� [ Œz0;y�. The point is that the
images of these (quasi-) geodesics under f W Y !X are quasigeodesics with uniform
constants. Hence, there is an R� 0 depending only on these constants so that

f .Œz; z0�[ Œz0;x�/�NR.f .Œx; z�// and f .Œz; z0�[ Œz0;y�/�NR.f .Œy; z�//:
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Since f is a K–quasi-isometric embedding, this implies that every point on Œx;y� is
within K.RCK/ of some point on either Œx; z� or Œy; z�. This completes the proof.

Although we have defined stability in a general setting, our focus will be the case of a
finitely generated group G . Fix a finite generating set S of G and let j � jS be the
associated word metric. Recall that any two generating sets of G give quasi-isometric
metrics and that a finitely generated subgroup H � G is called undistorted if the
inclusion H !G is a quasi-isometric embedding for some (any) word metrics on H

and G .

Definition 3 Let G be a finitely generated group with word metric j � jS . Then H �G

is stable if H is undistorted in G and H � .G; j � jS / is stable (as in Definition 2) for
any choice of word metric on H .

Note that in the definition of stability for H � G , since H is undistorted in G one
can use any word metric on H when defining stability. The next lemma, whose
proof follows directly from Proposition 3.2, shows that the stability of H �G is also
independent of the word metric on G .

Lemma 3.4 Let G be a finitely generated group. If H �G is stable with respect to
some word metric j � jS on G , then it is stable with respect to any word metric on G .

Remark 3.5 For a finitely generated group G , the property of stability of a sub-
group H is well-studied in the case where H is cyclic. In this case, H D hhi, the
generating element h is usually called either stable or Morse. See [6] and the references
found there.

4 The Masur–Minsky criteria for stability

To show that convex cocompact subgroups of mapping class groups are stable, we use
the criterion for hyperbolicity developed by Masur and Minsky in [16], which we adapt
for our purposes.

We say that a family of paths � in X is transitive for a subspace Y �X if any two
points in Y can be connected by a path in � .

Definition 4 Let X be a metric space with subspace Y �X and let � be a transitive
family of paths in X between points in Y . Then we call � a family of uniformly
contracting paths for Y �X if for each ˇW I !X there exists a map � W X ! I and
constants a; b; c > 0 such that the following hold:
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(1) For any t 2 I , diamX .ˇ.Œt; �.ˇ.t//�//� c .

(2) If d.x1;x2/� 1, then diam.ˇ.Œ�.x/; �.y/�/� c .

(3) If d.x; ˇ.�.x///� a and d.x;x0/� b � dX .x; ˇ.�.x///, then

diam.ˇŒ�.x/; �.x0/�/� c:

Remark 4.1 We do not assume that the projection ˇ.�.x// 2 im.ˇ/ is a bounded
distance from the points on ˇ which are closest to x .

Proposition 4.2 [16] Let � be a family of uniform contracting paths for Y � X .
Then for any L� 0 there exists an RDR.L/� 0 with the following property: if 
 is
a L–quasigeodesic that begins and ends on Y , then for any ˇ 2 � with ˇ having the
same endpoints as 
 , we have dHaus.
; ˇ/�R.

Proof This is proven in [16, Lemma 7.1], which states that any space X with a family
of uniformly contracting paths for X has stability of quasigeodesics. The proof of
Lemma 6:1 shows that any L–quasigeodesic ˛ whose endpoints agree with a ˇ 2 �
is contained in an R0–neighborhood of ˇ , where R0 depending only on L and the
uniform contracting constants (a; b; c from Definition 4). This proves our proposition.

The following consequence is now immediate:

Corollary 4.3 Suppose that f W Y ! X is a quasi-isometric embedding between
geodesic metric spaces and that f .Y /�X has a family of uniform contracting paths.
Then Y is stable in X .

5 Convex cocompactness implies stability

Our starting point is the following characterization of convex cocompact subgroups of
the mapping class group, which follows easily from [13] or by combining results of
[10] and [21]. We provide a few details using these references.

Recall that a collection of markings B �M.S/ is called E–cobounded if for any
�; � 2 B and any proper subsurface Y ¨ S we have dY .�; �/�E .

Lemma 5.1 Let G be a finitely generated subgroup of Mod.S/. If G is convex
cocompact then, for any marking � 2M.S/, there is an E � 0 so that the orbit
G ���M.S/ is E–cobounded. Conversely, if G is undistorted in Mod.S/ and there
is a marking �2M.S/ and an E � 0 so that G �� is E–cobounded, then G is convex
cocompact.

Algebraic & Geometric Topology, Volume 15 (2015)



Convex cocompactness and stability in mapping class groups 2847

Proof The first statement is contained in the proof of [13, Theorem 7.2], where
the assumption on G is that the orbit map from G into C.S/ is a quasi-isometric
embedding.

Alternatively, we can see E–coboundedness of the orbit G �� using the fact that orbits
of G in T .S/ are quasiconvex. Let x 2 T .S/ be such that every curve in � has
bounded length in x . If there exists subsurfaces Yi ¨ S and gi 2G with

dYi
.�;gi ��/!1

then the Teichmüller geodesics �i joining x and gi �x become �i –thin for �i! 0 [21,
Theorem 5.5]. (See also [22, Theorem 4.1].) However, the orbit G �x is in some fixed
thick part of T .S/ and so we must have that points along � get arbitrary far from the
orbit G �x . This contradicts orbit quasiconvexity of G in T .S/.

The second statement follows from the Masur–Minsky distance formula (Theorem 2.4).
Since G is undistorted, we may coarsely measure distance in G by distance in the
orbit G ���M.S/. That is, for any g1;g2 2G ,

(1) dG.g1;g1/�dM.S/.g1 ��;g2 ��/�dS .g1 ��;g2 ��/C
X

Y ¨S

ŒdY .g1 ��;g2 ��/�A;

where the symbol � depends only on the surface S and the quasi-isometry constant
of the orbit map G !M.S/. Choosing the threshold A in the distance formula
(Theorem 2.4) to be larger than E shows that distance in G is coarsely distance in
its curve graph orbit. Hence, the orbit map G ! C.S/, given by g 7! g � �, is a
quasi-isometric embedding and so G is convex cocompact by Theorem 2.8. This
completes the proof.

For the remainder of this section suppose that G �Mod.S/ is convex cocompact. In
order to show that G is stable in Mod.S/, it suffices to show that G �� is stable in
M.S/. This follows from the fact that Mod.S/ is quasi-isometric to M.S/ and G is
undistorted in Mod.S/. By Lemma 5.1, G �� is E–cobounded for some E � 0. We
proceed by showing that hierarchy paths form a family of uniform contracting paths
for G ���M.S/.

Our use of hierarchy paths is motivated by the Masur–Minsky slice comparison lemma
[17, Lemma 6.7], Behrstock’s work on the asymptotic cone of Mod.S/ [1], and
Duchin and Rafi’s work on divergence in Teichmüller space [7]. The strong contraction
property of hierarchy paths between cobounded pants decompositions was also proven
in [4, Theorem 4.4] in their work on the Weil–Petersson geometry of T .S/. We have
included a proof of Proposition 5.4 here for completeness and as an application of the
Masur–Minsky criteria (Proposition 4.2).
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Let pWM.S/! C.S/ be the map which associates to a marking � the collection of
curves which appear in the base of �, ie a2p.�/ if and only if a2 base.�/. This map,
called the shadow map, is coarsely 4–Lipschitz [17, Lemma 2.5]. For any markings
�; � 2M.S/, let

H DH.�; �/W Œ0;N �!M.S/

be a hierarchy path with H.0/ D � and H.N / D � . Recall that H is an M–
quasigeodesic in M.S/, where M depends only on the topology of S (Theorem 2.5(1)).
If � and � are E–cobounded, then all the markings that appear in H are E–cobounded,
for some E � 0 that depends only E and the surface S (Theorem 2.5(4)). By the
argument in Lemma 5.1,

hD p ıH W Œ0;N �! C.S/

is a quasigeodesic in C.S/ from p.�/ to p.�/ whose quasigeodesic constant de-
pends only on E . More precisely, if we choose the cutoff A in the distance formula
(Theorem 2.4) to be larger than E , then for any i; j 2 Œ0;N � we have

ji � j j �M � dM.S/.H.i/;H.j //CM

�MK � dS .h.i/; h.j //CMK2
CM;

where K depends only on E and S . Hence, hD p ıH is a KE –quasigeodesic in
C.S/, where KE DK2M .

As hW Œ0;N �! C.S/ is a KE –quasigeodesic into the ı– hyperbolic space C.S/, there
is a nearest point retraction nhW C.S/! h, as discussed in Section 2.2. Define the
projection projhW C.S/! Œ0;N � to the domain of the path h so that, for c 2 C0.S/,

h.projh.c//D nh.c/:

That is, projh.c/ is a parameter i 2 Œ0;N � so that the distance from c to the image of
h is minimized at h.i/. By the properties of nh stated in Section 2.2, it is immediate
that there is an L (depending only on E ) so that this projection is both L–coarsely
well-defined and coarsely L–Lipschitz. We emphasize that this uses only the facts that
C.S/ is hyperbolic and hW Œ0;N �! C.S/ is a uniform quasigeodesic. We call L the
Lipschitz constant for the projection projhW C.S/! Œ0;N �.

The projection projhW Œ0;N �! C.S/ induces a corresponding map from M.S/ to
Œ0;N �. Let

ProjH WM.S/! Œ0;N �

be defined as follows: For any ˛ 2M.S/, set ProjH .˛/D projh.a/, for some choice
of curve a 2 p.˛/ � C.S/. Note that for different choices of curves a; a0 2 p.˛/
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we have dS .a; a
0/� 4 and so jprojh.a/� projh.a

0/j � 4L, where L is the Lipschitz
constant for the projection projhW C.S/! Œ0;N �.

Remark 5.2 It may seem slightly unnatural to define the projection ProjH to the
domain of the path H , rather than to its image in M.S/. We have done so for two
reasons. First, this allows for a direct application of Proposition 4.2, which verifies
that quasigeodesics fellow-travel in a uniform way. Indeed, projecting to the domain
of a path is the approach of Masur and Minsky in [16]. Second, it seems that such a
projection of a marking � to a hierarchy path H need not be a uniformly bounded
distance from the closest point to � on H . Using Proposition 4.2 avoids this subtlety.

Our goal for the rest of this section, achieved in Proposition 5.4 below, is to show
that the collection of hierarchy paths between markings in a fixed orbit of a convex
cocompact subgroup G is a family of uniform contracting paths for the orbit in M.S/.
That convex cocompact subgroups are stable, Theorem 5.5 below, follows quickly
from Proposition 5.4 and Corollary 4.3. The proof of the contracting property uses
the following theorem, which can be derived from work of Behrstock [1], though the
version we use appears in [7]. See also Brock, Masur and Minsky [4, Theorem 4.3].

Theorem 5.3 [1, Theorem 6.5; 7, Theorem 4.2] Given E , there exist B1 and B2 so
that if H is a hierarchy path in M.S/ between E–cobounded markings � and � then
for any ˛ 2M.S/ with d.˛;H /� B1 and RD d.˛;H /=B1 we have

diamC.S/.h.ProjH .BR.˛////� B2;

where BR denotes the R–ball in M.S/.

Proposition 5.4 Let B �M.S/ be a collection of E–cobounded markings. The set
of all hierarchy paths between markings in B is a family of uniformly contracting paths
for B �M.S/.

Proof Let �; � 2 B be arbitrary and let H W Œ0;N �!M.S/ be a hierarchy path with
H.0/ D � and H.N / D � . We show that the conditions from Proposition 4.2 are
satisfied for the projections ProjH defined above, with constants a; b; c depending
only on E . For condition (1), we must show that for any i 2 I ,

diamM.S/H.Œi;ProjH .H.i//�/

is bounded by a constant depending only on KE . As H is an M–quasigeodesic,
this quantity is bounded by M ji � ProjH .H.i//j CM . Since h.i/ D p.H.i//, for
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any curve a 2 p.H.i// the difference jprojh.a/� i j is bounded by L, the Lipschitz
constant for the projection projhW C.S/! Œ0;N �. Hence,

M ji �ProjH .H.i//jCM �M ji �Projh.a/jCM �M �LCM;

as required.

For condition (2), we show that, for any ˛; ˇ 2M.S/ with dM.S/.˛; ˇ/� 1,

diamM.S/.H.ŒProjH .˛/;ProjH .ˇ/�//

is bounded by a constant depending only on E . This is similar to condition (1), since
again it suffices to bound jProjH .˛/�ProjH .ˇ/j. Let a 2 p.˛/ and b 2 p.ˇ/. Then
dS .a; b/� 8 (p is 4-Lipschitz) and so jprojh.a/� projh.b/j � 8L. Hence,

jProjH .˛/�ProjH .ˇ/j � jprojh.a/� projh.b/j � 8L:

For condition (3), we will apply Theorem 5.3. Before doing so, we must first show
that there is a B3 � 0 so that for any ˛ 2M.S/,

dM.S/.˛;H.ProjH .˛//� B3 � dM.S/.˛;H /;

whenever dM.S/.˛;H / is sufficiently large. Here, as in Theorem 5.3, dM.S/.˛;H /

is the minimum distance from ˛ to any marking in the image of H .

Let n.˛/ be a marking on H that is closest to ˛ and set ˛ D H.ProjH .˛//. By
construction, dS .˛; ˛/� dS .˛; n.˛//. For a proper subsurface Y ¨ S ,

(2) dY .˛; ˛/� dY .˛; n.˛//C dY .n.˛/; ˛/� dY .˛; n.˛//CE:

Plugging the inequality (2) into the distance formula (Theorem 2.4) with threshold
A� 2E gives

dM.S/.˛; ˛/� B3 � dM.S/.˛; n.˛//;

for some B3 � 0. Note that, to eliminate the additive constant in the distance formula,
we have used that dM.S/.˛; n.˛//¤ 0.

Now set aDB1B3; bD 1=B1B3 , and cDM.KE �B2CKEC1/, where B1 and B2

are as in Theorem 5.3 and B3 was determined above. Let ˛ 2M.S/ with

dM.S/.˛;H.ProjH .˛///� a

and ˇ 2M.S/ with

dM.S/.˛; ˇ/� b � dM.S/.˛;H.ProjH .˛///:

Then
dM.S/.˛;H /�

1

B3

� dM.S/.˛;H.ProjH .˛///�
a

B3

D B1
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and

dM.S/.˛; ˇ/� b � dM.S/.˛;H.ProjH .˛///

�
1

B1B3

� dM.S/.˛;H.ProjH .˛///�
1

B1

� dM.S/.˛;H /:

Hence, ˇ 2 BR.˛/ for RD dM.S/.˛;H /=B1 , and so by Theorem 5.3

dC.S/.h.ProjH .˛//; h.ProjH .ˇ///� B2:

Since h is a KE –quasigeodesic, jProjH .˛/�ProjH .ˇ/j �KE �B2CKE , and so we
conclude that

diamM.S/.H.ŒProjH .˛/;ProjH .ˇ/�/�M.KE �B2CKE/CM D c:

This completes the proof of condition .3/, and shows that the collection of hierarchy
paths between markings in B is a family of uniformly contracting paths for B in M.S/.

Theorem 5.5 If G �Mod.S/ is convex cocompact, then G is stable.

Proof Since G is convex cocompact, it is undistorted in Mod.S/. Fix � 2M.S/

and recall that the orbit map Mod.S/ ! M.S/, given by g 7! g � �, is a quasi-
isometry. Hence, by Proposition 3.2, it suffices to show that G!M.S/ is stable. By
Lemma 5.1, the orbit G �� is E–cobounded for some E � 0. Proposition 5.4 then
implies that the set of all hierarchy paths between vertices in the orbit G �� is a family
of uniform contracting paths for G �� in M.S/. By Corollary 4.3, this implies that
G!G ���M.S/ is stable. Thus G is a stable subgroup of Mod.S/.

The following corollary is now immediate.

Corollary 5.6 Let G � Mod.S/ be convex cocompact. Then G is quasiconvex in
Mod.S/ with respect to any (finite) generating set.

6 Stability implies convex cocompactness

The proof of the converse to Theorem 5.5 is a straightforward contradiction argument
using the structure of hierarchy paths and the marking complex (see Section 2.3).
Before we proceed with the proof, we recall some notions from [2] about the product
regions of M.S/ associated to simplices of C.S/. By a simplex of C.S/, we mean a
collection of pairwise adjacent vertices of C.S/.
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Let �� C.S/ be a simplex, and let Q.�/�M.S/ be the set of markings whose bases
contain �. We note that Q.�/ is quasi-isometric to StabMod.S/.�/, the stabilizer
of � in Mod.S/. Let �.�/� S be the components of S n� which are not pairs of
pants, including the annuli about the curves of �. There is a map

Q.�/!
Y

Y 2�.�/

M.Y /;

where M.Y /D C.Y / if Y is an annulus. The map is given by restricting (or projecting)
a marking � 2 Q.�/ to markings on the subsurfaces in �.�/ and, for each ˛ 2 �,
associating the transversal to ˛ in � to a corresponding point in C.˛/. The following
lemma of Behrstock and Minsky is essentially an application of the distance formula
(Theorem 2.4):

Lemma 6.1 [2, Lemma 2.1] The correspondence

Q.�/!
Y

Y 2�.�/

M.Y /

is a P –quasi-isometry, where P � 0 depends only on the surface S .

We can now give the idea of the proof of Theorem 6.3. If a group G �Mod.S/ is
stable but not convex cocompact, then Lemma 5.1 implies that the G–orbit of some
marking � 2M.S/ does not have bounded subsurface projections. Thus, for any
E > 0, we can find a marking � 2 G �� such that dY .�; �/ > E for some proper
subsurface Y ¨ S . Theorem 2.5 implies that there is a hierarchy path H from � to �
and a subsegment HY �H with HY �Q.@Y / so that jHY j �E . If ˛Y ; ˇY 2HY

are the initial and terminal markings of HY , respectively, then stability of G implies
that there are markings �1; �2 2G �� such that �1 and �2 are within some uniform
distance of ˛Y and ˇY . Using the product structure in Lemma 6.1, we can use HY to
build two quasigeodesics between �1 and �2 with constants depending only on S ,
whose Hausdorff distance is coarsely at least E . Since E > 0 was chosen arbitrarily,
this contradicts the stability assumption for G ��.

In this last step, we are taking advantage of the well-known fact that quasigeodesics in
product spaces need not fellow-travel, a variation of which we record in the following
lemma:

Lemma 6.2 Let X and Y be connected, infinite-diameter graphs and let Z be the
1-skeleton of X �Y , endowed with the graph metric. For any vertices z1 D .x1;y1/

and z2D .x2;y2/ of Z , there are 3–quasigeodesics 
a; 
b , each from z1 to z2 , so that

dHaus.
a; 
b/�maxfdX .x1;x2/; dY .y1;y2/g:
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y1

y2

y3

Y

x1 x2

z1

.x1; �Y/

.�X ;y1/

.�X ;y3/

.x2; !Y/

z2

.x2; �Y/

X

Figure 1: The path 
aD .�X ;y1/�.x2; �Y/ is far from the path 
bD .x1; �Y/�

.�X ;y3/ � .x2; !Y/

Proof The proof is easily seen with Figure 1, but we provide the written details here.
Since we are working only with graphs, all paths will be considered as sequences of
adjacent vertices indexed by intervals of integers. Hence, for a path 
 W Œ0;N �! Z ,
we have `.
 jŒi;j �/D jj � i j, where the length of such a path is the number of edges it
traverses. In this case, to show that 
 is a 3–quasigeodesic, it suffices to show that for
any i � j we have

`.
 jŒi;j �/� 3 � dZ.
 .i/; 
 .j //:

Also, recall that for any two vertices z1 D .x1;y1/ and z2 D .x2;y2/ of Z , the graph
metric is

(3) dZ.z1; z2/D dX .x1;x2/C dY.y1;y2/:

Now, suppose that d WD dX .x1;x2/� dY.y1;y2/ and let �X be a geodesic path in X
that joins x1 to x2 . Similarly, let �Y be a geodesic path in Y that joins y1 to y2 . For
any y 2 Y , we denote by .�X ;y/ the corresponding geodesic path in Z whose first
coordinate entries are the vertices of �X and whose second coordinate is y . With this
notation, let 
a be the path in Z that is the concatenation (read from left to right)


a D .�X ;y1/ � .x2; �Y/:

It is clear that 
a is a path of adjacent vertices of Z which joins z1 to z2 . Moreover,

a is a geodesic path. This follows from (3) and the observation that 
a does not
backtrack in either coordinate.

We now construct a 3–quasigeodesic 
b which also joins z1 to z2 but travels far
from 
a . Let y3 be a vertex of Y with the property that dY.y1;y3/D dX .x1;x2/D d .
Let �Y be a geodesic path in Y between y1 and y3 and let !Y be a geodesic path in Y
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between y3 and y2 . Now define 
b to be the path of adjacent vertices of Z given by


b D .x1; �Y/ � .�X ;y3/ � .x2; !Y/:

As before, 
b is a path from z1 to z2 . Also, since 
b contains the point .x1;y3/, the
Hausdorff distance from 
b to 
a is no less than the distance from .x1;y3/ to 
a .
Since

dZ..x1;y3/; 
a/DminfdZ..x1;y3/; .�X ;y1//; dZ..x1;y3/; .x2; �Y/g

�minfdZ..x1;y3/; .x1;y1//; dZ..x1;y3/; .x2;y3//g

DminfdY.y3;y1/; dX .x1;x2/g D d;

we have dHaus.Z/.
a; 
b/ � d D dX .x1;x2/. It remains to show that 
b is a 3–
quasigeodesic.

As in the construction of 
a , both .x1; �Y/ � .�X ;y3/ and .�X ;y3/ � .x2; !Y/ are
geodesic subpaths of 
b . Hence, let zi 2 .x1; �Y/ and let zj 2 .x2; !Y/ and note that
dZ.zi ; zj / � dX .x1;x2/. Denote by 
bjŒzi ; zj � the portion of 
b between zi and zj .
We compute

`.
bjŒzi ; zj �/D dZ.zi ; .x1;y3//C dZ..x1;y3/; .x2;y3//C dZ..x2;y3/; zj /

� 3 � dX .x1;x2/� 3 � dZ.zi ; zj /:

By our remark in the first paragraph of this proof, we are done.

The following theorem completes the proof of Theorem 1.1.

Theorem 6.3 Suppose that G �Mod.S/ is stable. Then G is convex cocompact.

Proof Assume towards a contradiction that G � Mod.S/ is stable but not convex
cocompact. For a fixed � 2M.S/, the orbit map G!M.S/ given by g 7! g �� is
a K–quasi-isometric embedding for some K � 1. By Proposition 3.2, we have that
G �� is stable in M.S/.

Let L D maxfK;M g, where M is the quasigeodesic constant for a hierarchy path
(Theorem 2.5(1)), and set A1 D R.L/, the stability constant for L–quasigeodesics
in M.S/ which begin and end on G ��. Since any two markings in the orbit G �� are
joined by both hierarchy paths and K–quasigeodesics which are contained in G ��, any
hierarchy path between markings in G �� is contained in the A1 –neighborhood of G ��

(see Remark 3.1). Finally, set A2 DR.3P2C 2A1/, where P is as in Lemma 6.1.

Since G is undistorted but not convex cocompact, Lemma 5.1 implies that for any
E � 0 there is a g 2G and a proper subsurface Y � S such that

dY .�;g ��/�E:
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For E �M1 , Theorem 2.5(3) implies that any hierarchy path H W Œ0;N �!M.S/

with H.0/D � and H.N /D g �� contains a subpath HY such that @Y � base.�/
for each � 2 HY , ie HY � Q.@Y /. If we denote the initial marking and terminal
markings of HY by ˛Y and ˇY , respectively, then

(4) dM.Y /.˛Y ; ˇY /�
1
4
dY .˛Y ; ˇY /�

1
4
.E � 2M2/;

with the last inequality in (4) following from Theorem 2.5(3). Set E0 D 1
4
.E � 2M2/.

By Lemma 6.1, Q.@Y / is P –quasi-isometric to
Q

X��.@Y /M.X /. In order to apply
Lemma 6.2, set Y DM.Y / and X D

Q
X��.@Y /nfY gM.X /. Then

Z D X �Y D
Y

X��.@Y /

M.X /:

Since ˛Y ; ˇY 2 Q.@Y /, we may use the correspondence of Lemma 6.1 to view ˛Y

and ˇY in the product space Z . Equation (4) implies that dY.˛Y ; ˇY /�E0 , where
dY.˛Y ; ˇY / is just the distance between ˛Y and ˇY in M.Y /. Lemma 6.2 implies
that there exists 3–quasigeodesics 
 1 and 
 2 in Z that join the markings ˛Y and ˇY

in Z and whose Hausdorff distance in Z is greater than or equal to E0 .

Using the P –quasi-isometry in Lemma 6.1, we may view 
 1 and 
 2 as 3P2 –
quasigeodesics in M.S/ that join the markings ˛Y and ˇY . Measuring Hausdorff
distance in M.S/, we have

(5) dHaus.M.S//.

1; 
 2/�

E0�P

P
:

Since the original hierarchy path H joins markings in G � �, it is contained in an
A1 –neighborhood of the orbit G ��. Hence, there are markings �1; �2 2G �� so that

(6) dM.S/.˛Y ; �1/�A1 and dM.S/.ˇY ; �2/�A1;

where A1 depends only on S , as above. By appending initial and terminal geodesic
segments of length no more than A1 to 
 1 and 
 2 , we may consider these paths as
.3P2C 2A1/–quasigeodesics in M.S/ that join the orbit points �1; �2 2G ��. By
our choice of A2 DR.3P2C 2A1/, the stability constant for .3P2C 2A1/, any two
.3P2C 2A1/–quasigeodesics between markings in G �� have Hausdorff distance no
greater than A2 .

Since E � 0 was arbitrary, we may choose E > 4.PA2CP /C 2M2 so that

E0 D 1
4
.E � 2M2/ > PA2CP:
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Then by (5) we have

dHaus.M.S//.

1; 
 2/�

E0�P

P
>A2:

This contradicts the assertion that the .3P2C2A1/–quasigeodesics 
 1 and 
 2 between
�1; �2 2 G �� must be A2 –Hausdorff close. We conclude that stable subgroups of
Mod.S/ are convex cocompact, as required.
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