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On the multiplicity of tangent cones of
monomial curves

Alessio Sammartano

Abstract. Let Λ be a numerical semigroup, C⊆An the monomial curve singularity asso-
ciated to Λ, and T its tangent cone. In this paper we provide a sharp upper bound for the least
positive integer in Λ in terms of the codimension and the maximum degree of the equations of T ,
when T is not a complete intersection. A special case of this result settles a question of J. Herzog
and D. Stamate.

1. Introduction

Let G be a standard graded algebra over a field k. It is an important problem
in commutative algebra and algebraic geometry to find formulas and inequalities
that relate the multiplicity or degree e(G) to other invariants of G, such as the
codimension, degrees of the defining equations, or degrees of the higher syzygies.
Significant advancements have been achieved in this area in recent years, see for
instance [4], [6], [17], [26].

There is an obvious upper bound for e(G) when G has codimension c and is
defined by forms of degree d, namely e(G)≤dc, with equality holding if and only if
G is a complete intersection. We will assume that G is not a complete intersection,
then the question becomes how close can e(G) actually be to dc. A general result
in this direction was proved in [14] for almost complete intersections, see also [22].

It is interesting to investigate this problem in special situations. In this paper,
we are concerned with the case when G is the tangent cone of an affine monomial
curve singularity. Let Λ=〈n0, ..., nc〉 be a numerical semigroup, i.e. a cofinite
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submonoid of (N,+). The ring R=k�Λ�=k�tn : n∈Λ�⊆k�t� is the completed local
ring at the origin of the curve C⊆Ac+1 parametrized by X0=tn0 , ..., Xc=tnc . The
associated graded ring of R is grm(R)=⊕i≥0m

i/mi+1, where m denotes the maximal
ideal of R; it is the coordinate ring of the tangent cone T to C at the singularity
0∈C. The combinatorial structure of such rings allows to formulate more precise
results, and thus the study of the algebraic properties of grm(R) is an active topic of
research, with recent progress concerning especially its defining equations [13], [19],
[20], [25], Hilbert function [2], [27], Cohen–Macaulayness [3], [21], [24], [32], and
related notions [5], [11], [12]. Notice that if Λ is minimally generated by n0<...<nc

then we have codim(R)=codim(grm(R))=c and e(R)=e(grm(R))=n0. In the case
c=1 of plane curves, grm(R) is always a complete intersection, so we assume c≥2.

In a recent work [20] Herzog and Stamate consider tangent cones defined by
quadrics, calling “quadratic” those numerical semigroups for which this condition
occurs. They propose the following problem:

Question 1. ([20, Question 1.11]) Let Λ=〈n0, ..., nc〉 be a numerical semi-

group, R=k�Λ� and G=grm(R). Assume that G is defined by quadratic equations.

Are the following statements true?

(a) Either e(G)≤2c−2c−2 or e(G)=2c.
(b) If e(G)=2c−2c−2, then G is an almost complete intersection.

This question was motivated in part by experimental evidence and by an affir-
mative answer under the assumption that G is Cohen–Macaulay [20, Theorem 1.9].
Observe that the proposed inequality is sharper than the one of [14, Theorem 1],
which in this case would yield e(G)≤2c−c+1.

In this paper, we give a complete affirmative answer to Question 1. In fact,
Theorem 3 provides a bound on the multiplicity of non-complete intersection tan-
gent cones whose degrees of the equations are bounded by an arbitrary d≥2; the
case d=2 corresponds to Question 1. Furthermore, we prove a stronger statement
than item (b). In Proposition 5 we determine the minimal free resolutions of R and
G in the case when the bound is achieved. Finally, we show in Proposition 7 that
the bound is sharp.

2. Main result

This section is devoted to the proof of the main theorem. We refer to [16] for
definitions and background.

We will need the following discrete optimization results:

Lemma 2. Let c, d∈N be such that c, d≥2 and E={ε1, ..., εc}⊆N a multiset

with 1≤εi≤d for every i.
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(1) If
∑c

i=1 εi=(c−1)d then
∏c

i=1 εi≥(d−1)dc−2, with equality if and only if

E={1, d−1, d, ..., d}.
(2) If

∑c
i=1 εi=(c−1)d+1 then

∏c
i=1 εi≥dc−1.

Proof. The two proofs are similar, so we only present the first one. Suppose
without loss of generality that ε1≤...≤εc. If c=d=2 then the result is obvious, so
we assume c+d≥5. Define

ρ=min{i : εi > 1}, τ =max{i : εi <d}.

Since c<
∑c

i=1 εi<cd, both indices are well-defined integers in {1, ..., c}.
If ρ>τ then ρ=τ+1 and

∑c
i=1 εi=τ+(c−τ)d; however, since

∑c
i=1 εi=(c−1)d,

we derive (τ−1)d=τ and thus d=τ=2. In this case, E={1, 1, 2, ..., 2} and the
equality

∏c
i=1 εi=(d−1)dc−2 holds.

If ρ=τ then we have
∑c

i=1 εi=(τ−1)+ετ +(c−τ)d, which forces ετ =(τ−1)(d−
1). However, we have 2≤ετ≤d−1, whence τ=2 and ε2=d−1 . Thus, in this case
E={1, d−1, d, ..., d} and the equality

∏c
i=1 εi=(d−1)dc−2 holds.

If ρ<τ then we define another multiset of integers ε′i by setting ε′ρ=ερ−1, ε′τ =
ετ +1, ε′i=εi for i 	=ρ, τ . Since ερ+ετ =ε′ρ+ε′τ and 0≤ετ−ερ<ε′τ−ε′ρ we have ερ ·ετ>
ε′ρ ·ε′τ and hence

∏c
i=1 εi>

∏c
i=1 ε

′
i. However, we still have

∑c
i=1 ε

′
i=(c−1)d, thus,

by double induction on τ−ρ and ετ−ερ, we conclude that
∏c

i=1 ε
′
i≥(d−1)dc−2.

The desired statements follow. �

We are ready to present the main result of this paper.

Theorem 3. Let Λ⊆N be a numerical semigroup, R=k�Λ�, and G=grm(R)
the associated graded ring. Assume that G has codimension c and is defined by

equations of degree at most d, for some c, d≥2. If G is not a complete intersection,

then the multiplicity of G satisfies

e(G)≤ dc−(d−1)dc−2.

Furthermore, if equality holds then G is a Cohen–Macaulay almost complete inter-

section.

Proof. Let n0<...<nc be the minimal set of generators of Λ, and define a
regular presentation πR :k�X0, ..., Xc��R=k�Λ� by πR(Xi)=tni . This induces a
regular presentation πG :P=k[x0, ..., xc]�G. Let I=ker(πR) and J=ker(πG) denote
the defining ideal of R and G, respectively. The ideal I is generated by all binomials∏c

j=0 X
αj

j −
∏c

j=0 X
βj

j with
∑c

j=0 αjnj=
∑c

j=0 βjnj . The ideal J is generated by the
initial forms of elements of I, so by binomials and monomials. By assumption, the
minimal generators of J have degree at most d.
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For each i=1, ..., c, define

di = inf
{
δ ∈N

+ : 0 	=Xδ
i −

c∏
j=0

X
αj

j ∈ I for some αj ∈N with
c∑

j=0
αj ≥ δ

}
.

First of all, we observe that di<∞, since Xn0
i −Xni

0 ∈I. By definition, di is the
lowest degree of a form g∈J containing a pure power of Xi in its support. It follows
in particular that di≤d, otherwise J would have a minimal generator of degree
di>d, giving a contradiction. Up to multiplying by Xd−di

i , we conclude that there
exists a nonzero binomial fi=Xd

i −
∏c

j=0 X
αj

j ∈I such that
∑c

j=0 αj≥d. Let gi∈J
be the initial form of fi. Note that either gi=xd

i −
∏c

j=0 x
αj

j or gi=xd
i , depending

on whether
∑c

j=0 αj=d or
∑c

j=0 αj>d.
Let ≺ denote the reverse lexicographic monomial order on P with the variables

ordered by xc�xc−1�...�x0, and denote leading monomials by LM≺(−). Then we
have LM≺(gi)=xd

i for every i=1, ..., c: this is obvious for those i such that fi is not
homogeneous. If fi=Xd

i −
∏c

j=0 X
αj

j ∈I with
∑c

j=0 αj=d, then necessarily αj>0
for some j<i, as the generators of Λ are in increasing order; we conclude that
xd
i �

∏c
j=0 x

αj

j .
Since the sub-ideal (xd

1, ..., x
d
c)⊆LM≺(J) is generated by a regular sequence, by

upper semicontinuity the sub-ideal J ′=(g1, ..., gc)⊆J is also generated by a regular
sequence. By assumption J is generated in degrees at most d and it cannot be
generated by a regular sequence, therefore J ′ and J must differ in some degree d′≤d.
However, this implies that J ′ and J differ in degree d. In fact, the quotient P/J ′

is Cohen-Macaulay of dimension 1, so the local cohomology H0
mP

(P/J ′) vanishes,
and the non-zero submodule J/J ′⊆P/J ′ contains no non-trivial submodule of finite
length. We conclude that there exists a homogeneous g0∈J \(g1, ..., gc), and it may
be chosen to be a monic monomial or binomial of degree d.

Suppose that LM≺(g0)=xd
i for some i=1, ..., c. Then g0−gi 	=0 has degree d

and it does not contain any pure power in its support, as no homogeneous binomial
in I contains two distinct pure powers in its support. Thus, up to replacing g0 with
g0−gi, we may assume that LM≺(g0)=M is a monomial of degree d divisible by at
least two distinct variables of P .

We obtain the inclusion of monomial ideals

H =
(
LM≺(g0),LM≺(g1), ...,LM≺(gc)

)
⊆L=

(
LM≺(g) : g ∈J

)
.

Now we distinguish two cases.
Case 1: x0 does not divide M. Then H is a (x1, ..., xc)-primary ideal of P of

dimension 1. The variable x0 is a non-zerodivisor on P/H, hence the multiplicity
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can be computed as

e

(
P

H

)
= e

(
P

H+(x0)

)
=dimk

(
P

H+(x0)

)
=dimk

(
k[x1, ..., xc]

(M, xd
1, ..., x

d
c)

)

= dimk

(
k[x1, ..., xc]
(xd

1, ..., x
d
c)

)
−dimk

(
(M, xd

1, ..., x
d
c)

(xd
1, ..., x

d
c)

)
.

The first quantity in this difference is equal to dc, whereas, writing M=
∏c

j=1 x
μj

j

where
∑c

j=1 μj=d and μj<d for all j, the second quantity is

dimk

(
(M, xd

1, ..., x
d
c)

(xd
1, ..., x

d
c)

)
=Card

{
(γ1, ..., γc) : μj ≤ γj <d

}
=

c∏
j=1

(d−μj).

By Lemma 2, the least possible value of the product
∏c

j=1(d−μj) with 1≤d−μj≤d

and subject to the constraint
∑c

j=1(d−μj)=cd−deg(M)=(c−1)d is (d−1)dc−2. In
conclusion, we have e(P/H)≤dc−(d−1)dc−2.

Case 2: x0 divides M. Write M=xα
0N where N is a monomial in x1, ..., xc

of degree d−α, with 0<α<d. A shortest primary decomposition of H is then
H=H1∩H2, where H1=(xα

0 , x
d
1, ..., x

d
c) and H2=(N , xd

1, ..., x
d
c). Note that H1 has

dimension 0 while H2 has dimension 1. It follows, for instance from the associativity
formula of multiplicity [16, Ex. 12.11.e], that e(P/H)=e(P/H2). The variable x0
is a non-zerodivisor on P/H2, and as above we compute

e

(
P

H

)
= e

(
P

H2

)
= e

(
P

H2+(x0)

)
=dimk

(
k[x1, ..., xc]

(N , xd
1, ..., x

d
c)

)

= dimk

(
k[x1, ..., xc]
(xd

1, ..., x
d
c)

)
−dimk

(
(N , xd

1, ..., x
d
c)

(xd
1, ..., x

d
c)

)

Proceeding as in Case 1, we estimate the second quantity in this difference to be
at least dc−1, since now we have deg(N )≤d−1. Therefore, in this case we have
e(P/H)≤dc−dc−1.

In either case we see that e(P/H)≤dc−(d−1)dc−2. Since both ideals H and
L have codimension c, the inclusion H⊆L implies that e(P/L)≤e(P/H). Finally,
the fact that a homogeneous ideal and its initial ideal have the same multiplicity
yields e(G)=e(P/J)=e(P/L)≤e(P/H)≤dc−(d−1)dc−2 as desired.

Now suppose that the equality e(G)=dc−(d−1)dc−2 holds, then necessarily
e(P/L)=e(P/H)=dc−(d−1)dc−2. In particular, Case 2 cannot occur, hence P/H

is Cohen–Macaulay since x0 is a non-zerodivisor by Case 1. We have an inclusion of
ideals H⊆L of the same codimension c and with the smaller one being (x1, ..., xc)–
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primary; the associativity formula of multiplicity forces H=L. We deduce that
the initial ideal of J is a Cohen–Macaulay almost complete intersection; by upper
semicontinuity, the same must be true for J itself. This concludes the proof.

We also observe that the equality e(P/H)=dc−(d−1)dc−2 forces the product∏c
j=1(d−μj) to achieve the least possible value (d−1)dc−2. By Lemma 2 (1), up

to renaming the variables x1, ..., xc, we necessarily have M=xd−1
1 x2. Thus, if the

equality e(G)=dc−(d−1)dc−2 holds, then we have L=(xd
1, x

d
2, ..., x

d
c , x

d−1
1 x2), up to

renaming the variables. �

Theorem 3 can be applied readily in the negative direction.

Example 4. Let Λ=〈100, n1, n2, n3, n4〉 be minimally generated by 100<n1<

n2<n3<n4. From Theorem 3 we deduce that grm(R) must have a minimal relation
of degree at least 4.

We remark that the converse of the last statement in Theorem 3 is false. That
is, if grm(R) is a Cohen–Macaulay almost complete intersection, it may happen
that e(grm(R))<dc−(d−1)dc−2. This is the case for instance for the quadratic
semigroup Λ=〈11, 13, 14, 15, 19〉, see also [20, Remark 1.10].

3. The extremal case

In this section we investigate further the case when the upper bound in Theo-
rem 3 is attained, showing that this condition forces very strong properties.

First, we determine the minimal free resolutions of the semigroup ring R and
tangent cone G.

Proposition 5. Let Λ⊆N be a numerical semigroup, R=k�Λ�, and G=
grm(R). Assume that G has codimension c≥2, is defined by equations of degree

at most d≥2, and is not a complete intersection. If e(G)=dc−(d−1)dc−2 then the

Betti numbers of R and G are

βi(R)=βi(G)=
(
c−2
i

)
+3

(
c−2
i−1

)
+2

(
c−2
i−2

)
for i=0, ..., c.

Proof. We have shown at the end of the proof of Theorem 3 that, under these
assumptions and up to renaming the variables, we have L=LM≺(J)=(xd

1, x
d
2, ..., x

d
c ,

xd−1
1 x2). We determine the minimal graded free resolution of P/L. Observe

that P/L∼=P ′/L′⊗kP
′′/L′′ where L′=(xd

1, x
d−1
1 x2, x

d
2)⊆P ′=k[x0, x1, x2] and L′′=

(xd
3, x

d
4, ..., x

d
c)⊆P ′′=k[x3, ..., xc]. The ideal L′ is perfect of codimension 2, hence
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the resolution of P ′/L′ over P ′ is determined by the Hilbert-Burch matrix
⎛
⎜⎜⎝

x2 0
−x1 xd−1

2

0 −xd−1
1

⎞
⎟⎟⎠

and therefore it has the form

0−→P ′(−2d+1)⊕P ′(−d−1)−→P ′(−d)3 −→P ′.

The ideal L′′ is generated by a regular sequence and the resolution of P ′′/L′′ over
P ′′ is given by the Koszul complex

0−→P ′′(−(c−2)d)−→ ...−→P ′′(−2d)
(
c−2
2

)
−→P ′′(−d)c−2 −→P ′′.

Finally, the minimal free resolution of P/L over P is obtained by tensoring the two
resolutions, hence the graded Betti numbers are given by

βi,j(P/L)=
∑

i′+i′′=i
j′+j′′=j

βi′,j′(P ′/L′)·βi′′,j′′(P ′′/L′′).

We obtain the following formulas for the nonzero graded Betti numbers of P/L: if
d≥3 then

βi,id(P/L) =
(
c−2
i

)
+3

(
c−2
i−1

)

βi,id−1(P/L) =
(
c−2
i−2

)

βi,(i−1)d+1(P/L) =
(
c−2
i−2

)

whereas if d=2 one simply adds the last two lines.
The formulas above imply that βi,j(P/L)·βi+1,k(P/L)=0 for all k≤j. In other

words, we cannot have any consecutive cancellation of the same degree [29] or of
negative degree [30], [31]. It follows from [29, Proof of Theorem 1.1] that βi,j(P/L)=
βi,j(P/J) for all i, j. As for the Betti numbers of the local ring R, it follows from
[30, Theorem 3.1] or [31, Theorem 2] that βi(G)=βi(R) for all i. The proof is
concluded. �
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Remark 6. We have proved that, if the upper bound is attained, then G, and
therefore R, are almost complete intersections. Moreover, their defining ideals J

and I are licci, i.e. they belong to the linkage class of a complete intersection. In
fact, as already observed, L=LM≺(J)=(xd

1, ..., x
d
c , x

d−1
1 x2) and we have (xd

1, ..., x
d
c):

L=(xd
1, ..., x

d
c):(xd−1

1 x2)=(x1, x
d−1
2 , xd

3, ..., x
d
c), that is, L is linked in one step to a

complete intersection; this implies that the same is true for J and I. Furthermore,
J is strongly licci in the sense of [23].

Next, we construct a family of monomial curves to show that the upper bound
for the multiplicity is sharp.

Proposition 7. For every c, d≥2 there exists a numerical semigroup attaining

the upper bound in Theorem 3.

Proof. Let e=dc−(d−1)dc−2 and set

n0 = e, n1 = e+1, n2 = e+d, ni = e+(d2−d+1)di−3 for 3≤ i≤ c.

Consider the numerical semigroup Λ=〈n0, ..., nc〉, and notice that the generating
set is minimal because n0<...<nc<2n0. Clearly, we have e(G)=dc−(d−1)dc−2

and codim(G)=c; it remains to show that G is defined by relations of degrees at
most equal to d.

We use the same notation as in the proof of Theorem 3. If c≥3 then the defin-
ing ideal I of R contains the relations f0=X1X

d−1
2 −Xd−1

0 X3, f2=Xd
2 −Xd−1

1 X3,
fc=Xd

c −Xd+1
0 , and fi=Xd

i −Xd−1
i−1 Xi+1 for i=1, 3, 4, ..., c−1. If c=2 then I con-

tains f0=X1X
d−1
2 −Xd+1

0 , f1=Xd
1 −Xd−1

0 X2, f2=Xd
2 −X2

0X
d−1
1 . Let gi be the ini-

tial form of fi and let H=
(
LM≺(g0), ...,LM≺(gc)

)
=
(
x1x

d−1
2 , xd

1, ..., x
d
c

)
. As in the

proof of Theorem 3 we see that H is a primary ideal of codimension c and multiplic-
ity dc−(d−1)dc−2, and then H must coincide with the initial ideal of the defining
ideal J of G. In particular, J=(g0, ..., gc). �

A standard graded k–algebra G is called Koszul if k has a linear G–resolution,
equivalently if TorGi (k,k)j=0 for all i 	=j, cf. [10]. If G is a Koszul algebra then it is
defined by quadrics, however, this is only a necessary condition. It is interesting to
find sufficient conditions for quadratic k–algebras to be Koszul. The next corollary
shows that attaining the upper bound in Theorem 3 is a sufficient condition.

Corollary 8. Let Λ be a quadratic numerical semigroup minimally generated

by n0<...<nc. If n0=2c−2c−2, then grm(R) is a Koszul algebra.

Proof. From the proof of the last statement of Theorem 3 with d=2, we see
that the defining ideal J of grm(R) has an initial ideal L generated by quadratic
monomials; this implies the Koszul property, cf. [10]. �
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We conclude the paper with a general discussion.

Remark 9. It is natural to ask for what classes of rings Theorem 3 is valid.
No example of a standard graded k–algebra G is known which violates the upper
bound. In fact, it is possible to show that if the Eisenbud–Green–Harris conjecture
[15] holds, then the inequality is true for any standard graded k–algebra G. We
refer to [18] for a detailed account of this problem. Roughly speaking, the most
general formulation predicts that every Hilbert function in a complete intersection
defined by forms of prescribed degrees is realized by a lexsegment ideal in a complete
intersection defined by pure powers of the given degrees. The conjecture has been
solved only in some special cases, e.g. [1], [7]–[9], [28].
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