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Gorenstein flat precovers and Gorenstein
injective preenvelopes in Grothendieck

categories

Edgar Enochs, J.R. García Rozas, Luis Oyonarte and Blas Torrecillas

Abstract. Homology theory relative to classes of objects other than those of projective or
injective objects in abelian categories has been widely studied in the last years, giving a special
relevance to Gorenstein homological algebra.

We prove the existence of Gorenstein flat precovers in any locally finitely presented
Grothendieck category in which the class of flat objects is closed under extensions, the existence
of Gorenstein injective preenvelopes in any locally noetherian Grothendieck category in which the
class of all Gorenstein injective objects is closed under direct products, and the existence of special
Gorenstein injective preenvelopes in locally noetherian Grothendieck categories with a generator
lying in the left orthogonal class to that of Gorenstein injective objects.

1. Introduction

The study of the existence of Gorenstein injective preenvelopes and Gorenstein
flat precovers has been subject of much research in recent years. From the category
of modules to the category of representation of quivers by modules or the category
of sheaves of modules over a topological space, and so in categories such as that of
graded modules, or that of complexes of modules or the one of discrete modules over
a profinite group, the knowledge of the existence of these precovers or preenvelopes
is of great interest in order to be able to develop relative homology.

There have been many results in this area proving the existence of these type
of precovers/preenvelopes in some of the categories mentioned above when some
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conditions are satisfied. But such an existence is of interest in every category where
computing homology makes any sense, so in this paper we try to find the minimal
conditions that a (Grothendieck) category must satisfy to guarantee that Gorenstein
injective preenvelopes or Gorenstein flat precovers exist.

Of course this question has been studied already by several authors and some
interesting results have been proved in this direction, so for instance Krause proved
in [21, Theorem 3.7.4] that special Gorenstein injective preenvelopes always exist
in locally noetherian Grothendieck categories whose derived category is a com-
pactly generated triangulated category; Enochs et al. showed ([4, Theorem 2.25])
that in any Gorenstein category the pair (L,GI) (L is the class of objects of finite
projective dimension) is a complete hereditary cotorsion theory (so in particular
every object of the category has a special Gorenstein injective preenvelope); Yang
and Ding showed in [28, Proposition 4.8] that if the category is a locally noethe-
rian Grothendieck category and has a generator of finite injective dimension, then
the pair (L,GI) (where L is the class of all objects of injective dimension less
than or equal to that of the generator) is a complete hereditary cotorsion theory
(so again every object has a special Gorenstein injective preenvelope); or Gillespie
proved ([16, Corollary 7.7]) that if the category is locally finite dimensionally type
FP∞ and GAC is the class of all Gorenstein AC-injective objects, then the pair
(⊥GAC,GAC) is a cotorsion theory cogenerated by a set and ⊥GAC contains a set
of generators of finite projective dimension and of type FP∞ of the category. This
means that every object has a special GAC-preenvelope. In the particular case in
which the category is locally noetherian (with a set of generators of finite projective
dimension), the class GAC coincides with GI so we have special Gorenstein injective
preenvelopes.

In this paper we prove that in a locally noetherian Grothendieck category in
which the class of all Gorenstein injective objects is closed under direct products,
Gorenstein injective preenvelopes always exist. If, in addition, we want to get
special Gorenstein injective preenvelopes, we will require the category to have a
generator lying in the class ⊥GI (we will notice that if this condition holds then
direct products of Gorenstein injectives are Gorenstein injective). As a consequence,
we will show that the pair (⊥GI,GI) is a complete hereditary cotorsion theory. This
will give a different approach to those of [21] and [4], will properly extend Yang and
Ding’s result (since such categories include all module categories over noetherian
rings, while not every noetherian ring has finite injective dimension), and will also
extend Gillespie’s result (the finite projective dimensional generators of the locally
noetherian category hold in ⊥GI by [16, Lemma 7.2]).

As for the Gorenstein flat precovers, the most general results proved so far are
due to Yang and Liang, who showed the existence of Gorenstein flat precovers for
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any module over any ring ([29, Theorem A]), and Christensen, Estrada and Iacob
([2]) who did the same in the categories of quasi-coherent sheaves over any scheme.
In this paper we prove the existence of Gorenstein flat precovers in any locally
finitely presented Grothendieck category whose class of flat objects is closed under
extensions (so we properly extend the results of both papers). Indeed, we give a wide
notion of flat objects (and so of Gorenstein flat objects) that in particular covers the
definition of what flat means in categories such as that of modules, that of quasi-
coherent sheaves over a scheme or that of representations of quivers by modules. In
other words, we prove the existence, in any locally finitely presented Grothendieck
category with an extra condition, of some type of precovers that include Gorenstein
flat precovers.

The paper is organized as follows: Section 3 is devoted to prove a result that
will be used along the paper to prove two of our main results. This result gives
the necessary conditions to transfer the property of the existence of certain type
of precovers or preenvelopes from the category of complexes over a given locally
finitely presented Grothendieck category to the original category.

In Section 4 we shall prove the existence of Gorenstein flat precovers in any lo-
cally finitely presented Grothendieck category provided that the class of flat objects
is closed under extensions. To prove such a result we shall make use of the category
of complexes over the original Grothendieck category and the existence of a certain
type of precovers in these categories. This enables us to avoid the computations
with Tor existing in the literature.

Section 5 is devoted to prove that Gorenstein injective preenvelopes always exist
in locally noetherian Grothendieck categories provided that the class of Gorenstein
injective objects is closed under direct products, and in Section 6 we prove that,
again in locally noetherian Grothendieck categories, if a generator is in the left or-
thogonal class to that of all Gorenstein injective objects, then the existence of special
Gorenstein injective preenvelopes is guaranteed for any object of the category.

Finally, in Section 7 we apply the results proved throughout the paper to the
categories of special interest mentioned above.

2. Preliminaries

All categories used in this paper will be, unless otherwise specified, locally
finitely presented Grothendieck categories. Given any such category A, the category
of complexes on A will be denoted as C(A), and complexes will always increase the
degree, so a complex will then be of the form

...−→Xn−1 δn−1

−→Xn δn−→Xn+1 −→ ...
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Given an object M of A, the n-disk complex over M , Dn(M), will be the
complex

...−→ 0−→M
1M−→M −→ 0−→ ...

where all entries are zero but the n-th and (n+1)-th entries. Similarly the n-sphere,
Sn(M), will be

...−→ 0−→M −→ 0−→ ...

with M in the n-th entry.
Recall that given a complex X, the symbol Zn(X) is used to denote the kernel

of the differential δn :Xn→Xn+1 and it’s called the n-cycles object of X. Similarly
Bn(X) is used to denote the (n−1)-boundary of X. We use Z(X) and B(X) to
denote the subcomplexes of X whose components of degree n are Zn(X) and Bn(X)
respectively, with the induced (zero) differentials.

Given a class of objects F of A, a complex X∗ on A is said to be Hom(F ,−)-
exact (Hom(−,F)-exact) if the complex Hom(F,X∗) (Hom(X∗, F )) is exact for any
object F of F . The class of all injective (projective) objects of A will be denoted
as Inj (Proj).

Given a class of objects F in a category C, its left orthogonal, ⊥F , is the class
of all objects C of C such that Ext1C(C,F )=0 for any object F of F . Similarly, the
right orthogonal class of F , F⊥, is that of all objects C of C such that Ext1C(F,C)=0
for every object F of F .

An ordered pair of classes (X ,Y) is said to be a cotorsion theory provided that
X=⊥Y and Y=X⊥. A cotorsion theory (X ,Y) is said to be:

a) cogenerated by a set S if Y=S⊥,
b) complete if for any object O of the category there exist two exact sequences

0−→O−→Y −→X −→ 0,

0−→Y ′ −→X ′ −→O−→ 0

with X,X ′∈X and Y, Y ′∈Y.
c) hereditary if Exti(X,Y )=0 ∀X∈X , ∀Y ∈Y, ∀i>0. This is equivalent to Y

being closed under cokernels of monomorphisms, and if the category has enough
projectives then the cotorsion theory being hereditary is equivalent to X being
closed under kernels of epimorphisms.

Recall that given a class of objects F in C, an F-precover (preenvelope) of an
object C of C is a morphism ϕ:F→C (ϕ:C→F ) with F in the class F , such that
HomC(F ′, ϕ) (HomC(ϕ, F ′)) is surjective for any object F ′ of F . ϕ is a special pre-
cover (preenvelope) if it is an epimorphism (monomorphism) an its kernel (cokernel)
is an object of F⊥ (⊥F). ϕ is an F-cover (F-envelope) if it is an F-precover (F-
preenvelope) and any f :F→F with ϕf=ϕ (fϕ=ϕ) is an automorphism. A class
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F is said to be precovering (preenveloping) if F-precovers (F-preenvelopes) exist
for any object of the category, and it is special precovering (special preenveloping)
if every object has a special F-precover (a special F-preenvelope).

Throughout all this paper we will need the use of cardinalities of objects. These
were studied in [4], where all basic properties that relate the cardinality of an object
to that of one of its subobjects, epimorphic images and its injective envelope, were
proved. For completeness we now list (without proofs) all the results of this type
from [4] that we will need, plus some easy consequences of them that we will also
use.

We will always work with locally finitely presented Grothendieck categories, so
we will always have in hand a family of locally finitely presented generators. From
now on we will let A and B denote two locally finitely presented Grothendieck
categories (unless otherwise specified) and H be the direct sum of a copy of each
one of its finitely generated generators (either in the category A or B, depending
on where we will be working). With this generator in hand we can define what the
cardinality of an object is.

Definition 2.1. [4, Section 2] The cardinality of any object O is defined as
the cardinality of the abelian group HomA(H,O),

|O|= |HomA(H,O)|.

Proposition 2.2. ([4, Corollary 2.3]) Given any object Y of A, there is a

cardinal number ˇ such that if U→Y is an epimorphism then there is a subobject

U ′≤U such that U ′→Y is an epimorphism and that |U ′|≤ˇ.

Proposition 2.3. ([4, Corollary 2.4]) For every cardinal ˇ there is a set of

representatives of objects Y with |Y |≤ˇ.

Proposition 2.4. ([4, Lemma 2.5]) If Z≤Y is any subobject then |Z|≤|Y |.

Proposition 2.5. ([4, Lemma 2.6]) Given a cardinal number ˇ there exists a

cardinal number λ such that if |Y |≤ˇ and Z≤Y then |Y/Z|≤λ.

Proposition 2.6. ([4, Lemma 2.7]) For any object Y and any set I we have

|Y (I)|≤|Y I |=|Y ||I|.

Proposition 2.7. ([4, Lemma 2.9]) If γ is an ordinal number and if (ˇα)α<γ is

a family of cardinal numbers, then there is a cardinal number λ such that if (Yα)α<γ

is a family of objects with Yα≤Yα′ whenever α≤α′<γ, and such that |Yα|≤ˇα for

each α<γ, then |∪Yα|≤λ.

Proposition 2.8. ([4, Lemma 2.10]) Given a cardinal ˇ there is a cardinal λ

such that if |Y |≤ˇ then |E(Y )|≤λ where E(Y ) is the injective envelope of Y .
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There is a natural property that holds in all of our categories (locally finitely
presented Grothendieck categories) which we will make use of along the paper, but
that needs to be checked out.

Proposition 2.9. Given any two cardinal numbers ℵ and λ with |H|≤ℵ, there
exists a cardinal number ν such that for any object O and any family of subobjects

{Oi≤O; i∈I} with |I|≤λ and |Oi|≤ℵ ∀i, the inequality
∣∣∑

i∈I Oi

∣∣≤ν holds.

Proof. We know there is an epimorphism H(|⊕IOi|)→
∑

I Oi (since we have two
natural epimorphisms H(|⊕IOi|)→⊕IOi and ⊕IOi→

∑
I Oi). But applying twice

Proposition 2.6 we get∣∣∣H(|⊕IOi|)
∣∣∣≤ |H||⊕IOi| ≤ℵ|⊕IOi| ≤ℵ

∏
I |Oi| ≤ℵℵ|I| ≤ℵℵλ

.

Applying Proposition 2.5 we find ν with |
∑

I Oi|≤ν. �
We now prove that the cardinality of any finitely generated object can be

bounded by a single cardinal number
Proposition 2.10. There is a cardinal number λ that upper bounds the car-

dinality of every finitely generated object.

Proof. Let ˇ be the cardinality of the generator, |H|=ˇ. Then, for any finite
set I we have

∣∣H(I)
∣∣≤ˇ

|I|=ˇ (provided that ˇ is infinite). Thus, by Proposition
2.5 we find a cardinal number λ such that the image of any morphism from any
H(I) (I finite) has cardinality ≤λ. �

Now, Gorenstein injective and Gorenstein projective objects in categories have
already appeared in the literature. We now recall these concepts.

Definition 2.11. An object M of an abelian category A will be said to be
Gorenstein injective (Gorenstein projective) provided that there exists an exact and
Hom(Inj,−)-exact (Hom(−,Proj)-exact) complex of injective (projective) objects

...−→E−1 −→E0 −→E1 −→ ...

such that M=ker(E0→E1).
We close this section by defining locally noetherian (Grothendieck) categories.
Definition 2.12. An object C of a Grothendieck category A is said to be

noetherian if each one of its subobjects is finitely generated.
The category is A is locally noetherian if it has a family of noetherian genera-

tors.
It is well known that any locally noetherian category is locally finitely pre-

sented. The reader can easily prove this by referring to [26, Propositions 4.1 and
4.2 and paragraph before Proposition 4.1].
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3. A transfer property

The following result was suggested by the referee in order to simplify and unify
the arguments given in the original proofs of theorems 4.14 and 6.1.

Proposition 3.1. Let A be an abelian category and let E⊆C(A) be any class

consisting of exact complexes such that E=E [1]. Denote by Z(E) the class of all

objects of A consisting of all zero-cycles of complexes in E . The following statements

hold:

a) If E is preenveloping (precovering) in C(A) then Z(E)-is preenveloping (pre-

covering) in A.

b) Suppose Y is a class of injective (projective) objects, let T ⊆Y⊥ (T ⊆⊥Y) be

any class of objects and let E be the class of exact complexes of objects in Y with

cycles in T . If E is special preenveloping (special precovering) in C(A) then Z(E)-is
special preenveloping (special precovering) in A.

c) Let Y and T be as in b), and E be the class of all exact complexes with

components in Y and cycles in T . If E is enveloping (covering) in C(A) then

Z(E)-is enveloping (covering) in A.

Proof. We will just prove the statements concerning preenvelopes. The pre-
covers version is completely dual.

a) For any object M of A and any complex A∗∈C(A), the existence of an
isomorphism HomC(A)(S0(M), A∗)∼=HomA(M,Z0(A∗)) which is natural in both
variables is clear, that is, Z0 is a right adjoint functor of S0. It immediately follows
that if f :S0(M)→E∗ is an E-preenvelope in C(A) , then Z0(f):M→Z0(E∗) is a
Z(E)-preenvelope in A.

b) Given any M∈A, consider a special E-preenvelope of S0(M),

0−→S0(M)−→E∗ −→X∗ −→ 0

(so X∗∈⊥E). Applying Z0(−) we get the exact sequence

0−→M −→Z0(E∗)−→Z0(X∗)−→ 0,

so we just need to prove that Z0(X∗)∈⊥Z(E).
Let then Z∈Z(E) be any object and fix Ê∗∈E such that Z0(Ê∗)=Z. Since Ê0

is injective, the exactness of the sequence

0−→Z −→ Ê0 −→Z1(Ê∗)−→ 0

shows that Ext(Z0(X∗), Z)=0 if and only if

HomA(Z0(X∗), Ê0)
Hom(Z0(X∗),δ0)

�� HomA(Z0(X∗), Z1(Ê∗))
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is an epimorphism (δ0 :Ê∗→Z1(Ê∗) being the 0th-differential).
Now, since Xn=En ∀n 
=0, we have that Xn∈Y ∀n 
=0 and so that Xn∈

⊥Z(E) ∀n 
=0. Thus, if α∈HomA(Z0(X∗), Z1(Ê∗)) is any morphism, applying stan-
dard arguments (noting that ExtA(Xk, Zk+1(Ê∗))=0 ∀k<0 and that each Ên is
injective) we can lift α to a morphism of complexes f :X∗→Ê∗[1], where Ê∗[1]
stands for the one-degree suspension of Ê∗. In particular Z0(f)=α.

If we prove that f is null-homotopic with s0 :X0→Ê0 and s1 :X1→Ê1 the 0th
and 1st parts of the homotopy, we would have that, if k :Z0(X∗)→X0 is the inclu-
sion, then s¨k∈HomA(Z0(X∗), Ê0) maps onto α via the morphism Hom(Z0(X∗),
δ0). This would complete the proof.

Let us then see that f is null-homotopic. If we let ExtssC(A)(X∗, Ê∗) denote
the group of semi-split, that is, componentwise split, exact sequences of complexes
(which can also be found in the literature under the notation Extdw(−,−)), we have
0=ExtssC(A)(X∗, Ê∗)=ExtC(A)(X∗, Ê∗). But it is known that ExtssC(A)(X∗, Ê∗)∼=
HomK(A)(X∗, Ê∗[1]) where K(A) stands for the homotopy category, so we finally
have that HomK(A)(X∗, Ê∗[1])=0, that is, f is null-homotopic.

c) If M is any object of A and f :S0(M)→E∗ is an E-envelope then we know
Z0(f):M→Z0(E∗) is a Z(E)-preenvelope.

Now, given a commutative diagram

M
Z0(f)

��

Z0(f)
��

Z0(E∗)

g
����
��
��
��
�

Z0(E∗)

as in b), we can lift g to a morphism of complexes g :E∗→E∗, and it is immediate
to check that gf=f , so being f an E-envelope means g is an automorphism. Then
g must be an automorphism. �

4. Gorenstein flat precovers in Grothendieck categories

The main purpose of this section is to study the existence of Gorenstein flat
precovers in locally finitely presented Grothendieck categories. But to define Goren-
stein flat objects will shall need the use of a tensor product. Thus, we start by setting
up what a tensor product will mean to us. Recall that, unless otherwise specified,
all categories are supposed to be locally finitely presented Grothendieck categories.
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Definition 4.1. A tensor product on B and A is defined as a bifunctor −⊗−:
B×A→Ab that is right exact in each one of the two variables and preserves direct
limits in each one of the two variables.

The concept of a flat object with respect to a given tensor product turns out
to be quite natural now.

Definition 4.2. If A and B are two Grothendieck categories with a tensor
product −⊗−:B×A→Ab, an object F in A (in B) is said to be flat relative to ⊗ if
the tensor functor −⊗F :B→Ab (the tensor functor F⊗−) is exact.

We shall call these objects flat and will not specify the tensor product the
object is relatively flat to, since usually there will be no confusion.

Definition 4.3. An object M in A is said to be Gorenstein flat if it is the
0-syzygy of an exact complex of flat objects in A

F: ... �� F−2 �� F−1 ��

���
��

��
��

� F 0 �� F 1 �� ...

M

����������

such that E⊗F is exact for every injective object E of B.

We now mimic the construction of the tensor product of complexes of modules:
if B and A are two complexes in C(B) and C(A) respectively, with differentials dnB

and dnA respectively, the tensor product of B and A is defined as the complex B
˝

⊗A

given by
(B

˝

⊗A)n =⊕t∈ZB
t⊗An−t

and differentials
dn : (B

˝

⊗A)n −→ (B
˝

⊗A)n+1

dn =
∏
t

(
dtA⊗1An−t +(−1)t(1Bt⊗dn−t

A )
)

From this complex a new complex of abelian groups, B
⊗

A, is then defined
as (

B
⊗

A
)n

= (B
˝

⊗A)n

Im (dn−1)

with differentials dn=
∏

t(dtB⊗1An−t).
It is known that every locally finitely presented Grothendieck category is equiv-

alent to the full subcategory of flat objects of a category of modules over a ring with
enough idempotents. Thus, having a tensor product on two such categories is the
same as having a tensor product (in the sense of Definition 4.1) on the corresponding
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subcategories of flat modules, F(Mod-S) and F(R-Mod), and so having flat objects
in our original categories and having flat objects in the categories F(R-Mod) (that
is, objects which are flat in F(R-Mod), not just flat modules) is equivalent. We will
make use of this equivalence without mentioning the identification, that is, unless
otherwise specified, our categories in this section will always be the full subcate-
gories of flat modules of the whole category of modules over a certain ring with
enough idempotents.

Notation Along the rest of this section we will let P be the direct sum of a
copy of (up to isomorphism) every finitely generated complex in C(B).

It is not hard to see that −
˝

⊗−:C(B)×C(A)→ C(Ab) is a bifunctor that pre-
serves direct limits in each one of the two variables since −⊗−:B×A→Ab does.
But then −

⊗
−:C(B)×C(A)→C(Ab) does preserves direct limits in both vari-

ables. Thus, with the same type of arguments as in [8, Lemma 3] we get the
following.

Lemma 4.4. Given any cardinal number ℵ with |H|≤ℵ there exists a cardinal

number ν with the following property: for any complex X and any subcomplex L≤X

with |L|≤ℵ, there is a subcomplex L′≤X containing L such that |L′|≤ν and that

ker(P
⊗

L→P
⊗

X)=ker(P
⊗

L→P
⊗

L′).

Proof. Let us start by finding the complex L′ with our desired property and
then we will check out the cardinalities.

So, we first note that X can be written as a direct union of finitely generated
subcomplexes, X=∪i∈IYi. Thus, taking Xi=Yi+L ∀i we see that again X is the
direct union X=∪i∈IXi where the morphisms kij :Xi→Xj are the inclusions when-
ever i≤j and ki :Xi→X are the inclusion morphisms too, but now L is a subobject
of every one of the Xi.

Now, let k :L→X denote the injection of complexes and choose any z∈
ker(1P

⊗
k). Thus, by the properties of the direct limits we know there is an

index i∈I and an element xi∈P⊗Xi such that (1P ⊗ki)(xi)=(1P ⊗k)(z)=0.
If we call λi :L→Xi the inclusion morphism then we see that (1P ⊗ki)(1P ⊗

λi)(z)=(1P ⊗k)(z)=0, so again, by the properties of the direct limits we can find
iz≥i such that (1P ⊗kiiz )(1P ⊗λi)(z)=0. But (1P⊗kiiz )(1P ⊗λi)(z)=(1P ⊗λiz )(z),
so we see that indeed z∈ker(1P⊗λiz).

Let us call L′=
∑

z∈ker(1P⊗k) Xiz and let k′ :L→L′ and δiz :Xiz→L′ be the
inclusion morphisms. Then, for any z∈ker(1P ⊗k) we have (1P ⊗k′)(z)=(1P ⊗
δiz )(1P ⊗λiz)(z)=0, so we have that ker(1P⊗k)⊆ker(1P ⊗k′), and the converse is
clear.

Of course L≤L′ so it only remains to find a cardinal number ν such that:
a) |L′|≤ν, b)ν depends on the choice of ℵ (in the sense that |H|≤ℵ and that
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|L|≤ℵ), and c) ν is independent of the choice of X and L themselves (although the
cardinality of L must be ≤ℵ).

By Proposition 2.3 we know there is a set of representatives of all complexes L
of cardinality ≤ℵ, so we can find the cardinal

μ= sup
{∣∣∣ker(1P

⊗
kL)

∣∣∣ ; |L| ≤ℵ
}
,

being kL :L→X the corresponding injection. Note that no matter where kL goes to,
that is, no matter what complex we see L embedded in, ker(1P

⊗
kL) is an abelian

subgroup of P
⊗

L and so |ker(1P
⊗

kL)|≤|P
⊗

L|. In other words, the choice of
μ does not depend on the complex X nor on its cardinality.

Now, we know by 2.10 that there is a cardinal number λ which depends on ℵ
(|H|≤ℵ) that upper bounds the cardinality of every finitely generated object Y , so
if L≤X is any subobject with |L|≤ℵ, an application of Proposition 2.9 gives us a
cardinal number α such that |L+Y |≤α for every finitely generated subobject Y of
X, independently of who X or L are. This applies to our subcomplexes Xi, so we
see that |Xi|≤α ∀i.

Then, another application of Proposition 2.9 gives us the cardinal number ν

which we are looking for. �

Let us now define the concept of tpurity.

Definition 4.5. If A is any object in A, a subobject A′≤A is said to be tpure
whenever B⊗A′→B⊗A is a monomorphism for every B∈B. In this case we will
say that the sequence 0→A′→A→A/A′→0 is tpure.

A subcomplex A′≤A∈C(A) will be said to be tpure provided that it is tpure
with respect to the tensor

⊗
.

Since
⊗

commutes with direct limits, we see that tpurity of monomorphisms
in C(A) can be checked out by just testing with P

⊗
−.

Proposition 4.6. For any cardinal number ℵ with |H|≤ℵ, there is a cardi-

nal number ν such that for every complex X in C(A) and every subcomplex L of

cardinality ≤ℵ we can find a tpure subcomplex S≤X of cardinality ≤ν containing

L.

Proof. By Lemma 4.4 we get a cardinal number ν0 and a subcomplex S0≤
X of cardinality ≤ν0 containing L such that ker(P

⊗
L→P

⊗
X)=ker(P

⊗
L→

P
⊗

S0).
Apply again Lemma 4.4 and find another cardinal number ν1 and a subcom-

plex S1≤X of cardinality ≤ν1 containing S0 and satisfying ker(P
⊗

S0→P
⊗

X)=
ker(P

⊗
S0→P

⊗
S1).
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Repeat this argument finding a chain of Sn, n≥0, with |Sn|≤νn ∀n, and con-
struct S, the complex generated by all Sn.

It is worth noting here that Lemma 4.4 guarantees that ν0 only depends on ℵ,
that is, no matter what the subcomplex L≤X is (provided that |L|≤ℵ) the cardinal
number ν0 can always be chosen the same. Similarly, ν1 only depends on ν0 (so
actually it only depends on ℵ), and so on.

Thus, an application of Proposition 2.7 gives us a cardinal number ν which in
the end only depends on ℵ (and not on L), such that |S|≤ν.

It only remains to prove the tpurity of S.
Let us call αn,n+1 :Sn→Sn+1, ξn :Sn→S=lim

→
Sn and kn :Sn→X the injections.

Then we have the commutativity of the following diagrams

P
⊗

Sn

1P

⊗
αn,n+1

��

1P

⊗
ξn

��

P
⊗

Sn+1

1P

⊗
ξn+1

�����
���

���
���

��

P
⊗

S

P
⊗

Sn

1P

⊗
kn

����
���

���
���

��

1P

⊗
ξn

��

P
⊗

S
1P

⊗
k

�� P
⊗

X

for every natural n.
If x∈P

⊗
S then there are n and xn∈P

⊗
Sn such that (1P

⊗
ξn)(xn)=

x. If, in addition, x∈ker(1P
⊗

k) then (1P
⊗

kn)(xn)=0. But by construction
ker(1P

⊗
kn)=ker(1P

⊗
αn,n+1), so we have

0 = (1P
⊗

ξn+1)(1P
⊗

αn,n+1)(xn)= (1P
⊗

ξn)(xn)=x.

In other words 1P
⊗

k is a monomorphism. �

The next result is an adaptation to our setting of [13, Proposition 2.3.24].

Proposition 4.7. Let ℵ be a cardinal number such that |H|≤ℵ. Then there

is a cardinal number ν such that for any exact complex X and every subcomplex

L≤X of cardinality ≤ℵ we can find an exact subcomplex E≤X containing L with

cardinality |E|≤ν.

Proof. Any element x∈Z(L) is a boundary in X since X is exact so there is
some yx∈B(X) such that d(yx)=x. Let S0=L and construct

S1 =S0+
∑

x∈Z(L)

<yx > .

It is clear by construction that Z(S0)⊆B(S1), and about cardinalities we have
|S0|≤ℵ so |Z(L)|≤ℵ (Z(L)≤L), and |<yx>|≤λ for any x∈Z(L) (λ is the cardi-
nal number found in Proposition 2.10). Thus, we find a cardinal number ν1 such
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that |S1|≤ν1 (see Proposition 2.9). The important fact about this ν1 is that it is
independent of the choice of L and X.

Repeat this argument to find a subcomplex S2≤X containing S1 such that
Z(S1)⊆B(S2) and that |S2|≤ν2 for some ν2 depending only on ν1.

Following this way we find a chain S0⊆S1⊆... of subcomplexes of X with
|Sn|≤νn and Z(Sn)⊆B(Sn+1) for every n. If we then consider the sum E of all of
them we clearly see that E is an exact subcomplex of X containing L.

Now, Proposition 2.7 guarantees the existence of a cardinal number ν that
depends on the family of cardinals {νn; n∈N} but that is independent of the choice
of L or X, such that |E|≤ν. �

Combining Propositions 4.6 and 4.7 we get the following.

Proposition 4.8. For any cardinal number ℵ with |H|≤ℵ, there is a cardinal

number ν such that for every exact complex X in C(A) and every subcomplex L of

cardinality ≤ℵ we can find an exact and tpure subcomplex of X of cardinality ≤ν

containing L.

Proof. By Proposition 4.6 we find a cardinal number ν1 and a tpure subcomplex
T1≤X containing L of cardinality ≤ν1. Now apply Proposition 4.7 to T1 to get a
cardinal number ν2 and an exact subcomplex E2 of X containing T1 of cardinality
≤ν2. Again, ν1 only depends on ℵ and ν2 only depends on ν1, that is, we can
always choose ν2 at this step independently of the choice of L and X. Apply
again Proposition 4.6 to E2 and keep repeating this “zig-zag" argument to find
a chain of subcomplexes of X whose direct union clearly: is exact (direct limits
of exact complexes are always exact), is tpure (direct limits of tpure complexes
are tpure since

⊗
commutes with direct limits), contains our original complex L

and, has cardinality ≤ν for some cardinal number ν which we get by just applying
Proposition 2.7, and which is independent of the choice of L and X. �

Now we prove that given any object C∈B, any tpure subcomplex of a C⊗-exact
complex is again C⊗-exact.

Proposition 4.9. If C is any object in B and X∈C(A) is any C⊗− exact

complex, then any tpure subcomplex L≤X is again C⊗− exact.

Proof. It is clear that C⊗M=S0(C)
˝

⊗M for any complex M∈C(A) so if y∈
C⊗L is any cycle then y is a cycle (and so a boundary) in C⊗X=S0(C)

˝

⊗X. Thus
y is zero in S0(C)

⊗
X by construction and then y must be zero in S0(C)

⊗
L since

S0(C)
⊗

L→S0(C)
⊗

X is a monomorphism. It then follows that y is a boundary
in S0(C)

˝

⊗L=C⊗L. �
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In [13, Proposition 4.2.1] it is shown that for any complex C and any object
M , D0(M)

⊗
C∼=M⊗C. This isomorphism is natural in both variables. It is then

clear that if L is a tpure subcomplex of X∈C(A) then every component Ln is tpure
in Xn. But then, if every Xn is flat we get that every Ln and every Xn/Ln are
flat. Thus we have the following:

Corollary 4.10. If C∈B, X∈C(A) is C⊗− exact and Xn is flat for every n,

then, for every tpure subcomplex L≤X the following assertions hold:

1) L is C⊗− exact.

2) Ln is flat for every n.

3) X/L is C⊗− exact.

4) Xn/Ln is flat for every n.

The concept of C-filtration of an object has played a key role in the development
of the theory of covers and envelopes in the last years. It can be found, for instance,
in [12, Definition 2.1]. We state it here for completeness.

Definition 4.11. Given a class of objects C, an object X∈Ob(A) is said to
be C-filtered if there is an ordinal number ε and a continuous chain {Cα; α≤ε} of
subobjects of X (so C0=0 and Cμ=∪α<μCα for every limit ordinal μ≤ε) such that
Cε=M and Cα+1/Cα ∈C ∀α.

Let us now call EF the class of all exact complexes in C(A) whose components
are all flat and such that they remain exact after applying the functor E⊗− for
every injective object E of B. Choose a representative of any complex in EF of
cardinality ≤ℵ. Call EFℵ the set of all these representatives.

Theorem 4.12. Let ℵ be any cardinal number such that |H|≤ℵ and consider

the cardinal number ν given in Proposition 4.8. Then every object of the class EF
is EFν-filtered.

Proof. Given any complex X∈EF choose any element x∈X and find an exact
and tpure subcomplex S1≤X of cardinality ≤ν containing x. By Corollary 4.10
both S1 and X/S1 are in EF (so indeed S1∈EFν), so we can choose any y∈X/S1 and
find an exact and tpure subcomplex S2/S1≤X/S1 containing y of cardinality ≤ν.
Then S2/S1∈EFν and X/S2∈EF so we can repeat the process letting Sω0 =lim

→
Sn.

Every Si is exact so Sω0 is exact too. Similarly, every Si is E⊗− exact (for
every injective E), so again Sω0 is E⊗− exact (for every injective E) since E⊗−
commutes with direct limits in A.

Finally, we can see by induction that since Sn
i , Sn

i+1/S
n
i are flat, Sn

i+1 is flat
too. Therefore Sn

ω0
is again flat for every n.

We then have Sω0∈EF , so we can choose any element and proceed as before.
This means every complex in EF is EFν-filtered. �
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At this point, the existence of EF-precovers in the category C(A) can be proved
under certain conditions.

Theorem 4.13. If the class of flat objects of A is closed under extensions,

then every complex in C(A) has an EF-precover.

Proof. By [25, Corollary 2.15], the existence of EF-precovers would be guaran-
teed if we see that the class EF coincide with the class of all X-filtered complexes
for some set X, that is, EF=X-filtered. But by Theorem 5.3 every complex in EF
is EFν-filtered, that is, EF⊆EFν-filtered, so we just need to prove the converse
inclusion.

Let then ω be an ordinal number and {Sα; α≤ω} be an EFν-filtration. Let
us prove that Sω∈EF .

Since Sα+1/Sα∈EFν for every α and S0=0, we have that S1∈EFν . This
means (in particular) that S1 is exact, and since S2/S1∈EFν , S2/S1 is exact too.
But exact complexes are closed under extensions, so we see that S2 is exact. This
means that Sn is exact for every positive integer n, so, since direct limits of exact
complexes are exact, Sω0 is exact. It is clear now that a transfinite induction process
proves that Sω is indeed exact.

Now, flat objects of A are closed under direct limits, and by the hypotheses,
they are closed under extensions too, so the same transfinite induction process gives
us that every component of Sω is flat.

Finally, to prove the (E⊗−)-exactness of Sω we will use again this transfinite
induction process. The limit part is immediate since, as before, direct limits of
exact complexes are exact, so the problem reduces to prove that, being S1 and
S2/S1 (E⊗−)-exact complexes, S2 is (E⊗−)-exact too.

Let us denote by δ1, δ2 and δ3 the differentials of S1, S2 and S2/S1 respectively,
and let Cn

i =coker(δn−1
i ), Kn

i =ker(δni ), i=1, 2, 3.
S1 is exact and (E⊗−)-exact, so E⊗Cn

1 =coker(1E⊗δn−1
1 )=ker(1E⊗δn1 )=E⊗

Kn
i for every positive integer n, and the same happens to S2/S1.

On the other hand, since 0→S1→S2→S2/S1→0 is exact and each of the three
complexes is exact, an easy application of the Snake Lemma gives that the induced
sequence on the cokernels, 0→C1→C2→C3→0 is also exact. This means that,
applying E⊗−, we get an exact sequence

E⊗C1 −→E⊗C2 −→E⊗C3 −→ 0
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Thus, we have a commutative diagram

E⊗Sn
1

1E⊗δn1

��

�� E⊗Sn
2

1E⊗δn2

��

�� E⊗Sn
2

Sn
1

1E⊗δn3

��

�� 0

E⊗Cn
1

�� E⊗Cn
2

f

��

�� E⊗Cn
3

�� 0

E⊗Kn
1

�� ker(1E⊗δn+1
2 ) �� E⊗Kn

3
�� 0

with exact rows where 1E⊗δni are all epimorphisms and f is a monomorphism.
Then, the four lemma says that f ¨(1E⊗δn2 ), and so f , is an epimorphism. We

then see that f is indeed an isomorphism and so that E⊗S2 is exact. �

It is now worth noting that recently, a paper by Estrada and Gillespie in which
the authors prove a similar result to Theorem 4.12, and so to Theorem 4.13 (see
[11, Theorem 3.7, Corollary 3.11 and Theorem 6.5]), has appeared.

Now, the main result of this section follows using Proposition 3.1.

Theorem 4.14. For any two locally finitely presented Grothendieck categories

A and B and for any tensor product ⊗:B×A→Ab, the class of Gorenstein flat

objects in A with respect to this tensor product is precovering provided that the class

of flat objects of A is closed under extensions.

5. Gorenstein injective preenvelopes

The main subject of this section is the study of the existence of Gorenstein in-
jective preenvelopes in Grothendieck categories. We will prove (Theorem 5.4) that,
over any locally noetherian Grothendieck category, every object has a Gorenstein
injective preenvelope if the class of all Gorenstein injective objects is closed under
direct products.

We will make use of a slight variation of what we know as Kaplansky classes.
Kaplansky classes have been widely studied and proved to be very useful when
establishing the existence of preenvelopes. They are defined in terms of a given
cardinal number. However, defining them by means of a single cardinal number is
not completely useful for our purposes. Thus, we now give the following extension
of the concept.

Definition 5.1. A class of objects F of A will be said to be pseudo Kaplansky
provided that for any cardinal number λ there exists a cardinal number ℵ such that
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given any object O∈F and any subobject S≤O of cardinality |S|<λ, there exists
F∈F of cardinality |F |<ℵ such that S≤F≤O.

But why are pseudo Kaplansky classes interesting when finding preenvelopes?
Here we give a result that clarifies such a question.

Theorem 5.2. Let F be a pseudo Kaplansky class. If F is closed under direct

products, then it is preenveloping. When F is closed under direct summands, the

converse is also true.

Proof. Let A be any object of A, call ˇ=|A|, let λ be the cardinal number
given in Proposition 2.5, and let ℵ be the cardinal number obtained from λ in
Definition 5.1. Consider a set X of representatives of all the objects F∈F with
|F |<ℵ and let F=

∏
F∈X FHom(A,F ). Then there exists a unique morphism ϕ:A→

F such that πf,F ¨ϕ=f for any F∈X and any f∈Hom(A,F ), where πf,F is the
canonical projection.

Let F1∈F be any object and f :A→F1 be any morphism.
Since |Im (f)|<λ there is a subobject F2≤F1 of cardinality |F2|<ℵ containing

Im (f) and such that F2∈F . Then F2 is isomorphic to some F∈X (let g :F2→F

be such an isomorphism). Then we have a commutative diagram

A
ϕ

��

if

��

f

		
��

��
��

��
F

πgf,F


��
��
��
��

F2
g

��

i
��		
		
		
		

F

F1

where i is the injection. Thus, the morphism ig−1πgf,F :F→F1 makes the outer dia-
gram commutative. Since F∈F by the hypotheses we see that ϕ is an F-preenvelope
of A.

For the converse suppose that F is preenveloping and closed under direct sum-
mands. Then, if {Fi; i∈I} is a family of objects of F , take the direct product

∏
i Fi

and a preenvelope ϕ:
∏

i Fi→F .
Since ϕ is an F-preenvelope, the canonical projections pi :

∏
i Fi→Fi induce a

family of morphisms {fi :F→Fi} such that fiϕ=pi ∀i. But then this family induce
a unique f :F→

∏
i Fi such that pif=fi ∀i.

It is immediate now that pifϕ=pi ∀i and so that fϕ=1∏
i Fi

. But F is closed
under direct summands so we see that

∏
i Fi is an object of F . �
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We now prove that the class of Gorenstein injective objects is always pseudo
Kaplansky in every locally noetherian Grothendieck category. The proof of this
fact is an adaptation of [9, Theorem 11.9.6] to or our general categorical setting
and to the new concept of pseudo Kaplansky class. We give a complete proof here
for completeness and to fix some typing bugs detected in the writing in [9].

Theorem 5.3. The class of all Gorenstein injective objects of a locally noethe-

rian Grothendieck category is pseudo Kaplansky.

Proof. Suppose A is now locally noetherian and let γ be any cardinal number,
M any Gorenstein injective object and ...→E−1δ

−1

→E0 δ0

→E1→... a Hom(Inj,−)-
exact exact sequence of injective objects with M=ker(δ0).

Given any subobject S≤M of cardinality |S|≤γ, we will use induction to con-
struct an exact and Hom-exact complex of injectives such that the kernel, K0, of
the zero derivation of this new complex (which is Gorenstein injective by definition)
contains S and is contained in M . In this induction process we will find the cardinal
number ℵ such that |K0|≤ℵ and which will be independent on the choice of M and
S (of course, as long as |S|≤γ).

This induction process will be split into several induction arguments. First we
will use a zig-zag induction procedure to construct an exact complex of injective
objects that might not be Hom-exact. Then, from this last complex we will construct
a new one which could now be not exact but that will be Hom-exact. Again, using
this last complex we will find an exact (and perhaps not Hom-exact) new complex
of injectives, and so on. Thus, at the end, the direct limit of all these complexes
will be an exact and Hom-exact complex of injectives whose zero derivation will be
the K0 mentioned above.

So, to start, given γ and S≤M with |S|≤γ, we know by Proposition 2.2 that
there is a cardinal number ˇ0 such that if S≤M is any subobject with |S|<γ then
there exists S−1≤E−1 of cardinality less than or equal to ˇ0 such that δ−1(S−1)=S.
But by Proposition 2.8 we know there is a cardinal number ν0 such that |Y |≤ˇ0⇒
|E(Y )|≤ν0 no matter what the object Y is. Therefore we have |E(S−1)|≤ν0. Let
us call I−1=E(S−1).

Now, using Proposition 2.5 we find another cardinal number ν1 such that
|δ−1(I−1)|≤ν1 and so we know there is ν2 with |I0|≤ν2 (again I0=E(δ−1(I−1))).
Then we get a ν3 with |δ0(I0)|≤ν3 and so a ν4 with |I1|≤ν4.

We now turn over and go back: since |I1∩Im (δ0)|≤ν4 by Proposition 2.4, we
can find a D0≤E0 containing I0 and of cardinality |D0|≤ν5 (for some ν5) such
that δ0(D0)=I1∩Im (δ0), and then (applying twice Proposition 2.5 and taking a
supremum) there exists ν6 such that, if we call A0=E(D0) and A1=E(δ0(A0)),
we have |A0|≤ν6 and |A1|≤ν6. Consider now A0∩Im (δ−1) and find D−1≤E−1
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containing I−1, of cardinality |D−1|≤ν7, such that δ−1(D−1)=A0∩Im (δ−1) and
take the injective envelope A−1=E(D−1). Thus, we can find a cardinal number
ν8 such that all A−1, B0=E(δ−1(A−1)) and B1=E(δ0(A0)) have cardinality ≤ν8.
Give one more step back finding D−2≤E−2 such that δ−2(D−2)=A−1∩Im (δ−2),
and consider its injective envelope T−2. Again, there is some ν9 such that all
T−2, T−1=E(δ−2(T−2)), T 0=E(δ−1(T−1)) and T 1=E(δ0(T 0)) have cardinality
≤ν9.

Now turn over again and go forward 4 steps following the arguments above, then
turn back giving 5 steps, and continue this zig-zag process going n steps forward,
then n+1 steps backwards, then n+2 steps forward, and so on.

We get a direct system of inclusions which direct limit is an exact complex of
injective objects (since all components of the complexes in the process are injective
and the category is locally noetherian)

H∗ : ...−→H−1 −→H0 −→H1 −→ ...

such that S⊆ker(H0→H1), and using Proposition 2.7 we see that |Hi|<ν, ∀i for
some cardinal number ν.

Let X be a set of representatives of all indecomposable injective objects of A
and let E=⊕I∈XI.

The complex

...−→Hom(E,H−1) g−1

−→Hom(E,H0) g0

−→Hom(E,H1)−→ ...

may not be exact, so for instance Im g−1 
=ker g0, but for every α∈ker g0 there is a
βα∈Hom(E,E−1) such that δ−1

∗ (βα)=α since the complex

...−→Hom(E,E−1) δ−1
∗−→Hom(E,E0) δ0

∗−→Hom(E,E1) δ1
∗−→ ...

is exact. Moreover, if we call λ=|E|, then we know there is a cardinal number ω such
that |Im (βα)|≤ω for any such α (Proposition 2.5) so |⊕α∈ker g0 Im (βα)|≤ω| ker g0|

by Proposition 2.6, and again (Proposition 2.9) there is a cardinal μ such that
|
∑

α∈ker g0 Im (βα)|≤μ. Therefore, the object A−1=H−1+
∑

α∈ker g0 Im (βα) has
cardinality |A−1|<η0 (for some η0).

Thus, the injective envelope P−1=E(A−1)≤E−1 is such that |P |<η2 (for some
η2), and that ker(g0)⊆Im

(
δ−1
∗ |Hom(E,P−1)

)
. Consider now the injective envelope

P 0=E(δ−1(P−1)) and the corresponding η3 with |P0|≤η3. Then take the image
δ0(P 0) and enlarge it to its injective envelope P 1 (again with the corresponding
η4).

Now we start another zig-zag procedure as before, so we turn back and find
η5 and C0≤P 0 with δ0(C0)=P 1∩Im (δ0) and |C0|≤η5. Then call Q0=E(C0),
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Q1=E(δ0(Q0)) and find η6 with |Q0|≤η6 and |Q1|≤η6, and continue this way to
the (−2)-degree position. Then turn over again by choosing any element in the
kernel of Hom(E,P 1)→Hom(E,P 0) and go forward to the 2-degree position, then
turn back again etc.

The direct union of this system of complexes will provide a new Hom(E,−)-
exact complex of injective objects, C∗, that might be not exact. But from C∗ we
start a new zig-zag as the one which gave us the complex H∗, to get another exact
complex of injectives. From this last one we get an Hom(E,−)-exact complex of
injectives, etc.

So we see that the direct limit of this process is a complex

...−→ I−1 −→ I0 −→ I1 −→ ...

of injective objects that is exact, Hom(Inj,−)-exact, |Ii|<ϑ for some cardinal num-
ber ϑ that is independent of the choice of any of the objects in the process, and
ker(I0→I1) contains S. �

Theorem 5.4. If the class of all Gorenstein injective objects of a locally noe-

the rian Grothendieck category is closed under direct products, then it is preenvelop-

ing.

Of course, if direct products are exact then the class of Gorenstein injective
objects is closed under direct products, but the converse is not true as Krause
showed in [21, Example 4.9]: he proved that if K is a field, then direct products
are not exact in the category QcohP1

K of quasi-coherent sheaves over P1
K . However,

direct products of Gorenstein injective objects in QcohP1
K are Gorenstein injective

since QcohP1
K is locally noetherian and D(QcohP1

K) is compactly generated, so
[21, Corollary 4.4] applies. This gives a great importance to a natural question
about Gorenstein injective objects whose answer is still unknown: when are direct
products of Gorenstein injective objects Gorenstein injective? In this paper we will
give a couple of results in this direction whose ideas were obtained from J.E. Roos
([24, Theorem 1.3]). From now on we denote by GI the class of all Gorenstein
injective objects.

Concerning these two questions (when is GI closed under direct products?
and, when do Gorenstein injective preenvelopes always exist?) in locally noetherian
Grothendieck categories, two conditions can be found in the literature:

i) Krause: the derived category is compactly generated (see for instance [21,
Corollary 4.4]).

ii) Hovey and Gillespie: the category has a system of generators of finite pro-
jective dimension (see for instance [16, Corollary 7.7]).
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In this paper we will add one more approach to the question by establishing a
new condition to be satisfied by the category:

iii) it has a generator lying in the class ⊥GI.
There is a question that immediately comes to mind: are these three conditions

different or they turn out to be equivalent? There is no answer to this question so
far (or we don’t know it if there is one) so here is a problem to be investigated.
However there are some partial answers that we can immediately give: ii)⇒iii)
is always true as one can see in [16, Lemma 7.2]. And if the generators of ii) are
finitely generated then ii)⇒i) also holds by [16, Corollary 5.10].

Proposition 5.5. If the locally noetherian Grothendieck category has a gen-

erator in the class ⊥GI then any direct product of exact and Hom(Inj,−)-exact
complexes with injective components is again exact. Thus, GI is closed under direct

products.

Proof. Let H∈⊥GI be a generator of the category A. By Gabriel-Popescu
Theorem we know that HomA(H,−) has an exact left adjoint functor F . Thus,
HomA(H,−) preserve injective objects.

Now, let {Ei; i∈I} be any family of exact and Hom(E,−)-exact complexes
with injective components, and call Gi its 0-syzygy (so every Gi is Gorenstein
injective).

The product of the E′
is is computed as

∏A
Ei=F (

∏
HomA(H,Ei)) , where∏

HomA(H,Ei) is computed in the category Mod-End(H) and so
∏

is exact.
But F is also exact and HomA(H,Ei) are all exact complexes since H∈⊥GI,

so we see that
∏A

Ei is an exact complex.∏A
Ei being exact implies that its zero syzygy is

∏
Gi, and

∏A
Ei is clearly

HomA(Inj,−)-exact, so we get that
∏

Gi is indeed Gorenstein injective since, of
course, every component of

∏A
Ei is injective. �

If we call
∏(i) the ith-derived functor of

∏
, given any family of exact sequences

0→Ai→Bi→Ci→0 , we get the long exact sequence:
0→

∏
Ai→

∏
Bi→

∏
Ci→

∏(1)
Ai→

∏(1)
Bi→

∏(1)
Ci→

∏(2)
Ai→...

Proposition 5.6. Let A be any Grothendieck category (either locally finitely

presented or not). The following assertions are equivalent.

1.
∏(1)

Gi=0 for every family of Gorenstein injective objects {Gi; i∈I}. That
is, direct products are exact in the class of all Gorenstein injective objects.

2.
∏(k)

Gi=0 for every family of Gorenstein injective objects {Gi; i∈I} and

every k≥1.
3. Any direct product of exact and Hom(Inj,−)-exact complexes with injective

components is again exact and Hom(Inj,−)-exact.
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Proof. 1.⇒2. Clear from the associated long exact sequence.

2.⇒3. Let {Ei; i∈I} be any family of Hom(Inj,−)-exact exact complexes with
injective components, and let Kn

i =ker(En
i →En+1

i ) for any i. Then for any i and
any n we have an exact sequence

0−→Kn
i −→En

i −→Kn+1
i −→ 0.

Since Kn
i and Kn+1

i are all Gorenstein injective objects, the sequence

0−→
∏
i

Kn
i −→

∏
i

En
i −→

∏
i

Kn+1
i −→ 0

is exact by hypothesis. But then
∏

i K
n
i is the kernel of

∏
i E

n
i →

∏
i E

n+1
i and also

the cokernel of
∏

i E
n−1
i →

∏
i E

n
i for every i and every n. This means that

∏
i Ei

is exact and so it is also Hom(Inj,−)-exact.

3.⇒1. Now, given any set I, let Gi be a Gorenstein injective object for any
i∈I coming from the complex Ei.

By hypothesis we know that
∏

i Ei is an exact and Hom(Inj,−)-exact com-
plex of injectives, and since kernels and products are limits we have Z0(

∏
i Ei)=∏

i Z
0(Ei)=

∏
i Gi. �

6. Special Gorenstein injective preenvelopes

In this section we want to give one more step in the study of Gorenstein injective
preenvelopes in Grothendieck categories: we want to know when we can guarantee
the existence of special Gorenstein injective preenvelopes.

In [5, Theorem 2.5] it is proved that if a class F of objects in a Grothendieck
category is closed under direct sums, extensions and well ordered direct limits, then,
if the cotorsion theory (F ,F⊥) is cogenerated by a set, then any object M in the
category has a special F⊥-preenvelope. Following the proof one easily sees that it
is enough to assume that the class F is closed under continuous direct unions. We
will make use of this in the next result.

Recall that small cotorsion theories (F ,G) in a Grothendieck category were
defined in [20] as those cotorsion theories cogenerated by a set S and verifying: F
contains a generator of the category and, for each S∈S there is a monomorphism
iS with cokernel S such that if HomA(iS , X) is surjective for all S∈S, then X∈G.
Later, Estrada et al. proved in [12, Lemma 4.4] that the second condition above
was redundant, so finally the cotorsion theory (F ,G) is small provided that it is
cogenerated by a set and that the class F contains a generator of the category.
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Theorem 6.1. Let A be locally noetherian and call E the class of all exact and

Hom(Inj,−)-exact complexes with injective components and with cycles in H⊥ (H

is a generator of A). Then E is special preenveloping in C(A) and Z(E) is special

preenveloping in A. In particular, if H is in ⊥GI then the class of all exact and

Hom(Inj,−)-exact complexes of injectives is special preenveloping in C(A) and the

class GI is special preenveloping in A.

Proof. The particular case follows easily from the first assertion, and if we let
Y=Inj and T =({H}∪Y)⊥ we see that E is the class of all exact complexes with
components in Y and cycles in T . In addition to that, it is clear that E [1]=E
and that T⊆Y⊥, so Proposition 3.1 applies, that is, if we prove that E is special
preenveloping in C(A) then Z(E) will be special preenveloping in A.

Now, since {Dn(H/V ); V ≤H,n∈Z} is a system of generators of C(A), we can
use Baer’s Criterion to see that {Dn(H/V ); V ≤H,n∈Z}⊥=C(Inj) (the class of
all complexes of injectives), and using similar ideas to those of [1, Theorem 4.1] it
is not hard to check that, if we let E be the direct sum of one isomorphic copy of
each indecomposable injective object, indeed

({Dn(H/V ); n∈Z, V ≤H}∪{Sn(E); n∈Z}∪{Sn(H); n∈Z})⊥ = E .

Therefore (⊥E , E) is a small cotorsion theory cogenerated by a set, so by [15,
Lemma 3.6], ⊥E is closed under continuous direct unions and then by [5, Theorem
2.5] E is special preenveloping. �

If a class F of a category A is closed under direct summands and every object
of A has a special F-preenvelope, then the pair (⊥F ,F) is indeed a cotorsion theory,
for if A is any object of (⊥F)⊥ we can consider a special F-preenvelope

0−→A−→F −→F ′ −→ 0.

Now F ′∈⊥F means that Ext(F ′, A)=0 and so the sequence splits, which means by
hypothesis that A∈F . Thus, in particular we deduce from Theorem 6.1 that when
the class GI is closed under direct summands, the pair (⊥GI,GI) is a cotorsion
theory (in any locally noetherian Grothendieck category with a generator lying in
⊥GI). But we can still say more about this cotorsion theory: we have already
mentioned that Enochs et al. proved that when the category is Gorenstein, then
(L,GI) is a complete hereditary cotorsion theory (where L is the class of all objects
of finite injective dimension), and the same did Yang and Ding in a locally noethe-
rian Grothendieck category with a generator of finite injective dimension. Though
we don’t know how to describe the class ⊥GI when the generator is not of finite
injective dimension (for instance, if a noetherian ring R is not of finite injective di-
mension then it does not hold in L but it always lies in ⊥GI), we can still prove that
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the pair (⊥GI,GI) is a complete hereditary cotorsion theory when ⊥GI contains
a generator of the category, which in part generalizes Yang and Ding’s result. We
will do so in the next result, where, in addition, we put together all the information
we have about (special) GI-preenvelopes. We think this is useful in order to know
where we are in the way of solving the problem we mentioned before: when are
direct products of Gorenstein injectives Gorenstein injective?

Proposition 6.2. Let A be a locally noetherian Grothendieck category and

consider the following statements:

1. A has a generator H lying in ⊥GI.
2. (⊥GI,GI) is a complete hereditary cotorsion theory.

3. GI is special preenveloping.

4. GI is preenveloping.

5. GI is closed under direct products.

Then the following implications hold:

1. �� ��

��

2. �� 3. �� 4.

5.

��













































If GI is closed under direct summands then 4.⇒5. holds too.

Proof. 1.⇒2. We first have to see that (⊥GI,GI) is a cotorsion theory, for
which we just need to prove, by the comments above, that GI is closed under direct
summands.

The dual arguments to those given in [19, Theorem 2.5] prove that GI is closed
under cokernels of monomorphisms in any Grothendieck category, so by Proposition
5.5 we can use Eilenberg’s swindle to see that indeed GI is closed under direct
summands. Therefore (⊥GI,GI) is a cotorsion theory.

To prove that (⊥GI,GI) is complete we only need to check, by Theorem 6.1,
that for every object X of A there is an exact sequence

0−→G−→G′ −→X −→ 0

with G∈GI and G′∈⊥GI. But we know there are two exact sequences 0→K→
H(I)→X→0 and 0→K→G→P→0 with G∈GI and P∈⊥GI (given by Theorem
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6.1), so we get a pushout diagram

0

��

0

��

0 �� K ��

��

H(I) ��

��

X �� 0

0 �� G ��

��

G′ ��

��

X �� 0

P

��

P

��

0 0

Now, H∈⊥GI⇒H(I)∈⊥GI, and since P∈⊥GI we get that G′∈⊥GI.
It only remains to prove that (⊥GI,GI) is hereditary, and since A has enough

injectives, this will be done by proving that GI is closed under cokernels of monomor-
phisms. But this is just the categorical version of [9, Theorem 10.1.4].

2.⇒1. Let G be any generator of A. By hypothesis there is an object A∈⊥GI
and an epimorphism A→G, which means that A is also a generator of A.

2.⇒3. and 3.⇒4. Nothing to prove.

5.⇒4. Theorem 5.4.

1.⇒5. Proposition 5.5.

Now, if GI is closed under direct summands then 4.⇒5. is given by Theorem
5.2. �

Remark We have recently learnt that, under the assumption that A has a
system of generators of finite projective dimension, Gillespie proved in [16, Corollary
7.7] the second part of the particular case of our Theorem 6.1 (the class GI is special
preenveloping in A). We thank the referees for pointing out such a similarity.

7. Applications

There are many interesting categories where the problem of the existence of
Gorenstein injective preenvelopes and Gorenstein flat precovers remains open. We
now give a list of some classical Grothendieck categories of special interest in which



80 Edgar Enochs, J.R. García Rozas, Luis Oyonarte and Blas Torrecillas

the results proved in this paper apply and so the existence of such preenvelopes or
precovers is guaranteed.

Examples 1. The category G-DMod of all discrete Z[G]-modules over a
profinite group G is locally noetherian (see for instance [7]).

2. If R is any ring with identity and Q is any quiver, the category of repre-
sentations of Q by R-modules, (Q,R-Mod), is locally finitely presented and has a
projective generator which of course lies in ⊥GI. But (Q,R-Mod) having a projec-
tive generator means that the class of flat representations (with respect to the usual
tensor product −⊗RQF ) of Q is closed under extensions. Furthermore it is locally
noetherian when the ring and the quiver are noetherian (see [6, Proposition 3.2]).

3. If X is a quasi-compact and separated scheme, the category Qcoh(X) of
its quasi-coherent sheaves is locally finitely presented (see [17, I.6.9.12]), and it is
locally noetherian whenever X is a noetherian scheme (see [18, pg. 121]). Flat quasi-
coherent sheaves are closed under extensions since the categories of quasi-coherent
sheaves and that of quasi-coherent modules over a certain quiver Q are equivalent
(see [3, Section 2]). In addition to that, it is well known that the derived category
D (Qcoh(X)) is compactly generated (see for instance [23, Proposition 2.5]), so by
[21, Lemma 4.4] we get that the class GI is closed under direct products.

4. If R=⊕g∈GRg is a G-graded ring (G is a group), then the category R-gr of
G-graded R-modules is locally finitely presented with a projective generator (so it
holds in ⊥GI and the class of flat graded modules is closed under extensions), and
it is locally noetherian whenever R is a graded noetherian ring (see [22]).

Therefore the class GF of all Gorenstein flat objects (with respect to any tensor
product which makes the class of flat objects to be closed under extensions) of any
of the above categories is precovering. Thus, in particular, the class GF with respect
to the usual tensor product in each one of the categories (Q,R-Mod), Qcoh(X) and
R-gr is precovering. The usual tensor product in the category G-DMod is

A⊗ZZ[G]− :G-DMod−→Ab

(A is a discrete module), and for the class GF (with respect to this tensor product)
in this category to be precovering, we need the class of flat discrete modules to be
closed under extensions, which we don’t know so far. On the other hand, when the
categories Qcoh(X), (Q,R-Mod) or R-gr are locally noetherian then the class GI
is preenveloping in Qcoh(X) and special preenveloping in (Q,R)-Mod and R-gr.

It is worth noting that recently, Christensen, Estrada and Iacob proved that
the class of Gorenstein flat quasi-coherent sheaves over any scheme (Gorenstein
flat with respect to the usual tensor product of modules) is precovering (see [2,
Corollary 4.8]). Our type of precovers are somehow more general than the ones
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found by them, but our assumptions on the structure scheme are not needed for
them.

We now give a last application concerning the categories of complexes on a
Grothendieck category.

Proposition 7.1. If A is a Grothendieck category satisfying any of the fol-

lowing properties, then the same is true for C(A):
1. A is locally finitely presented.

2. A is locally noetherian and the class of exact complexes with injective com-

ponents is closed under direct products.

3. A is locally noetherian and has a generator in ⊥GI.

Therefore, the class GF of Gorenstein flat objects in C(A) (with respect to any

tensor product which makes the class of flat complexes to be closed under extensions)

is precovering under condition 1., and the class GI is preenveloping under condition

2. and special preenveloping under condition 3.

Proof. If A is locally finitely presented (locally noetherian) and X is a set of
finitely presented (noetherian) generators of A, then {Dn(X); X∈X , n∈Z} is a
set of finitely presented (noetherian) generators of C(A).

Now, direct products in C(A) are computed componentwise so if the class of
exact complexes on A with injective components is closed under direct products,
then the same is true for the class of exact complexes on C(A) with injective com-
ponents.

Finally, since HomA(E,Xi)=HomC(A)(Di(E), X) for any complex X in C(A)
and any object E of A, we see that Gorenstein injective complexes have Gorenstein
injective components, so if A has a generator H in ⊥GI then any Di(H) holds in
⊥GI (where GI is the class of Gorenstein injective complexes), and then C(A) has
a generator in ⊥GI. �
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