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Algebraic cycles and triple K3 burgers

Robert Laterveer

Abstract. We consider surfaces of geometric genus 3 with the property that their transcen-
dental cohomology splits into 3 pieces, each piece coming from a K3 surface. For certain families
of surfaces with this property, we can show there is a similar splitting on the level of Chow groups
(and Chow motives).

1. Introduction

This note is about a class of surfaces which we propose to call triple K3 burgers.
These are complex smooth projective surfaces S of general type of geometric genus
3, with the property that there exist 3 K3 surfaces Xj such that the transcendental
cohomology H2

tr(S) splits

(1) H2
tr(S)∼=H2

tr(X0)⊕H2
tr(X1)⊕H2

tr(X2).

(The precise definition of triple K3 burgers is more restrictive, cf. Definition 3.1.)
The crystal ball of the Bloch–Beilinson–Murre conjectures [24], [25], [58], [35],

[34] predicts that relation (1) also holds on the level of Chow groups (and provided
the Hodge conjecture is true, the Chow motive of S should be of abelian type, in the
sense of [49]). The main result of this note provides a verification of this prediction
in certain cases:

Theorem. (=Theorem 5.1) Let S be a triple K3 burger. Assume that either

(i) K2
S=2, or

(ii) K2
S=3 and the canonical map of S is base point free.

Then there is an isomorphism (induced by a correspondence)

A2
hom(S)

∼=−−→ A2
hom(X0)⊕A2

hom(X1)⊕A2
hom(X2),

where the Xj are the associated K3 surfaces.
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(Here A2
hom() denotes the Chow group of 0–cycles of degree 0 with rational

coefficients.)
In each of the cases of Theorem 5.1, these surfaces do exist (in case (i), they

form a family of dimension at least 6; in case (ii) the moduli dimension is 4).
It is not a coincidence that the surfaces of Theorem 5.1 lie on or close to

the Noether line K2=2pg−4. Indeed (as is known since the fundamental work of
Horikawa [15], [16], [17], [18], [19]), the canonical model of a general type surface
on or close to the Noether line admits a neat description as complete intersection
in a certain weighted projective space. Thanks to such a description, surfaces as
in Theorem 5.1 fit in nicely behaved universal families. Then, one can apply the
alchemy of Voisin’s method of “spread” [54], [57], [58] to transmute the base metal
of the homological relation (1) into the pure gold of a rational equivalence.

We also prove (Subsection 6.1) that a triple K3 burger S as in Theorem 5.1
admits a canonical 0–cycle oS∈A2(S), such that there is a splitting

A2(S)=Q[oS ]⊕A2
hom(S).

The cycle oS has the property that the intersection of certain divisors is propor-
tional to oS (Proposition 6.8). Another characterization of oS is as follows (Propo-
sition 6.4): for any positive integer k, the cycle koS is the unique degree k 0–cycle
z for which the effective orbit Oz has dimension ≥k. These results are based on
similar results for the canonical 0–cycle of a K3 surface [21], [3], [58], [56].

In a sense, the present note is a sequel to [30], which dealt with certain surfaces
of geometric genus pg=2. The surfaces S of [30] are also studied in [14] and [37];
they have the property that their transcendental cohomology decomposes

H2
tr(S)∼=H2

tr(X0)⊕H2
tr(X1),

where X0, X1 are K3 surfaces. In [30], using arguments very similar to the present
note, I proved there exists a similar splitting on the level of Chow groups.

Several open questions remain, which I hope someone will be able to answer
(cf. Section 7).

Conventions. In this article, the word variety will refer to a reduced irre-
ducible scheme of finite type over C. A subvariety is a (possibly reducible) reduced
subscheme which is equidimensional.

By default, all Chow groups will be with rational coefficients: we will
denote by Aj(X) the Chow group of j–dimensional cycles on X with Q–coefficients;
for X smooth of dimension n the notations Aj(X) and An−j(X) are used inter-
changeably. When dealing with Chow groups with integral coefficients, we will
make this clear by writing Aj(X)Z.
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The notations Aj
hom(X), Aj

AJ(X) will be used to indicate the subgroups of
homologically trivial, resp. Abel–Jacobi trivial cycles. For a morphism f : X→Y ,
we will write Γf∈A∗(X×Y ) for the graph of f . The contravariant category of Chow
motives (i.e., pure motives with respect to rational equivalence as in [43], [35]) will
be denoted Mrat.

We use Hj(X) to indicate singular cohomology Hj(X,Q), and Hj(X) to indi-
cate Borel–Moore homology HBM

j (X,Q).

2. Preliminaries

2.1. Relative Künneth projectors

Lemma 2.1. Let S→B be as in Notation 3.13. There exist relative correspon-

dences

πS
0 , πS

2 , πS
4 ∈A2(S×BS),

with the property that for each b∈B, the restriction

πS
i |b :=πS

i |Sb×Sb
∈H4(Sb×Sb)

is the ith Künneth component. Moreover,

(πS
2 |b)∗ = id: A2

hom(Sb) −→ A2
hom(Sb).

Proof. This is well–known, and holds more generally for any family of surfaces
with H1(Sb)=0. Let H∈A1(S) be a relatively ample divisor, and let d:=deg(H2|Sb

).
One defines

πS
0 := 1

d
(p1)∗(H2),

πS
4 := 1

d
(p2)∗(H2),

πS
2 :=ΔS−πS

0 −πS
4 ∈ A2(S×BS).

It is readily checked this does the job. �

2.2. Transcendental part of the motive

Theorem 2.2. (Kahn–Murre–Pedrini [26]) Let S be any smooth projective

surface, and let h(S)∈Mrat denote the Chow motive of S. There exists a self–dual

Chow–Künneth decomposition {πi} of S, with the property that there is a further

splitting in orthogonal idempotents

π2 =πalg
2 +πtr

2 in A2(S×S).
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The action on cohomology is

(πalg
2 )∗H∗(S)=N1H2(S), (πtr

2 )∗H∗(S)=H2
tr(S),

where the transcendental cohomology H2
tr(S)⊂H2(S) is defined as the orthogonal

complement of N1H2(S) with respect to the intersection pairing. The action on

Chow groups is

(πalg
2 )∗A∗(S) =N1H2(S), (πtr

2 )∗A∗(S)=A2
AJ (S).

This gives rise to a well–defined Chow motive

htr
2 (S) := (S, πtr

2 , 0) ⊂ h(S) ∈Mrat,

the so–called transcendental part of the motive of S.

Proof. Let {πi} be a Chow–Künneth decomposition as in [26, Proposition
7.2.1]. The assertion then follows from [26, Proposition 7.2.3]. �

3. Triple K3 burgers

3.1. Definition

Definition 3.1. A surface S is called a triple K3 burger if the following con-
ditions are satisfied:
(0) S is minimal, of general type, with q=0 and pg=3;
(i) there exist involutions σj : S→S (j=0, 1, 2) that commute with one another, and
such that the quotients

˛Xj :=S/<σj > (j =0, 1, 2)

are birational to a K3 surface Xj ;
(ii) there is an isomorphism

(
(p0)∗, (p1)∗, (p2)∗

)
: H2(˛X0,O)⊕H2(˛X1,O)⊕H2(˛X2,O)

∼=−−→ H2(S,O),

where pj : S→˛Xj denotes the quotient morphism;
(iii) the involutions σj respect the canonical divisor:

(σj)∗KS =KS , j =0, 1, 2.
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Remark 3.2. Let Ψj∈A2(Xj×S) (j=0, 1, 2) be the correspondence defined
by the diagram

S

↓
Xj → ˛Xj

where Xj→˛Xj is a resolution of singularities and Xj is a K3 surface.
Since the ˛Xj have only quotient singularities and quotient singularities are

rational, condition (ii) of Definition 3.1 is equivalent to asking for an isomorphism
(
(Ψ0)∗, (Ψ1)∗, (Ψ2)∗

)
: H2(X0,O)⊕H2(X1,O)⊕H2(X2,O)

∼=−−→ H2(S,O).

Also, since (Ψj)∗ is a homomorphism of Hodge structures, condition (ii) is
equivalent to an isomorphism

(
(Ψ0)∗, (Ψ1)∗, (Ψ2)∗

)
: H2

tr(X0)⊕H2
tr(X1)⊕H2

tr(X2)
∼=−−→ H2

tr(S).

(Here, by definition H2
tr()⊂H2() is the orthogonal complement of the Néron–Severi

group under the cup product pairing.)
Also, since (pj)∗H2(˛Xj) is contained in the σj–invariant part of H2(S), condi-

tion (ii) is equivalent to the condition

(2) H2
tr(S)=H2

tr(S)+−−⊕H2
tr(S)−+−⊕H2

tr(S)−−+,

where H2
tr(S)+−− denotes the part of H2

tr(S) where σ0 acts as the identity and
σ1, σ2 act as minus the identity, and the other summands are defined similarly.

(This uses some Hodge theory. E.g., let us consider H2
tr(S)++−. This is a

Hodge substructure of H2
tr(S), and so if it is non–trivial, it must have Gr0F of

dimension ≥1. But then, as it is contained in the image of H2
tr(X0), it must have

Gr0F of dimension =1. This implies that

(Ψ0)∗H2
tr(X0)=H2

tr(S)++−,

as both sides are Hodge substructures of H2
tr(S) with dim Gr0F =1. But for the same

reason, we have
(Ψ1)∗H2

tr(X1)=H2
tr(S)++−,

and so
(Ψ0)∗H2

tr(X0)= (Ψ1)∗H2
tr(X1) in H2

tr(S).

But this is absurd, because it contradicts the surjectivity in condition (ii). We
conclude that H2

tr(S)++− must be zero. Applying the same reasoning to the other
eigenspaces, one arrives at the isomorphism (2).)
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Remark 3.3. Definition 3.1 is directly inspired by the definition of Todorov
surfaces [47], [28], [33], [41].

One could extend Definition 3.1 to surfaces of any geometric genus: a surface S

is called an m–tuple K3 burger if pg(S)=m and there exist m involutions σ1, ..., σm

such that the quotients S/<σj> are birational to K3 surfaces and their transcen-
dental cohomology generates H2

tr(S) as in condition (ii). For m=1 (i.e., “simple K3
burgers”), one obtains certain Todorov surfaces. (NB: There is a slight difference
with the definition of Todorov surfaces; in the definition of a Todorov surface one
merely asks, instead of (iii), that the involution σ is composed with the bicanonical
map).

Surfaces similar to the case m=2 of Definition 3.1 (i.e., “double K3 burgers”)
have been studied in [14], [37], [30].

Remark 3.4. A closely related construction (which also inspired the present
note) appears in recent work of Garbagnati [14, Section 6.1]. Let S be the minimal
model of the surface U10 of [14, Section 6.1]. Then S satisfies conditions (0), (i)
and (ii) of Definition 3.1 (and I am not sure about condition (iii)). Also, it follows
from [14, Theorem 3.1] that K2

S=9, and so S is not among the cases covered by
Theorem 5.1.

The fact that K2
S=9 means that S is quite far from the Noether line; hence

there is (as far as I am aware) not a nice and simple, Horikawa–style description of
the canonical model of S as a weighted complete intersection. Due to the lack of
such a description, the method of “spread” does not seem to apply to S, and I do
not know how to handle the Chow groups of S.

Remark 3.5. Condition (iii) in Definition 3.1 is admittedly somewhat ad hoc.
The reason I have added condition (iii) is that otherwise, I am not able to prove
Theorem 5.1.

(More precisely: condition (iii) ensures that the involutions σj come from in-
volutions of the ambient space (which will be a weighted projective space); as such,
the involutions exist family–wise, which will be crucial to the argument.)

Remark 3.6. Todorov surfaces have been classified: there are 11 irreducible
families, each of dimension 12 [33]. Likewise, it is perhaps possible to classify triple
K3 burgers. The next subsection provides a first step.

3.2. Structural results

Notation 3.7. Let P be some weighted projective space, with weighted ho-
mogeneous coordinates [x0 :x1 :...:xn]. We define involutions sj∈Aut(P), j=0, ..., n,
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by
sj [x0 : ... :xn] = [x0 : ... :−xj : ... :xn].

Similarly, for 0≤i<j≤n we define involutions sij∈Aut(P) by

sij [x0 : ... :xn] = [x0 : ... :−xi :xi+1 : ... :−xj :xj+1 : ... :xn].

Similarly, we define involutions sijk involving 3 minus signs.

Proposition 3.8. Let S be a triple K3 burger with K2=2. Then S is isomor-

phic to a smooth degree 8 hypersurface in P(13, 4) invariant under G=<σ0, σ1, σ2>,

where {σ0, σ1, σ2} are one of the following:

(i)

{σ0, σ1, σ2}= {s0, s1, s2}.
(ii)

{σ0, σ1, σ2}= {s0, s1, s01}.
(iii)

{σ0, σ1, σ2}= {s01, s02, s0}.
(iv)

{σ0, σ1, σ2}= {s01, s02, s12}.
Conversely, any such surface S is a triple K3 burger with K2=2, and the

associated K3 surfaces are obtained as ‚Xj=S/<σj>, where the σj are as in (i)–

(iv).

Proof. Since S is minimal, of general type, with K2=2 and pg=3, we know
that S is isomorphic to a smooth degree 8 hypersurface in P:=P(13, 4) [17]. Since
the involutions σj (j=0, 1, 2) preserve the polarization KS , they are induced by
involutions of P. Let [x0 :x1 :x2 :x3] be weighted homogeneous coordinates for P.
After a projective transformation, we may suppose the involutions are defined by
adding a minus sign in front of one or two or three of the xi, i.e. the σj are of the
form si, sij , s012, where i, j∈{0, 1, 2}.

Griffiths residue calculus (which also exists for weighted projective hypersur-
faces, cf. [11], [2]) shows that H0,2(S) is generated by the image under the residue
map of the holomorphic forms with poles

(3) x0Ω/f, x1Ω/f, x2Ω/f.

Here, f is a defining equation for S and Ω is the standard 3–form

Ω :=
2∑

i=0
(−1)ixidx0∧...d̂xi...dx3−4x3dx0∧dx1∧dx2
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[11, 2.1.3], [2, Example 9.4].
The involution s012 acts as −1 on the form Ω. Hence, the involution s012 acts

either as (+1,+1,+1) or as (−1,−1,−1) on the three generators (3) (depending on
whether s012 acts as +1 or as −1 on f). As such, the quotient S/<s012> can not
be a K3 surface, and so s012 is not among the σj .

Suppose now the σj are all of type si. The involution si acts on Ω as −1, and
on f as ±1. Considering the action on generators (3), clearly the only possibility is
(i).

Suppose next that exactly one of the σj is of type sij (and so the others are of
type si). Up to a coordinate change, we may suppose σ2=s01. The involution s01
acts on Ω as +1, and on f as ±1. Since the quotient S/<s01> is K3, the action
on f has to be the identity, and so s01 acts on the generators (3) as (−1,−1,+1).
Clearly, the only possibility for {σ0, σ1} is now {s0, s1}, and so we are in case (ii).

Next, let us suppose that exactly two of the σj are of type sij , say σ0=s01 and
σ1=s02. As per above, the case sij(f)=−f can be excluded. We conclude that
σ0 acts on the generators (3) as (−1,−1,+1), and σ1 acts as (−1,+1,−1). The
remaining involution σ2=si should act as (+1,−1,−1), and so σ2=σ0, and we are
in case (iii).

Finally, if all three σj are of type sij , they need to be different (for otherwise,
there is a generator (3) not preserved by any of the σj). Hence, we are in case (iv).

The converse is clear from the above argument. (Note that the involutions σj

commute because they commute as automorphisms of P.) �

Remark 3.9. Triple K3 burgers as in Proposition 3.8(i) form a family of
moduli dimension 6. Indeed, after a change of variables the equation defining S is
of the form

(x3)2 = f(x0, x1, x2),

i.e. S is a double cover of the plane branched along an octic f , where x0, x1, x2
occur only in even degrees. This family has 6 moduli.

(The degree 8 equation

(x3)2 = f(x0, x1, x2)

(with x0, x1, x2 occurring in even degree) depends on 15 parameters, so smooth
hypersurfaces of this type correspond to an open in P14. The group PGL(3) acts
on these hypersurfaces, and so we get 14−8=6 moduli.)

One element in this family is the weighted Fermat hypersurface

x8
0+x8

1+x8
2+x2

3 =0.
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The surfaces of Proposition 3.8(iii) and (iv) are the same family as that of
(i); only the associated K3 surfaces are different, so there are different “burger
structures” on elements of this family.

Proposition 3.10. Let S be a triple K3 burger with K2=3 and such that

the canonical divisor is base–point free. Then S is isomorphic to a smooth degree

6 hypersurface in P(13, 2) invariant under G=<σ0, σ1, σ2>, where {σ0, σ1, σ2} are

one of the following:

(i)

{σ0, σ1, σ2}= {s0, s1, s2}.

(ii)

{σ0, σ1, σ2}= {s0, s1, s01}.

(iii)

{σ0, σ1, σ2}= {s01, s02, s0}.

(iv)

{σ0, σ1, σ2}= {s01, s02, s12}.

Conversely, any such surface S is a triple K3 burger with K2=3, and the

associated K3 surfaces are obtained as ‚Xj=S/<σj>, where the σj are as in (i)–

(iv).

Proof. Since S is minimal, of general type, with K2=pg=3 and base point
free canonical divisor, we know that S is isomorphic to a degree 6 hypersurface in
P(13, 2) [23].

To classify the possible involutions, one proceeds exactly as in the proof of
Proposition 3.8. �

Remark 3.11. Triple K3 burgers with K2=3 and KS base–point free form a
family of dimension 4. (Indeed, under the natural map

P(13, 2) −→ P(24),

the hypersurfaces as in Proposition 3.10 correspond to degree 6 hypersurfaces in
P(24). But under the natural isomorphism

P(24)
∼=−−→ P(14)=P3,

the degree 6 hypersurfaces in P(24) correspond to degree 3 hypersurfaces in P3, for
which there are 4 moduli.)

We note that there is a subfamily given by triple covers of the plane, and this
subfamily has moduli dimension 1.
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(The degree 6 equation

(x3)3 = f(x0, x1, x2)

with x0, x1, x2 occurring in even degree depends on 10 parameters. We get 10−1−
dimPGL(3)=1.)

One element in the family (which is also in the subfamily of triple planes) is
given by the weighted Fermat hypersurface

x6
0+x6

1+x6
2+x3

3 =0.

Remark 3.12. I have not been able to classify triple K3 burgers with K2=3
without the assumption that KS be base point free. When KS is not base–point
free, it is known [23] there is exactly one base–point, and the canonical model of
S is isomorphic to a bidegree (3, 6) complete intersection in P(13, 2, 3). However,
determining the possible involutions σj in this case seems to get messy.

Similarly, triple K3 burgers with K2=4 and KS base point free are complete
intersections in a weighted projective space [40]. I have not been able to classify
them.

3.3. Families

This section establishes some notation. The two cases in Notation 3.13 corre-
spond to two cases of Propositions 3.8 and 3.10.

Notation 3.13. Let
S −→ B

denote one of the following families:
(i) (Case (i) of Proposition 3.8) The family of all smooth hypersurfaces in P:=
P(13, 4) of type

fb(x0, x1, x2, x3)= 0,

where fb is weighted homogeneous of degree 8, and x0, x1, x2 occur only in even
degree. Let Sb denote the fibre of S over b∈B.
(ii) (Case (i) of Proposition 3.10) The family of all smooth hypersurfaces in P=
P(13, 2) of type

fb(x0, x1, x2, x3)= 0,

where fb is weighted homogeneous of degree 6, and x0, x1, x2 occur only in even
degree. Let Sb denote the fibre of S over b∈B.
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Remark 3.14. Let S→B be the family as in Notation 3.13(i) (resp. (ii)).
Then any fibre Sb is a triple K3 burger with K2=2 (resp. K2=3). This is immediate
from Proposition 3.8 (resp. Proposition 3.10).

Lemma 3.15. Let S→B be one of the two families of Notation 3.13. The

variety S is a smooth quasi–projective variety.

Proof. Let us treat case (i); the other case is similar. By construction, there
are morphisms

S π−−→ P

↓ν
B

Let ˙S→¸B denote the universal family of all (not necessarily smooth) hypersurfaces
in P of type

fb(x0, x1, x2, x3)= 0,
where fb is weighted homogeneous of degree 8 and x0, x1, x2 only occur in even
degrees. Then ¸B is a projective space containing B as a Zariski open.

Lemma 3.16. For any x∈P(13, 4), there exists b∈¸B such that x 	∈Sb.

Proof. There is a (Z/2Z)3 cover

P(13, 4) −→ P(23, 4)∼=P(13, 2)=:P′.

The surfaces in ˙S→¸B correspond to the complete linear system PH0(P′,OP′(4))
which is (ample hence) base point free. �

Lemma 3.16 ensures that ˙S is a projective bundle over P(13, 4), in particular it
is a projective quotient variety. Any surface Sb with b∈B avoids the singular point
of P(13, 4), and so S is Zariski open inside a projective bundle over the non–singular
locus of P(13, 4). It follows that S is smooth. �

4. Trivial Chow groups

This intermediate section contains a result asserting the triviality of a certain
Chow group. This result (Proposition 4.1) will be the most essential ingredient
in the proof of our main result (Theorem 5.1 in the next section). The proof of
Proposition 4.1 occupies Subsection 4.2, and uses a stratification argument borrowed
from [29].

Proposition 4.1. Let S→B be a family of surfaces as in Notation 3.13. Let

B0⊂B be a Zariski open, and let S0→B0 be the family obtained by restriction.

Then

A2
hom(S0×B0S0)= 0.
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4.1. Weak and strong property

Definition 4.2. (Totaro [48]) For any (not necessarily smooth) quasi–projec-
tive variety X, let Ai(X, j) denote Bloch’s higher Chow groups with rational coef-
ficients (these groups are sometimes written An−i(X, j)Q or CHn−i(X, j)Q, where
n=dimX). As explained in [48, Section 4], the relation with algebraic K–theory
ensures there are functorial cycle class maps

Ai(X, j) −→ GrW−2iH2i+j(X),

compatible with long exact sequences (here W∗ denotes Deligne’s weight filtration
on Borel–Moore homology [39]).

We say that X has the weak property if the cycle class maps induce isomor-
phisms

Ai(X)
∼=−−→ W−2iH2i(X)

for all i.
We say that X has the strong property if X has the weak property, and, in

addition, the cycle class maps induce surjections

Ai(X, 1) � GrW−2iH2i+1(X)

for all i.

Lemma 4.3. ([48]) Let X be a quasi–projective variety, and Y ⊂X a closed

subvariety with complement U=X\Y . If X has the strong property and Y has the

weak property, then U has the strong property.

Proof. This is [48, Lemma 6]. �

Lemma 4.4. Let X be a quasi–projective variety, and Y ⊂X a closed subvari-

ety with complement U=X\Y . If Y and U have the strong property, then so does

X.

Proof. This is the same argument as [48, Lemma 7], which is a slightly different
statement. As in loc. cit., using the localization property of higher Chow groups
[7], [31], one finds a commutative diagram with exact rows

Ai(U, 1) → Ai(Y ) → Ai(X) → Ai(U) →0
↓ ↓ ↓ ↓

GrW−2iH2i+1(U) → GrW−2iH2i(Y ) → GrW−2iH2i(X) → GrW−2iH2i(U) →0

A diagram chase reveals that under the assumptions of the lemma, the one but last
vertical arrow is an isomorphism.
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Continuing these long exact sequences to the left, there is a commutative dia-
gram with exact rows

Ai(Y, 1) → Ai(X, 1) → Ai(U, 1) → Ai(Y ) →
↓ ↓ ↓ ↓∼=

GrW−2iH2i+1(Y ) → GrW−2iH2i+1(X) → GrW−2iH2i+1(U) → GrW−2iH2i(Y ) →

Chasing some more inside this diagram, one finds that the second vertical arrow
is a surjection. �

Corollary 4.5. Let X be a quasi–projective variety that admits a stratification

such that each stratum is of the form Ak\L, where L is a finite union of linearly

embedded affine subspaces. Then X has the strong property.

Proof. Affine space has the strong property (this is the homotopy invariance
for higher Chow groups). The subvariety L has the weak property. Doing a di-
agram chase as in Lemma 4.4 (or directly applying [48, Lemma 6]), it follows
that the variety Ak\L has the strong property. The corollary now follows from
Lemma 4.4. �

Lemma 4.6. Let X be a quasi–projective variety with the strong property. Let

Y →X be a projective bundle. Then Y has the strong property.

Proof. This follows from the projective bundle formula for higher Chow groups
[6]. �

4.2. Proof of Proposition 4.1

Proof. (i) (K2=2) Let us use the shorthand

P :=P(13, 4),
M :=P×P,

N :=
{

(fb, p, p′) ∈¸B×P×P | fb(p)= fb(p′)= 0
}

⊂ ¸B×M.

The goal is to prove that

(4) A2
hom(N) ??= 0.

This implies Proposition 4.1 for case (i), because (4) implies triviality of A2 of
any open in N , and S×BS is an open in N .
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Inside M , we have various “partial diagonals”

ΔM =Δ+++ :=
{

(p, p′)∈P×P | p= p′
}
,

Δ+−+ :=
{

(p, p′)∈P×P | [p0 : p1 : p2 : p3] = [p′0 :−p′1 : p′2 : p′3]
}
,

Δ−++ :=
{

(p, p′)∈P×P | [p0 : p1 : p2 : p3] = [−p′0 : p′1 : p′2 : p′3]
}
,

Δ++− :=
{

(p, p′)∈P×P | [p0 : p1 : p2 : p3] = [p′0 : p′1 :−p′2 : p′3]
}
,

Δ+−− :=
{

(p, p′)∈P×P | [p0 : p1 : p2 : p3] = [p′0 :−p′1 :−p′2 : p′3]
}
,

Δ−+− :=
{

(p, p′)∈P×P | [p0 : p1 : p2 : p3] = [−p′0 : p′1 :−p′2 : p′3]
}
,

Δ−−+ :=
{

(p, p′)∈P×P | [p0 : p1 : p2 : p3] = [−p′0 :−p′1 : p′2 : p′3]
}
,

Δ−−− :=
{

(p, p′)∈P×P | [p0 : p1 : p2 : p3] = [p′0 : p′1 : p′2 :−p′3]
}
,

(Here, we write p=[p0 :p1 :p2 :p3] and p′=[p′0 :p′1 :p′2 :p′3]. We observe that the var-
ious Δ±∓± are just the graphs of the elements of the group (Z/2Z)3=<σ0, σ1, σ2>⊂
Aut(P).)

Let us define the Zariski opens

M0 :=M \(∪Δ±∓±),
N0 :=N \π−1(∪Δ±∓±).

Corollary 4.5 implies that the union ∪Δ±∓± has the strong property. Since
M=P×P has the strong property, so does M0 (Lemma 4.3). The morphism from
N0 to M0 has constant dimension (Lemma 4.7), so it is a projective bundle and N0

also has the strong property (Lemma 4.6).

Lemma 4.7. Let

(p, p′) ∈ M \(∪Δ±∓±).

Then (p, p′) imposes 2 independent conditions on ¸B, i.e. there exists b∈¸B such that

Sb contains p but not p′.

Proof. Consider the map

r×r : M =P×P −→ P′×P′,

where P′ is as before P(2, 2, 2, 4). The condition (p, p′) 	∈(∪Δ±∓±) implies that r(p) 	=
r(p′). Since P′ is isomorphic to P′′ :=P(1, 1, 1, 2) (and sections of OP′(8) correspond
under this isomorphism to sections of OP′′(4)), Lemma 4.8 below shows there exists
Sb separating the points p and p′.
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Lemma 4.8. Let P′′ be the weighted projective space P(1, 1, 1, 2). Then the

line bundle OP′′(4) is very ample.

Proof. The coherent sheaf OP′′(4) is locally free, because 4 is a multiple of
the weights [11]. To see that this line bundle is very ample, we use the following
numerical criterion:

Proposition 4.9. (Delorme [10]) Let P=P(q0, q1, ..., qn) be a weighted projec-

tive space. Let m be the least common multiple of the qj . Suppose every monomial

xb0
0 xb1

1 ...xbn
n

of (weighted) degree km (k∈N∗) is divisible by a monomial of (weighted) degree m.

Then OP (m) is very ample.

(This is the case E(x)=0 of [10, Proposition 2.3(iii)].)
Using Proposition 4.9, Lemma 4.8 is now easily established. �

Let us now finish the proof of Proposition 4.1 for case (i). Any point

(p, p′) ∈ M1 := (∪Δ±∓±) ⊂M

imposes exactly one condition on ¸B; indeed p imposes one condition (Lemma 3.16),
and since r(p)=r(p′) in P′=P(2, 2, 2, 4), any Sb containing p also contains p′. This
means that N1 has the structure of a projective bundle over M1. We have seen
above that M1 has the strong property. It follows from Lemma 4.6 that

N1 :=π−1(M1) ⊂N

has the strong property. Lemma 4.4 now implies that N has the strong property,
and so equality (4) is proven.
(ii) (K2=3). Similar to case (i), except that P is now P(13, 2) and the degree of
the hypersurfaces is 6. Instead of Lemma 4.8, we now use that OP3(3) is very
ample. �

5. Main

Theorem 5.1. Let S be a triple K3 burger, and let Xj(j=0, 1, 2) be the asso-

ciated K3 surfaces. Assume that either

(i) K2
S=2, or

(ii) K2
S=3 and the canonical map is base point free.

Then there is an isomorphism

(Ψ0)∗+(Ψ1)∗+(Ψ2)∗ : A2
hom(X0)⊕A2

hom(X1)⊕A2
hom(X2)

∼=−−→ A2
hom(S).
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Proof. First, a reduction step. Let us define eigenspaces

A2(S)±∓± :=
{
a∈A2(S) | (σ0)∗(a)=±a, (σ1)∗(a)=∓a, (σ2)∗(a)=±a

}
.

We now make the following claim:

Claim 5.2. Let S be as in Theorem 5.1. Any eigenspace with an odd number

of minus signs is trivial, i.e.

A2(S)−−− =A2(S)−++ =A2(S)+−+ =A2(S)++− =0.

Moreover,

A2
hom(S)+++ =0.

Before proving the claim, let us verify that the claim suffices to prove the
theorem: the claim implies there is a decomposition

(5) A2
hom(S)=A2

hom(S)+−−⊕A2
hom(S)−+−⊕A2

hom(S)−−+.

Also, since necessarily
(Ψ0)∗A2(S) ⊂ A2(S)+±±,

the claim implies that

(Ψ0)∗A2
hom(S) ⊂ A2(S)+−−.

What’s more, since

(Ψ0)∗(Ψ0)∗ = 2 id: A2(S)+±± −→ A2(S)+±±,

there is actually equality

(Ψ0)∗(Ψ0)∗A2
hom(S)=A2(S)+−−.

(And similarly, for reasons of symmetry,

(Ψ1)∗(Ψ1)∗A2
hom(S)=A2(S)−+−,

(Ψ2)∗(Ψ2)∗A2
hom(S)=A2(S)−−+ .)

Therefore, the decomposition (5) is equivalent to the decomposition

A2
hom(S)= (Ψ0)∗(Ψ0)∗A2

hom(S)⊕(Ψ1)∗(Ψ1)∗A2
hom(S)⊕(Ψ2)∗(Ψ2)∗A2

hom(S).

This proves the surjectivity statement of the theorem
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Again using the claim, one deduces that the composition

A2
hom(X0)⊕A2

hom(X1)⊕A2
hom(X2)

(Ψ0)∗+(Ψ1)∗+(Ψ2)∗−−−−−−−−−−−−−→ A2
hom(S)

((Ψ0)∗,(Ψ1)∗,(Ψ2)∗)−−−−−−−−−−−−−→ A2
hom(X0)⊕A2

hom(X1)⊕A2
hom(X2)

equals twice the identity. This proves the injectivity statement of the theorem.
It remains to prove the claim. First, let us treat case (ii) of Propositions 3.8

and 3.10. In this case, σ2=σ0¨σ1 (i.e., G:=<σ0, σ1, σ2>∼=(Z/2Z)2), and so the first
part of the claim is trivially true. The second part of the claim is also true for these
cases: indeed, there is equality

A2
hom(S)+++ =A2

hom(S/G).

But the surface S/G is a degree 8 hypersurface in P(1, 2, 2, 4) (resp. a degree 6
hypersurface in P(1, 23)), and so S/G is a surface with quotient singularities and
ample anticanonical bundle. Such surfaces are rational [59, Theorem 2.3], and hence
A2

hom(S/G)=0.
Next, let us consider the cases (i), (iii) and (iv) of Propositions 3.8 and 3.10.

In this case, the surfaces Sb are elements of the families of Notation 3.13. The
argument, in a nutshell, is now as follows: the correspondences Ψj exist as relative
correspondences for the whole family of triple K3 burgers. Using the trivial Chow
groups result (Proposition 4.1), one can upgrade a vanishing in cohomology to a
vanishing of Chow groups.

We now proceed to prove Claim 5.2 for surfaces as in Proposition 3.8(i), (iii)
and (iv). (The cases of Proposition 3.10(i), (iii) and (iv) are mostly the same,
modulo some mutatis mutandis which we will indicate below).

Cases (i), (iii), (iv) of Proposition 3.8: Let

S −→ B

denote the universal family of surfaces as in Notation 3.13(i). Let {σ0, σ1, σ1} be
either {s0, s1, s2} or {s01, s02, s0}, and let

Xj :=S/σj (j =0, 1, 2)

denote the universal families of associated K3 surfaces as in Notation 3.13. For any
b∈B, we will write Sb for the fibre of S over b, and X0b (resp. X1b resp. X2b) for
the fibre of X0 (resp. X1 resp. X2) over b. Likewise, we will write σ0b, σ1b, σ2b
for the restriction of σ0 (resp. σ1 resp. σ2) to Sb. For a relative correspondence
Γ∈A∗(S×BS), we will use the shorthand

Γ|b :=Γ|Sb×Sb
∈A∗(Sb×Sb)
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for the restriction (i.e., the image of Γ under the Gysin homomorphism induced by
the inclusion b↪→B).

By definition (cf. Remark 3.2), we know that there is a fibrewise isomorphism

H2
tr(Sb)∼=H2

tr(Sb)+−−⊕H2
tr(Sb)−+−⊕H2

tr(Sb)−−+

∼=H2
tr(X0b)⊕H2

tr(X1b)⊕H2
tr(X2b) ∀b∈B.

(6)

That is, there are no eigenspaces with an odd number of minus signs:

(7) H2
tr(Sb)−−− =H2

tr(Sb)−++ =H2
tr(Sb)+−+ =H2

tr(Sb)++− =0 ∀b∈B.

Also, there is no eigenspace without minus signs:

(8) H2
tr(Sb)+++ =0 ∀b∈B.

Let us define a relative correspondence

Γ−−− := 1
8(ΔS−Γσ0) ¨ (ΔS−Γσ1) ¨ (ΔS−Γσ2) ¨πS

2 ∈A2(S×BS).

(For details on the formalism of relative correspondences and their composition,
cf. [35, Chapter 8] whose conventions are met with in our set–up.)

We observe that for any b∈B, the restriction

Γ−−−|b ∈A2(Sb×Sb)

is a projector on H2(Sb)−−−.
In terms of correspondences, the vanishing H2

tr(Sb)−−−=0 in (7) is equivalent
to the statement that

(
Γ−−−|b

)
¨πSb

2,tr =0 in H4(Sb×Sb) ∀b∈B.

(Here, πSb
2,tr is a projector defining the transcendental part of the motive as in

Theorem 2.2.) This is in turn equivalent to the statement that for any b∈B, there
exists a divisor Db⊂Sb, and a cycle γb supported on Db×Db⊂Sb×Sb, such that

(
Γ−−−|b

)
¨πSb

2 = γb in H4(Sb×Sb).

Using a Baire category argument as in [54, Proposition 3.7] or [57, Lemma 1.4],
these data can be “spread out” over the base B, i.e. one can find a divisor D⊂S
and a cycle γ supported on D×BD⊂S×BS such that

(
Γ−−−

¨πS
2
)
|b = γ|b in H4(Sb×Sb) ∀b∈B.
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In other words, the relative correspondence

Γ :=Γ−−−
¨πS

2 −γ ∈A2(S×BS)

is fibrewise homologically trivial:

Γ|b ∈A2
hom(Sb×Sb) ∀b∈B.

The next step is to make Γ globally homologically trivial. Employing a Leray
spectral sequence argument as in [54, Lemmas 3.11 and 3.12], this can be done by
adding a cycle coming from the ambient space P. More precisely, the argument
of [54, Lemmas 3.11 and 3.12] proves the following: up to shrinking the base (i.e.,
after replacing B by a dense Zariski open B′⊂B, and writing B :=B′ for simplicity),
there exists δ∈A2(P×P) such that

Γ+(δ×B)|S×BS ∈A2
hom(S×BS).

In view of the fact that A2
hom(S×BS)=0 (Proposition 4.1), it follows that

Γ+(δ×B)|S×BS =0 in A2(S×BS).

We know that for any b∈B, the restriction δ|b acts trivially on A2
hom(Sb) (the action

factors over A∗
hom(P)=0). The above thus implies in particular that

(Γ|b)∗ =0: A2
hom(Sb) −→ A2

hom(Sb) ∀b∈B.

By definition of Γ, this means that
(
Γ−−−|b−γ|b

)
∗ =0: A2

hom(Sb) −→ A2
hom(Sb) ∀b∈B.

Since for b∈B general, the restriction γ|b will still be supported on (divisor)×(divi-
sor), we know that

(γ|b)∗ =0: A2
hom(Sb) −→ A2

hom(Sb) for general b∈B.

Thus, the above simplifies to
(
(Γ−−−

¨πS
2 )|b

)
∗ =0: A2

hom(Sb) −→ A2
hom(Sb) for general b∈B.

Using a Baire category argument as in [12, Lemma 3.1], this can be extended to all
elements of the base B: we actually have

(
(Γ−−−

¨πS
2 |b

)
∗ =0: A2

hom(Sb) −→ A2
hom(Sb) ∀b∈B,

where B is now once more (as in the beginning of the proof) the parameter space
parameterizing all triple K3 burgers as in Notation 3.13.
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By construction Γ−−−|b acts on A2(Sb)−−− as the identity, and

(Γ−−−
¨πS

2 )|b =Γ−−−|b ¨πSb
2

acts on A2
hom(Sb)−−− as the identity. The above thus implies the vanishing

A2
hom(Sb)−−− =0 ∀b∈B,

which proves the first part of the claim. The other parts of the claim are proven
similarly, by choosing a different correspondence: e.g., for the second vanishing
statement one considers the relative correspondence

Γ−++ := 1
8(ΔS−Γσ0) ¨ (ΔS+Γσ1) ¨ (ΔS+Γσ2) ¨πS

2 ∈A2(S×BS).

Cases (i), (iii), (iv) of Proposition 3.10: The claim is proven by the same argument
as in case (i), applied to the family S→B as specified in Notation 3.13. The
weighted projective space P now has different weights, and the defining equation
has a different degree. The trivial Chow groups statement (Proposition 4.1) still
holds for this family. �

6. Corollaries

6.1. The canonical 0–cycle

In this subsection, we work with integral Chow groups Ai()Z, instead of Chow
groups with rational coefficients. Let S be a triple K3 burger as in Theorem 5.1.
Thanks to Rojtman’s theorem [42], Theorem 5.1 implies that

A2(S)+++
Z

∼=Z.

Definition 6.1. Let S be a triple K3 burger as in Theorem 5.1. The canonical
0–cycle oS is defined as the unique degree 1 cycle such that

A2(S)+++
Z =Z[oS ]

(where A2(S)+++
Z denotes as before the subspace where σj acts as the identity for

j=0, 1, 2).
Equivalently, oS is the unique degree 1 cycle z satisfying

(Ψj)∗(z)= oXj in A2(Xj)Z (j =0, 1, 2),

where Xj are the associated K3 surfaces and the correspondences Ψj∈A2(Xj×S)Z
are as above.

Equivalently, oS is the unique degree 1 cycle z satisfying

(Ψj)∗(Ψj)∗(z)= 2z in A2(S)Z (j =0, 1, 2).
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The equivalences in Definition 6.1 are valid because of the following lemma:

Lemma 6.2. Let S be a triple K3 burger as in Theorem 5.1. Then

(Ψ0)∗(oX0)= (Ψ1)∗(oX1)= (Ψ2)∗(oX2) ∈ A2(S)Z.

Proof. The point is that there is a commutative diagram of surfaces

S

↙p0 ↓p1 ↘p2

˛X0 ˛X1 ˛X2

↘r0 ↓r1 ↙r2

W

where all arrows are degree 2 morphisms, and A2(W )Z=Z. (In case (i) of Theo-
rem 5.1, the surface W is defined as the degree 8 hypersurface in P(23, 4) defined
by the equation f(t0, t1, t2, x3)=0, where f(x2

0, x
2
1, x

2
2, x3)=0 is a defining equation

for S. For cases (ii) and (iii), the construction is similar.)
Let us pick two divisors D,D′ on W , and set

w :=D·D′ ∈A2(W ).

The pullbacks to the various ˛Xj are intersections of divisors, and so

(rj)∗(w)= d o˛Xj
in A2(˛Xj) (j =0, 1, 2).

(Here, d=deg(D·D′), and we define o˛Xj
to be (qj)∗(oXj .) This implies that

(Ψj)∗(d oXj )= (pj)∗(d o˛Xj
)= (rj ¨ pj)∗(w) in A2(S)Z (j =0, 1, 2),

and so
d(Ψ0)∗(oX0)= d(Ψ1)∗(oX1)= d(Ψ2)∗(oX2) ∈ A2(S)Z.

Using Rojtman’s theorem [42], this proves the lemma. �

We now recall the definition of the “effective orbit under rational equivalence”
of a 0–cycle:

Definition 6.3. (Voisin [56]) Let S be any surface. Given a cycle z∈A2(S)Z
of degree k≥0, we define the “effective orbit” Oz as

Oz :=
⋃

z′∈X(k),z′∼ratz

supp(z′) ⊂X(k).
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(Here, the union is taken over all k–tuples of points z′ such that the 0–cycle asso-
ciated to z′ is rationally equivalent to the 0–cycle z in X.)

One defines
dimOz := sup

V⊂Oz

dimV,

where the supremum runs over all irreducible components V ⊂Oz (we note that Oz

is known to be a countable union of closed subvarieties, so this is well–defined).

Inspired by [56], one can give a nice characterization of the canonical 0–cycle
oS :

Proposition 6.4. Let S be a triple K3 burger as in Theorem 5.1. Let k>0 be

an integer. Then koS is the unique degree k 0–cycle z∈A2(S)Z satisfying dimOz≥k.

Proof. We actually prove a somewhat more general statement, which is based
on Voisin’s result [56, Theorem 1.4]. This result of Voisin’s gives an alternative
description of O’Grady’s filtration Sk

d () on the Chow group of 0–cycles of a K3
surface, in terms of effective orbits. We recall that for any K3 surface X, O’Grady’s
filtration [36] is defined as

(9) Sk
d (X) :=

{
z ∈A2(X)Z | z = z′+(k−d)oX

}
,

where z′ is effective of degree d and oX is the canonical 0–cycle.
Voisin gives an interesting alternative description of the O’Grady filtration: for

any k>d≥0, she proves [56, Theorem 1.4] that

(10) Sk
d (X)=

{
z ∈A2(X)Z | Oz ⊂X(k) 	=∅ and dimOz ≥ k−d

}
.

Let us now consider a triple K3 burger S as in Theorem 5.1. The canonical
0–cycle oS exists, and so definition (9) makes sense for S.
Step 1 (Unicity): Let z∈A2(S)Z of degree k, and let us assume that the orbit
Oz⊂S(k) is non–empty of dimension ≥k−d, for some k>d≥0. According to (the
proof of) Theorem 5.1, we can write z uniquely as

z = koS+z0+z1+z2 in A2(S)Z,

where z0∈A2
hom(S)+−−

Z and z1, z2 are in A2
hom(S)−+−

Z resp. in A2
hom(S)−−+

Z .
The assumption on Oz implies that the cycles

(Ψj)∗(z)= koXj +(Ψj)∗(zj)∈A2(Xj)Z (j =0, 1, 2)

also have orbits Ozj of dimension ≥k−d. Therefore, Voisin’s result (10) implies
that

(Ψj)∗(z) ∈Sk
d (Xj) (j =0, 1, 2),



Algebraic cycles and triple K3 burgers 179

i.e. one can write

(Ψj)∗(z)= koXj +(Ψj)∗(zj)= z′j+(k−d)oXj in A2(Xj)Z (j =0, 1, 2),

where z′j is effective of degree d. It follows that

(Ψj)∗(zj)= z′j−d oXj in A2(Xj)Z (j =0, 1, 2).

Using the proof of Theorem 5.1, we find that

2z =2k oS+2z0+2z1+2z2

=2k oS+(Ψ0)∗(Ψ0)∗(z0)+(Ψ1)∗(Ψ1)∗(z1)+(Ψ2)∗(Ψ2)∗(z2)
= 2k oS(Ψ0)∗(z′0−d oX0)+(Ψ1)∗(z′1−d oX1)+(Ψ2)∗(z′2−d oX2)
= 2(k−3d)oS+b0+b1+b2 in A2(S)Z,

where b0+b1+b2 is effective of degree 6d. That is, we have

2z ∈ S2k
6d (S).

In particular, taking d=0 we obtain the following implication: if z is a degree
k cycle with orbit Oz of dimension ≥k, then

2z =2k oS in A2(S)Z.

As A2
hom(S)Z is torsion free, it follows that

z = k oS in A2(S)Z.

Step 2 (Existence): We now prove that the cycle z=k oS has orbit of dimension ≥k.
This is the easier direction. Take j∈{0, 1, 2}, and let ¸C⊂˛Xj be any rational curve.
Using Lemma 6.2, one finds that the curve C :=(pj)−1(¸C)⊂S is a constant cycle
curve, and any point p∈C is such that (Ψj)∗(p)=oXj and so p represents oS . This
proves the statement for k=1. For k>1, one notes that C(k)⊂S(k) is contained in
the orbit of k oS . �

Let Z be any smooth projective variety (say of dimension n), and let z∈
An

hom(Z) be a degree 0 0–cycle. It is known that z is smash–nilpotent, meaning
that

z×(N) := ︸ ︷︷ ︸
(N times)

z×...×z =0 in ANn(Zn)

for N>>0 [51], [52]. In the special case of the varieties under consideration in this
note, one can give a precise estimate for the smash–nilpotence index N :
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Proposition 6.5. Let S be a triple K3 burger as in Theorem 5.1. Let z∈
A2

hom(S) be a 0–cycle of the form

z = z′−doS ∈A2
hom(S),

where z′ is an effective cycle of degree d. Then

z×(3d+1) := ︸ ︷︷ ︸
((3d+1) times)

z×...×z =0 in A6d+2(S3d+1).

Proof. The assumption means that z is in the subgroup S0
d(S) of the O’Grady

filtration mentioned in the proof of Proposition 6.4 above. This implies that

(Ψj)∗(z) ∈S0
d(Xj), j =0, 1, 2.

For any positive integer r, Theorem 6.11 gives an isomorphism of Chow motives

t(Sr)∼=
⊕

r0+r1+r2=r

t((X0)r0)⊗t((X1)r1)⊗t((X2)r2) in Mrat

(induced by the Ψj), and so there is an isomorphism of Chow groups
∑

r0+r1+r2=r

(
((Ψ0)r0)∗, ((Ψ1)r1)∗, ((Ψ2)r2)∗

)
:

A2r(t(S)⊗r)
∼=−−→

⊕
r0+r1+r2=r

A2r0(t(X0)⊗r0)⊗A2r1(t(X1)⊗r1)⊗A2r2(t(X2)⊗r2).

In particular, this implies that there is an injection
∑

r0+r1+r2=r

(
((Ψ0)r0)∗, ((Ψ1)r1)∗, ((Ψ2)r2)∗

)
:

A2r(t(S)⊗r) ↪−→
⊕

r0+r1+r2=r

A2r0((X0)r0)⊗A2r1((X1)r1)⊗A2r2((X2)r2).
(11)

Consider now the element z×r for r≥3d+1. Since z∈A2
hom(S)=A2(t(S)), we

have
z×r ∈ A2r(t(S)⊗r).

The image of z×r in the right–hand side of the injection (11) is a sum of 0–cycles on
the various products (X0)r0×(X1)r1×(X2)r2 . In each summand, one of the integers
r0, r1, r2 must be ≥d+1. The proposition now follows from the following lemma:

Lemma 6.6. (O’Grady [36]) Let X be a K3 surface, and let z∈S0
d(X). Then

z×(d+1) =0 in A2d+2(Xd+1).
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Proof. This is established in [36, (5.0.1)]. The reason is that z can be repre-
sented by a degree 0 0–cycle w on a curve C⊂X of geometric genus d. This proves
the lemma, for it is known since [52] that w×(d+1)=0 in Ad+1(Cd+1). �

6.2. The canonical 0–cycle, bis

Definition 6.7. Let S be a triple K3 burger, and let Xj (j=0, 1, 2) be the
associated K3 surfaces. By definition, the subgroup of K3–type divisors A1

K3(S)Z⊂
A1(S)Z is defined as

A1
K3(S)Z :=

(
(Ψ0)∗A1(X0)Z∩(Ψ1)∗A1(X1)Z

)
+

(
(Ψ0)∗A1(X0)Z∩(Ψ2)∗A1(X2)Z

)
+

(
(Ψ1)∗A1(X1)Z∩(Ψ2)∗A1(X2)Z

)
.

That is,

A1
K3(S)Z =A1(S)+++

Z ⊕A1(S)++−
Z ⊕A1(S)+−+

Z ⊕A1(S)−++
Z .

Proposition 6.8. Let S be a triple K3 burger as in Theorem 5.1. Let D,D′∈
A1

K3(S)Z. Then
D·D′ =deg(D·D′) oS in A2(S)Z.

Proof. Since A2
hom(S)Z is torsion free [42], it suffices to prove the statement

for Chow groups with Q–coefficients. We have seen that

A1
K3(S)=A1(S)+++⊕A1(S)++−⊕A1(S)+−+⊕A1(S)−++.

Assuming that D and D′ are in the same summand of this decomposition, we have

D·D′ ∈A2(S)+++ =Q[oS ],

and we are done.
Next, let us assume D is in the first summand and D′ is in another summand

(say the second). Then
D·D′ ∈A2(S)++−.

But A2(S)++−=0 (proof of Theorem 5.1), and so D·D′=0.
Finally, let us assume D and D′ are in two different summands and neither is

in the first summand (say D∈A1(S)+−+ and D′∈A1(S)−++). Then

D·D′ ∈A2(S)−−+.

We have seen (proof of Theorem 5.1) that A2(S)−−+ is mapped isomorphically
(under (Ψ2)∗) to A2

hom(X2), and so to prove that D·D′=0, it suffices to prove that

(Ψ2)∗(D·D′) ??= 0 in A2
hom(X2).
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To this end, recall that (by construction) (Ψ2)∗=(q2)∗(p2)∗ (where p2 : S→˛X2
is projection to the K3 surface with double points, and q2 : X2→˛X2 is a resolution
of singularities). Hence,

(Ψ2)∗(D·D′)= (q2)∗(p2)∗(D·D′)
= (q2)∗

(
¸F ·(p2)∗(D′)

)
=(q2)∗(¸F )·(q2)∗(p2)∗(D′)
= 0 in A2

hom(X2).

Here, ¸F∈A1(˛X2) is a divisor such that D=(p2)∗(¸F ). The last line follows from the
celebrated Beauville–Voisin result that

(
A1(X2)·A1(X2)

)
∩A2

hom(X2)= 0

for any K3 surface X2 [3]. �

Remark 6.9. The behavior displayed in Proposition 6.8 is remarkable, be-
cause the dimension of A1

K3(S) tends to be large. For example, let S be a triple K3
burger with K2=2. Then A1(S)+++ coincides with A1(T ), where

T :=S/<σ0, σ1, σ2 > .

The surface T can be identified with a degree 4 hypersurface in P(13, 2). Hence, T
is isomorphic to the double cover of P2 branched along a quartic curve. In case the
quartic curve is smooth, one has dimA1(T )=dimH2(T )=8 [46], and so

dimA1
K3(S)≥dimA1(S)+++ =8.

6.3. Bloch conjecture

Corollary 6.10. Let S be a triple K3 burger as in Theorem 5.1, and let

σ0, σ1, σ2 be the three covering involutions. Let f∈Aut(S) be a finite–order au-

tomorphism that commutes with the σj , and such that

f∗ = id: H2,0(S) −→ H2,0(S).

Then also

f∗ = id: A2(S) −→ A2(S).
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Proof. Since f commutes with the σj , f induces finite–order automorphisms
fj∈Aut(Xj), j=0, 1, 2 that are symplectic. Huybrechts has proven [20] that one has

(fj)∗ = id: A2(Xj) −→ A2(Xj) (j =0, 1, 2).

Theorem 5.1, combined with the commutative diagram

A2
hom(S) f∗

−−→ A2
hom(S)

↑(Ψj)∗ ↑(Ψj)∗

A2
hom(Xj)

(fj)∗−−−→ A2
hom(Xj)

(j =0, 1, 2)

implies that
f∗ = id: A2

hom(S) −→ A2
hom(S).

Since the 1–dimensional subspace A2(S)+++ is fixed by f , this proves the
corollary. �

6.4. Finite–dimensionality

Corollary 6.11. Let S be a triple burger as in Theorem 5.1, and let Xj be the

associated K3 surfaces. The morphism of Chow motives

(Ψ0,Ψ1,Ψ2) : t(X0)⊕t(X1)⊕t(X2) −−→ t(S) in Mrat

is an isomorphism. (Here, t() denotes the transcendental part of the motive, as in

Theorem 2.2.)

Proof. We may suppose S and the Xj are defined over some subfield k⊂C

which is finitely generated over Q. To prove the isomorphism of motives, it suffices
to prove there is an isomorphism

(
(Ψ0)∗, (Ψ1)∗, (Ψ2)∗

)
: A2

hom((X0)K)⊕A2
hom((X1)K)⊕A2

hom((X2)K)
∼=−−→ A2

hom(SK)

for all function fields K=k(Z) of varieties Z defined over k [22, Lemma 1.1]. This is
equivalent to proving Claim 5.2 for the surface SK . Since C is a universal domain,
one can choose an embedding K⊂C. As is well–known (cf. [5, Appendix to Lecture
1]), this induces an injection

A2(SK) ↪−→ A2(SC),

and so Claim 5.2 for SK follows from Claim 5.2 for SC. �
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Corollary 6.12. Let S be as in Theorem 5.1, and assume

dimH2
tr(S)≤ 7.

Then S has finite–dimensional motive (in the sense of Kimura [27]). What’s more,

S has motive of abelian type (in the sense of [49]).

Proof. Let X0, X1, X2 be the associated K3 surfaces. Recall (Proposition 3.2)
that there is an isomorphism

H2
tr(S)∼=H2

tr(X0)⊕H2
tr(X1)⊕H2

tr(X2).

The Xj being K3 surfaces, the dimension of H2
tr(Xj) is at least 2, and so the

assumption on H2
tr(S) implies that

dimH2
tr(Xj)≤ 3 (j =0, 1, 2).

It follows from [38] that the Xj have finite-dimensional motive. In view of Corol-
lary 6.11, the motive t(S) is isomorphic to t(X0)⊕t(X1)⊕t(X2), and so this implies
the corollary.

To see that S has motive of abelian type, one remarks that the K3 surfaces
Xj either have a Shioda–Inose structure, or are rationally dominated by a Kummer
surface [45], [32]. This implies that their motive is actually a submotive of the
motive of an abelian surface. �

Remark 6.13. In fairness, I hasten to add that I am not sure whether surfaces
S as in Corollary 6.12 exist. Indeed, one might naively expect that inside the families

Xj −→ B (j =0, 1, 2)

of K3 surfaces associated to the family S→B (cf. Notation 3.13), ρ–maximal
surfaces lie analytically dense (and so ρ–maximal triple K3 burgers would also be
analytically dense). But to prove this, one would need to know a Torelli result for
this type of K3 surfaces.

For this reason, Corollary 6.12 is only a conditional result.

7. Open questions

Question 7.1. Can one prove Torelli type theorems for families of triple K3
burgers as in Theorem 5.1? As noted in Remark 6.13, this would have interesting
consequences for the distribution of Picard numbers, and for the existence of certain
finite–dimensional motives.
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Question 7.2. Let S be a triple K3 burger as in Theorem 5.1. I wonder
whether a stronger version of Proposition 6.8 might be true: is it the case that (as
for K3 surfaces)

A1(S)Z ·A1(S)Z =Z[oS ] ⊂ A2(S)Z??

On a related note, does S have a multiplicative Chow–Künneth decomposition, in
the sense of [44]?

Question 7.3. Let S be a triple K3 burger as in Theorem 5.1. Is it the case
that (as for K3 surfaces) the second Chern class c2(TS)∈A2(S) lies in the subgroup
Q[oS ]?

Question 7.4. Let X be a K3 surface, and let F be a simple rigid vector
bundle on X. Voisin has proven [56, Theorem 1.9] that c2(F )∈A2(X) lies in the
subgroup Q[oX ]. Can one prove a similar statement for triple K3 burgers?

(Presumably, Voisin’s argument for K3 surfaces can be adapted to triple K3
burgers? At least the “dimension of orbit” part goes through unchanged (Propo-
sition 6.4). However, Voisin’s argument also involves Riemann–Roch calculations,
which rely on having trivial canonical bundle. I have not pursued this.)

Question 7.5. Let π : S→B be a family of surfaces (i.e., a smooth projective
morphism with 2–dimensional fibres). According to Deligne [8], there is a decom-
position isomorphism

Rπ∗Q∼=
⊕
i

Riπ∗Q[−i]

in the derived category of sheaves of Q–vector spaces on B. If the fibres of π are K3
surfaces, then according to Voisin [53], one can choose an isomorphism that becomes
multiplicative after shrinking the base B. Can one do the same for a family of triple
K3 burgers?

(This is closely related to the existence of a multiplicative Chow–Künneth
decomposition, cf. [50, Section 4].)

Question 7.6. What are the generic and maximal Picard numbers for the
families of triple K3 burgers of Theorem 5.1?

Question 7.7. Constructing quadruple K3 burgers (i.e., surfaces satisfying
the m=4 analogon of Definition 3.1) seems a daunting task.

(For example: if we suppose S is a canonical surface of general type with pg=4
and K2=5, then we know [15] that S is isomorphic to a quintic in P3 with rational
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double points. Consider the involutions

σ0[x0 :x1 :x2 :x3] = [−x0 :x1 :x2 :x3],
σ1[x0 :x1 :x2 :x3] = [x0 :−x1 :x2 :x3],
σ2[x0 :x1 :x2 :x3] = [x0 :x1 :−x2 :x3],
σ3[x0 :x1 :x2 :x3] = [x0 :x1 :x2 :−x3],

If S is a hypersurface invariant under σj (i.e., the defining equation of S contains
only even powers of xj), the quotient S/<σj> is a K3 surface with double points.
However, clearly there is no quintic hypersurface invariant under all 4 involutions
σj !)

The following is a weaker question: can one at least find general type surfaces
S with pg(S)=4 such that the transcendental cohomology of S splits in 4 pieces of
K3 type? And what about pg>4?

Acknowledgments. Thanks to the editor for his patience. Thanks to the ref-
eree for constructive remarks and for spotting an important oversight in a prior
version. Thanks to Kai and Len, for enjoying Sesamstraat as much as I do.
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