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A simple construction of positive loops of
Legendrians

Dishant Pancholi, José Luis Pérez and Francisco Presas

Abstract. We construct positive loops of Legendrian submanifolds in several instances.
In particular, we partially recover G. Liu’s result stating that any loose Legendrian admits a
positive loop, under some mild topological assumptions on the Legendrian. Moreover, we show
contractibility of the constructed loops under an extra topological assumption.

1. Introduction

1.1. Motivation

Consider a (2n+1)–dimensional co-oriented contact manifold (M, ξ). Y. Eliash-
berg and L. Polterovich [EP] introduced the notion of non-negative contact isotopy
and showed that it induces a relation on the identity component of the group of
contactomorphisms, CDiff0(M, ξ). This relation, which was also studied by Bhupal
[Bu], is naturally reflexive and transitive but not necessarily anti-symmetric. We
say that CDiff0(M, ξ) is strongly orderable if the relation is also anti-symmetric,
i.e. it is a partial order on CDiff0(M, ξ). Analogously, we define a relation in the
universal cover C̃Diff0(M, ξ) that again may fail to be anti-symmetric. We say that
C̃Diff0(M, ξ) is orderable if the relation defines a partial order on C̃Diff0(M, ξ).
Contact topology has embraced the study of this relation during the last few years
[AFM], [EKP], [EP], [Gi], [We].

There is a relative version of the construction. Let L be a Legendrian subman-
ifold in a contact manifold (M, ξ) and denote by Leg(L) the space of all Legendrian
submanifolds which are Legendrian isotopic to L. Non-negative Legendrian iso-
topies also define a relation on Leg(L) and we say that Leg(L) is orderable if this
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relation is anti-symmetric (respectively, the universal cover L̃eg(L) is orderable if
the analogous relation is anti-symmetric).

The existence of these partial orders can be checked in terms of the non-
existence of positive loops of contactomorphisms (resp. Legendrians). The study
of orderability for Legendrians and of the existence of positive (contractible) loops
has been an active research area in contact topology. Thus, for instance, V. Colin,
E. Ferrand and P. Pushkar [CFP] studied the non–existence of positive loops of
Legendrian submanifolds in the unit contangent bundle S(T ∗M) of a manifold M

whose universal cover is the n–dimensional real space. In the field of Lorentzian
geometry, V. Chernov and S. Nemirovsky [CN1], [CN2], [CN3] apply this topic to
the study of causality in globally hyperbolic spacetimes. The orderability property
of Legendrians gives rise to the existence of bi–invariant integer–valued metrics on
the space of Legendrians [CS].

Recently, G. Liu [Li1], [Li2] has announced the existence of (contractible) pos-
itive loops for loose Legendrian submanifolds. The goal of this note is to offer a
shorter proof of G. Liu’s result under some extra assumptions.

1.2. Statement of the results

Consider a (2n+1)-dimensional manifold M endowed with a co-oriented con-
tact structure ξ. An n-dimensional embedded submanifold Ln⊂M2n+1 is called
Legendrian if its tangent space at each point is contained in the contact distribu-
tion.

Denote by Dn
ε the closed Euclidean ball of radius ε in Rn; and denote by D̊n

ε

the open ball. The key remark of this article is the following

Theorem 1. Let (M, ker(α)) be a contact manifold and fix an ε>0 positive

constant. Consider the contact manifold (M×D̊2
ε(r, θ), ker(α+r2dθ)). Any closed

Legendrian submanifold in M×D̊2
ε admits a positive loop of Legendrians.

A loop of Legendrian submanifolds is called positive if the generating Hamil-
tonian of the loop is positive (see definitions below). The proof is extremely simple
and the core of this note is devoted to extract some interesting corollaries of the
result. The most important one is the next

Theorem 2. Let n≥2. Fix a loose closed Legendrian submanifold Ln in a

contact manifold (M2n+1, ξ). Assume that its bundle T ∗L⊕R has two pointwise

linearly independent sections. Then L admits a positive loop of Legendrians.

Recall that T ∗L⊕R�J1(L) is the normal bundle of the Legendrian submani-
fold and determines the contact structure on a small neighborhood of the subman-
ifold (Weinstein neighborhood Theorem, see [Ge, Theorem 2.5.8]. A Legendrian
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submanifold is loose if there is a special chart in an open ball intersecting the Leg-
endrian (see Definitions 24, 25). Murphy proved that loose Legendrians satisfy an
h–principle [Mu]. Note that this definition assumes 2n+1≥5.

In 3–dimensional contact topology, there is an analogous older notion [EF].
A Legendrian knot in a contact 3–fold whose complement is overtwisted is called
loose. They also satisfy an h–principle.

If 2n+1≥5, any Legendrian submanifold whose complement is overtwisted is
loose. This is a consequence of the parametric and relative nature of the h–principle
for overtwisted contact structures (see [BEM]).

For didactical reasons, we will first prove the following particular case of The-
orem 2.

Theorem 3. Let n≥1. Assume that a closed Legendrian submanifold Ln in

a contact manifold (M2n+1, ξ) satisfies that the bundle T ∗L⊕R has two pointwise

linearly independent sections. If M\L is overtwisted, then L admits a positive loop

of Legendrians.

We remark that this result covers the 3–dimensional situation that is not in-
cluded in Theorem 2.

Observe that the hypothesis of T ∗L⊕R having two independent sections is
pretty mild. If L is orientable, then some sufficient conditions for this hypothesis
to be satisfied are:

• χ(L)=0. This, in particular, covers odd dimensional Legendrians.
• wn(L)=0. This implies that wn(T ∗L⊕R)=0 and by the definition of this

obstruction class in the even dimensional case, the vanishing of the class implies the
existence of two independent sections. In particular, this covers even dimensional
Legendrians with even Euler characteristic.

• Any Legendrian submanifold whose tangent bundle is trivialized by direct
sum with R. This covers all the spheres.

There are simple examples of manifolds not satisfying that property. For in-
stance, L=CP2 is a manifold whose 1–jet bundle T ∗CP2⊕R does not admit two
independent sections.

Let us move to the study of positive contractible loops. We prove the following
key remark.

Theorem 4. Let (M, ξ=ker(α)) be a contact manifold and on the product M×
D̊4

ε(r1, θ1, r2, θ2) define the contact form α̃=α+r2
1dθ1+r2

2dθ2. Define the domain

M+ = {(p, r1, θ1, r2, θ2)∈M×D̊4
ε such that 0<r1 <r2}.

Any Legendrian embedding L↪→M+⊂M×D̊4
ε admits a contractible positive loop of

Legendrians on M×D̊4
ε.
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This statement implies
Corollary 5. Let n≥3. Fix a loose closed Legendrian submanifold Ln in a

contact manifold (M2n+1, ξ). Assume that the bundle T ∗L⊕R has four pointwise

linearly independent sections. Then, L admits a contractible positive loop of Legen-

drians.

Again, the hypotheses can be easily checked. They are satisfied, for instance,
by Legendrian spheres of dimension n≥3. Let us consider two more corollaries from
Theorem 4.

Corollary 6. If L⊂(R2n+1, ξstd) with n≥2, then L admits a contractible pos-

itive loop of Legendrians.

Observe that this statement can be proven using the fact that S2n+1 admits a
contractible positive loop [EKP], placing R2n+1⊂S2n+1 and making sure that the
restrictions of the contact isotopies to the Legendrian submanifold do not cross
∞∈S2n+1. This can be done by a genericity argument whenever n≥2. However,
the proof presented in this note is more elementary.

Corollary 7. Let R2n+1 be the Euclidean space equipped with the overtwisted at

infinity contact structure ξ. If L⊂(R2n+1, ξ) and n>2 then L admits a contractible

positive loop of Legendrians.

For the precise notion of overtwisted at infinity, see Definition 19.
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2. Preliminaries
Consider a (2n+1)-dimensional manifold M endowed with a contact struc-

ture ξ. An embedding of an n-dimensional manifold φ:Ln ↪→M2n+1 is called Leg-
endrian(1) if its differential Dφ:TL→φ∗(TM) satisfies Dφ(TL)⊂ξ.

(1) We will work along the paper with parametrized Legendrians. This is done in order to
ease the notation.
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A vector field X on M is called a contact vector field if its flow preserves the
contact structure ξ=ker(α). That is, LXα=gα, for some g∈C∞(M). A contact
form α provides a bijection between the space of contact vector fields and the space
of smooth functions as follows. Let R be the Reeb vector field associated to α.
For any contact vector field X, the function H ..=α(X)∈C∞(M) which satisfies the
equations:
(1) iXα=H

(2) iXdα=dH(R)α−dH

is called the associated Hamiltonian. Conversely, for a function H∈C∞(M) there
exists a unique contact vector field XH verifying the equations above.

A diffeomorphism ψ of (M, ξ) is a contactomorphism if ψ∗(ξ)=ξ or, equiv-
alently, ψ∗α=gα for some everywhere positive function g on M . An isotopy of
contactomorphisms is a smooth diffeotopy ψt :M→M generated by a 1–parametric
family of contact vector fields Xt, with t∈[0, 1]. We say that the isotopy is a loop
of contactomorphisms if ψ0=ψ1=Id.

Let us remark that the above bijection implies that the isotopy is completely
characterized by a 1–parametric family of Hamiltonians Ht :M→R. Hence, we can
make the following definition:

Definition 8. An isotopy of contactomorphisms ψt is non-negative if its asso-
ciated family of Hamiltonians Ht is non-negative, i.e. Ht(p)≥0 for all p in M and
for all t in [0, 1]. If the inequality is strict, the isotopy is called positive. Analogously
we can define positive and non-negative loops of contactomorphisms.

This definition is independent of the choice of contact form α for the given
coorientation. Let us point out that when we have a loop of contactomorphisms we
can choose the parameter to be defined as t∈S1 i.e. the Hamiltonian can be chosen
to satisfy Ht(p)=Ht+1(p). This is because Ht=α(Xt) and clearly Xt+1=Xt. The
above definitions can be adapted to this situation.

Definition 9. An isotopy of Legendrian submanifolds is a smooth 1–para-
metric family φt :L→M of Legendrian embeddings with t∈I=[0, 1]. That is,
a smooth map φ:L×I→M such that φ|L×{t} is a Legendrian embedding for all t.
By a loop of Legendrians based at Λ we mean an isotopy of Legendrians such that
φ0(L)=φ1(L)=Λ as submanifolds of (M, ξ).

A basic fact about Legendrian isotopies is the next Legendrian isotopy exten-
sion theorem:

Theorem 10. (see, e.g., [Ge, Thm. 2.6.2]) Let φt be a given isotopy of a

closed Legendrian, then we can extend φt by an isotopy ψt of contactomorphisms

satisfying ψt¨φ0=φt and ψ0=Id.
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We are ready to introduce the concept of positive isotopy of Legendrians.

Definition 11. Let us consider the contact structure ξ=kerα. An isotopy
φt of Legendrians is called non-negative (resp. positive) if α(∂φt

∂t (p))≥0 (resp.
α(∂φt

∂t (p))>0) for all p∈L and for all t.

Clearly, these notions are independent of the chosen contact form compatible
with the coorientation and of the chosen parametrization. The latter is because for
a different parametrization φ̃:L×I→M , the difference of the vector fields ∂φt

∂t and
∂φ̃t

∂t lies in the tangent space to the Legendrian submanifold φt(L) at that point.
According to the previous definition, a loop of Legendrians is called non-

negative (resp. positive) provided the isotopy generating the loop is non-negative
(resp. positive). Notice that to have a positive loop of Legendrians is much weaker
than to have a positive loop of contactomorphisms. Any extension of a positive
Legendrian loop needs be neither a loop of contactomorphisms nor is required to
be positive. However, we can easily arrange the extension of a positive (resp. non-
negative) loop of Legendrians to be positive (resp. non negative). This fact will be
used afterwards.

Definition 12. A loop of Legendrians φt is contractible if there exists a homo-
topy of loops of Legendrians φt,s such that φt,1=φt, φt,0=φ0,1 and φ0,s=φ0,1=φ1,s.

Remark 13. The existence of a positive loop of a Legendrian L implies that
the space Leg(L) is not orderable. Equivalently, the existence of a contractible
positive loop of a Legendrian L implies that the space L̃eg(L) is not orderable.

Define the conjugation of a loop of Legendrian embeddings φt by a contacto-
morphism Ψ as Ψ¨φt. It is a new loop of Legendrians based on Ψ¨φ0(L). The
conjugation of a positive (contractible) loop is clearly a positive (contractible) loop.
Since isotopic Legendrians are isotopic through contactomorphisms, we have

Lemma 14. If L admits a positive (contractible) loop of Legendrians through

it, then any isotopic Legendrian also admits a positive (contractible) loop of Legen-

drians through it.

Proof. Let ϕ0 :L→(M, ξ) be a Legendrian embedding. Assume that there exists
ϕt :L×S1→M a positive (contractible) loop of Legendrians through ϕ0. Moreover,
assume that there exists φ1 :L→(M, ξ) a Legendrian embedding isotopic to ϕ0,
i.e. there exists an isotopy of Legendrians φ̃t :L×[0, 1]→(M, ξ) such that φ̃0=ϕ0
and φ̃1=φ1. By Theorem 10, there exists ψt :M→M a contact isotopy such that
ψt¨φ̃0=φ̃t. Now, ψ1¨ϕt is a positive (contractible) loop of Legendrians embeddings
based at ψ1¨ϕ0=ψ1¨φ̃0=φ̃1=φ1. �
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2.1. Formal Legendrians and formal contact structures

Now denote by Cont(M) the space of co-oriented contact structures on M and
consider the set DCont(M)={(ξ, α, J :ξ→ξ)} where ξ∈Cont(M), α is an associated
contact form and J is an almost-complex structure compatible with (ξ, dα). This set
is known as the space of decorated contact structures. Notice that the forgetful map
f :DCont(M)→Cont(M) has contractible fibers. Therefore, it induces a homotopy
equivalence and thus it has a homotopy inverse ι:Cont(M)→DCont(M).

Finally, we define the space of formal contact structures of M as the set of
pairs FCont(M)={(ξ, J)}, where ξ is a co-oriented distribution of rank 2n on M

and J :ξ→ξ is an almost-complex structure. Two contact structures ξ1 and ξ2 are
formally equivalent if there exists a family of formal contact structures {(ξt, Jt)}
that connects them. Composing ι with the forgetful map π :DCont→FCont, we get
a natural map

j : Cont(M) ↪−→FCont(M).

There is a natural inclusion i given by:

i :FCont(M) ↪−→FCont(M×R2)

(ξ, J) �−→
(
ξ⊕R2,

(
J 0
0 i

))
.

(1)

Lemma 15. The inclusion map (1) induces an isomorphism

i0 :π0(FCont(M))−→π0(FCont(M×R2)),

if M is an open manifold.

Proof. Assume dimM=2n−1. Notice that a formal contact structure on M

is a reduction of the structure group to 1×U(n−1). Hence, considering a formal
contact structure on M is equivalent to having a section of the associated bundle
SO(2n−1)/U(n−1). Analogously, having a formal contact structure on M×R2 is
equivalent to choosing a section of the associated (SO(2n+1)/U(n))–bundle.

By [Ge, Lemma 8.1.2], the spaces SO(2n−1)/U(n−1) and SO(2n)/U(n) (re-
spectively; SO(2n+1)/U(n) and SO(2n+2)/U(n+1)) are diffeomorphic. We claim
that the homotopy groups πk of the spaces SO(2n−1)/U(n−1) and SO(2n+1)/
U(n) are isomorphic whenever k<2n−1. To check it, we write the long homotopy
sequence associated to the fibration U(n)→SO(2n)→SO(2n)/U(n). Now consider
the following commutative diagram in which the vertical arrows are the morphisms
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associated to the natural inclusions U(n)→U(n+1) and SO(2n)→SO(2n+2) which
induce isomorphisms in the πk homotopy groups for k<2n−1:

... �� πk(U(n))

��

�� πk(SO(2n))

��

�� πk(SO(2n)/U(n))

?
��

�� πk−1(U(n))

��

�� πk−1(SO(2n))

��

�� ...

... �� πk(U(n+1)) �� πk(SO(2n+2)) �� πk(SO(2n+2)/U(n+1)) �� πk−1(U(n+1)) �� πk−1(SO(2n)+2) �� ...

Then, apply the Five Lemma to conclude.
Now obstruction theory shows that i0 is an isomorphism if N is open, because

N retracts to a 2n−2 dimensional skeleton. �

Let us remark that if N is closed, the same argument provides the surjectivity
of i0.

2.2. Overtwistedness and looseness

Definition 16. A contact structure ξ on M3 is called overtwisted if there
exists an embedded 2–disk D2⊂M such that ∂D2	{0} is tangent to the contact
distribution while the rest of the disk is transverse to ξ. If ξ is not overtwisted, it
is called tight.

We define the standard overtwisted contact form in R3(z, r, θ) to be αot=
cos(r)dz+r ·sin(r)dθ. It is overtwisted since the embedding e:D2

π ↪→R3, e(r, θ)=
(0, r, θ) is overtwisted. For δ>0 small enough, the contact domain (Uot, αot)=
(D2

π+δ×[−δ, δ], αot) always exists in the neighborhood of an overtwisted disk; it will
be called the overtwisted contact germ Uot.

Overtwisted contact structures are important because they form a subclass of
Cont(M) satisfying a complete h–principle [El1], [BEM] in all dimensions. Definition
16 gives us the notion of an overtwisted contact structure in dimension 3. Let us
generalize this concept.

There exists a sequence of positive constants R(n) in R+, whose value is com-
puted in [CMP] that provide the following

Definition 17. Let (M, ξ) be a contact manifold of dimension 2n+1>3. (M, ξ)
is called overtwisted if there exists a contact embedding φot :(Uot×D2n−2

R(n) , ker(αot+
λstd))↪→(M, ξ), where λstd=

∑
xidyi−yidxi is the standard Liouville form on the

closed ball D2n−2
R . The domain will be called the overtwisted contact germ in di-

mension 2n+1.

We say that a formal contact structure is overtwisted if it is genuine in some
open set B and is overtwisted in B.
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Fix a closed set A⊂M and a contact structure ξA on a germ of neighborhood
of A. Denote by Contot(M,A, ξA) the space of contact structures that are over-
twisted in M \A and coincide with ξA on an arbitrarily small neighborhood UA of
A. Equivalently, define FContot(M,A, ξA) to be the space of overtwisted formal
contact structures that agree with ξA on UA. Finally, denote by j the inclusion
map j :Contot(M,A, ξA)→FContot(M,A, ξA).

Theorem 18. ([BEM, Thm. 1.2]) If M \A is connected, then the inclusion

map j induces an isomorphism

j0 :π0(Contot(M,A, ξA))−→π0(FContot(M,A, ξA)).

In particular, on any closed manifold M , any formal contact structure is ho-
motopic to an overtwisted contact structure which is unique up to isotopy.

For the open case, we have

Definition 19. The contact manifold (M, ξ) is called overtwisted at infinity
if, for any compact subset K⊂M , each noncompact connected component of the
contact manifold (M \K, ξ) is overtwisted.

Eliashberg [El2] proved that any two contact structures on R3 overtwisted at
infinity are contactomorphic. This result can be extended, without changes in the
argument, to general open manifolds of arbitrary dimension. Concretely,

Lemma 20. Let M be an open manifold and let (M, ξ0) and (M, ξ1) be two

contact structures overtwisted at infinity such that ξ0 and ξ1 are formally equivalent.

Then, there exists a diffeomorphism Ψ:M→M such that Ψ∗ξ0=ξ1.

The proof is left to the reader. It follows, verbatim, [El2].
We claim

Lemma 21. The overtwisted contact germ (Uot×D2n−2
R(n) ), αot+λstd) contains

an open ball Bot overtwisted at infinity.

Proof. In 3 dimension, the ball Bot can be chosen to be the interior of the
whole domain Uot. The reason is that the contact flow ∂z pushes the overtwisted
disk D2

π×{0}⊂Uot arbitrarily close to the boundary.
In higher dimension, the open manifold Cot=(R3×R2n−2, αot+λstd) is over-

twisted, because it contains the overtwisted contact germ. Moreover, it is over-
twisted at infinity, since ∂z is again a contact vector field that pushes any over-
twisted contact germ to infinity. Moreover, Cot admits a formal contact embedding
into Uot×B2n−2

R (n) since both domains are contractible and there is not topological
obstruction to upgrade a smooth embedding, that of course exists, into a contact
formal one. Then [BEM, Corollary 1.4], changes the formal embedding into a con-
tact one. �
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To prove Theorem 3, we will use the above Lemma together with Theorem 1.
Hence we will need to find a contact manifold N such that N×D2 is overtwisted at
infinity. The next folklore result shows that it suffices for N to be an overtwisted
manifold.

Proposition 22. Let (N, ker(α)) be an overtwisted contact manifold. Then

(N×R2, ker(α+r2dθ)) is overtwisted at infinity.

Notice that the proposition does not hold if the dimension of N is 1 since there
is no notion of overtwistedness in this case. We need the following elementary

Lemma 23. Let (M, ξ=ker(α)) be a contact manifold satisfying that the Reeb

vector field Rα is complete. Denote the associated flow φR
t . Choose f :D2

r→R a

smooth function and λ∈Ω1(R2) a primitive for ω0=dx∧dy. Define on M×D2
r the

contact forms α0=α+λ and α1=α+λ+df . Then the diffeomorphism

Ψ :M×D2
r −→M×D2

r

(p, x, y) �−→ (φR
f(x,y)(p), x, y)

satisfies Ψ∗α0=α1.

The proof is left to the reader.

Proof of Proposition 22. Observe that there exists a smooth function g :N→R

such that α̃=egα satisfies that Rα̃ is complete(2). In fact, we have the following
diffeomorphism

ψ :N×R2 → N×R2

(p, r, θ) �→ (p, eg/2r, θ),

that clearly satisfies ψ∗(α̃+r2dθ)=eg(α+r2dθ). So (N×R2, α+r2dθ) is contacto-
morphic to (N×R2, α̃+r2dθ). Therefore, we can assume without loss of generality
that the Reeb vector field associated to α is complete to begin with.

It is sufficient to show that for any K>0, the manifold W=(N×R2)\(N×
D2

K(0, 0)) is overtwisted. Let us prove it.
First, we realize that since (N, ker(α)) is overtwisted, there exists a positive

constant R=R(n) such that (N×D2
R((0, 0)), ker(α+λstd)) is overtwisted [CMP,

Thm. 3.1]. Now, let us consider the manifold (N×D2
R((0,K+3R)), ker(α+λstd))

embedded in W . We apply Lemma 23 with f(x, y)=−(k+3R)x to show that
(N×)D2

R, ker(α+λstd)) is contactomorphic to (N×D2
R((0,K+3R)), ker(α+λstd)).

Hence, (N×D2
R((0,K+3R)), ker(α+λstd)) is overtwisted and thus, N×R2 is over-

twisted at infinity. �
(2) This is a standard fact: choose g to be a “reasonable" rapidly increasing proper function.
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Figure 1. The front projection of a stabilized Legendrian arc.

Just as overtwisted contact structures abide by an h-principle, there also exists
a subclass of Legendrian embeddings, referred to as loose, which satisfies an h–
principle type result [Mu]. Let us define this class.

A formal Legendrian submanifold L of M is an embedding φ:L→M together
with a family Φt :TL→φ∗TM such that Φt is a monomorphism for all t∈[0, 1]
satisfying that Φ0=dφ and Φ1(TL)⊂φ∗ξ. Notice that a Legendrian submanifold
can be thought of as a formal Legendrian submanifold by letting Φs=dφ for all
s. In particular, two Legendrian embeddings φ0 and φ1 are formally isotopic if
there exists a smooth isotopy φt between them and a homotopy of monomorphisms
Φt,s :TL→φ∗

tTM such that Φt,0=dφt, Φ0,s=dφ0, Φ1,s=dφ1 and Φt,1(TL)⊂Φ∗
t ξ.

E. Murphy [Mu] introduced the notion of loose Legendrian submanifolds. They
are characterized by the following local model:

Consider an open ball D around the origin in (R3, ξstd) where ξstd=kerαstd

is the standard contact structure on R3 and let L0⊂(R3, ξstd) be a stabilized Leg-
endrian arc as seen in Figure 1. Consider the zero section Γ⊂T ∗M of a closed
manifold M and denote by UΓ⊂T ∗M an open neighborhood of it. Then, (L0×Γ⊂
(D×UΓ, ker(αstd+λstd)) is a Legendrian submanifold.

Definition 24. The pair (L0×Γ,D×UΓ) together with the contact structure
ker(αstd+λstd) is known as a loose chart.

Definition 25. A Legendrian submanifold Ln⊂(M2n+1, ξ) with n≥2 is called
loose if there exists an open set U⊂M such that ((U∩L,U), ξ) is contactomorphic
to a loose chart.

The corresponding h–principle can be stated as follows.

Theorem 26. ([Mu]) Let Ln⊂M2n+1 be a formal Legendrian submanifold

with n>1. Then, there exists a loose Legendrian submanifold L̃ such that they are

formally isotopic. Moreover, given two formally isotopic loose Legendrians L1 and

L2, they are isotopic through loose Legendrians.
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3. Proof of Theorem 1

Before proving Theorem 1, we need to introduce a result due to Y. Eliash-
berg and L. Polterovich [EP] adapted to the Legendrian case by V. Chernov and
S. Nemirovski [CN3] which states that if a Legendrian isotopy class contains a non-
constant non-negative loop of Legendrians, then it contains a positive loop. More
precisely,

Lemma 27. ([CN3, Prop. 4.5]) Let {φt} be a non-negative non-trivial Legen-

drian loop of closed Legendrians based at L. Then, there exists a positive loop of

Legendrians {φ′
t} which satisfies that φ0(L)=φ

′
0(L).

If we assume that φt is contractible then φ
′
t can be chosen to be contractible.

Theorem 1 is a consequence of the above Lemma.

Proof of Theorem 1. The contact vector field X= ∂
∂θ generates a non–negative

loop of contactomorphisms, that is positive away from M×{0}.
Since L is a Legendrian submanifold in M×D2 for dimensional reasons there

exists a point of L which is not in the contact submanifold M×{0}. Hence the loop
restricted to the Legendrian is a non–negative non–trivial loop of Legendrians. Now
we can apply Lemma 27 to complete the proof. �

Corollary 28. Any Legendrian submanifold in R2n+1 admits a positive loop

of Legendrians.

Proof. The standard contact manifold R2n+1 is nothing but R2n−1×R2 with
the contact structure given by αstd+r2dθ where αstd is the standard contact form on
R2n−1. Let L be a closed Legendrian in R2n+1, by compactness L⊂R2n−1×D̊2

ε, for
ε>0 large enough. The corollary follows from Theorem 1 applied to
R2n−1×D̊2

ε. �

Remark 29. Actually, it can be shown that R2n+1 admits a positive loop of
contactomorphisms. This is even true for M×R2 just by checking that the proof
of non–negative loop implies positive loops works also for open manifolds [EP,
Proposition 2.1.B]. The only delicate issue is that the contact vector fields defined
in that proof should be complete.

4. Proof of Theorem 3

The main idea of the proof is to construct a neighborhood UL of L contac-
tomorphic to N×R2 satisfying the hypothesis of Lemma 20. Then the result will
follow from Theorem 1. This is the content of Lemma 30.



A simple construction of positive loops of Legendrians 389

Figure 2. Construction of UL.

Lemma 30. For any Legendrian submanifold L⊂(M, ξ) satisfying the hypoth-

esis of Theorem 3, there exists a neighborhood UL of L diffeomorphic to N×R2 such

that (UL, ξ) is overtwisted at infinity and N is an open manifold if n≥2.

Proof. By the first hypothesis and the Legendrian neighborhood theorem [Ge,
Theorem 2.5.8], a small tubular neighborhood VL of L is diffeomorphic to N×R2.
By the second hypothesis, there exists an overtwisted disk contact germ which
does not intersect L. The germ contains an open ball overtwisted at infinity Bot

by Lemma 21. VL is disjoint from the overtwisted ball Bot. Define UL to be
the embedded connected sum of VL with Bot along a tubular neighborhood of a
path connecting their boundaries (see Figure 2). UL is overtwisted at infinity by
construction and is diffeomorphic to N×R2. �

We want to apply Lemma 20 and we use Proposition 22 to find an overtwisted
at infinity contact manifold of type N×R2. Hence, we have to distinguish two cases.

4.1. Proof of Theorem 3 for n>1.

It follows from Lemma 30 that there exists a diffeomorphism Φ:UL→N×R2.
In addition, (UL, ξ) is overtwisted at infinity. By Lemma 15 the submanifold N×{0}
can be equipped with a formal contact structure (ξN , JN ) such that (ξN⊕R2, JN⊕i)
represents the same formal contact class as ξ.

By Theorem 18 there exists an overtwisted contact structure ξot=ker(αot) on
N , formally homotopic to ξN . Therefore, the contact structure ξ′=ker(αot+r2dθ)
in N×R2 is overtwisted at infinity by Proposition 22 and formally homotopic to
ξ. By Lemma 20, there is a diffeomorphism F :UL→N×R2 taking ξ to ξ′ and
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preserving co–orientations. By the compactness of L, we have that F (L)⊂N×D̊2
ε,

for ε>0 large enough.
By Theorem 1, F (L) admits a positive loop of Legendrians φt. Thus, the family

φt¨F
−1 is a positive loop of Legendrians for L.

4.2. Proof of Theorem 3 for n=1.

Let L↪→(M, ξ) denote the Legendrian embedding. A tubular neighborhood UL

can be identified with L×D̊2
ε⊂(M, ξ). By Lemma 30 UL is overtwisted at infinity

and diffeomorphic to S1×R2.
Consider now the contact manifold (S1(z)×D̊2

ε(r, θ), η=ker(dz+r2dθ)). Here,
integrating ∂z gives a positive loop of contactomorphism with Hamiltonian H=1, in
particular it is autonomous. Fix a sequence of transverse knots γk=(z, ε(1−1/k), 0),
with k∈Z>0. Then, the contact manifold obtained as a sequence of half Lutz
twists along each of them is overtwisted at infinity. It admits a positive loop of
contactomorphisms by [CP]. Denote it by (S1×D̊2

ε, η
γ).

Finally, ξ and ηγ are formally equivalent because there exists only one class of
formal contact structures on S1×D2

ε. Again, the claim follows by using Lemma 20.

5. Proof of Theorem 2

We will use again Theorem 1. Hence we need to construct a neighborhood of
L contactomorphic to (N×D̊2

ε, ker(αN +r2dθ)) for some contact manifold (N,αN ).
We first prove a simple case.

5.1. Euler characteristic zero

Assume that T ∗L has a never–vanishing section. Using Weinstein’s tubular
neighborhood theorem, we find a neighborhood UL of (L, ker(α)) contactomorphic
to (T ∗L×R(z), ker(dz−λstd)). As (T ∗L\{0}, dλstd) and (S(T ∗L)×R, d(etλstd)) ad-
mit a diffeomorphism preserving the Liouville forms, the natural inclusion S(T ∗L)↪
→T ∗L×R is a contact embedding. By the tubular neighborhood theorem for con-
tact submanifolds ([Ge]), there exists a neighborhood V of S(T ∗L) contactomorphic
to S(T ∗L)×D̊2

ε.
The never–vanishing section of T ∗L provides an embedding σ :L→S(T ∗L)⊂

T ∗L×R. Thus, we obtain a family of embeddings σt :L→T ∗L×R defined as σt=tσ.
Since σ0 is a Legendrian embedding, the whole family σt can be lifted into a family
(σt,Φt) of formal Legendrian embeddings.
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Apply Theorem 26 to (σ1,Φ1) as a formal Legendrian embedding into the
manifold to create a family (σt,Φt) with t∈[1, 2] of formal Legendrian embeddings
in V satisfying that σ2 is a loose Legendrian embedding. The family (σt,Φt) with
t∈[0, 2] satisfies the hypothesis of the second part of Theorem 26 and so, it can be
deformed relative to t=0, 2 into a Legendrian isotopy inside M . We are, because of
Lemma 14, reduced to find a positive loop for the loose Legendrian σ2. But this is
true by Theorem 1 applied to V .

5.2. General case

By hypothesis, we have that a neighborhood UL of L is diffeomorphic to N×R2,
for an open manifold N . By Lemma 15, we assume that there is a formal contact
structure (ξN , JN ) on N such that (ξN⊕R2, JN⊕i) is the formal contact class of ξ.
By Theorem [EM, Thm. 10.3.2], the formal contact structure ξN =kerαN can be
assumed to be contact.

We are in the hypothesis of [EM, Thm. 12.3.1]. Therefore, the formal con-
tact embedding e0 :N ↪→N×{0}⊂N×R2�UL admits an isotopy of formal contact
embeddings et :N→UL satisfying that e1 is a contact embedding. By the contact
neighborhood theorem ([Ge], Theorem 2.5.15), there exists φ1 :N×D̊2

ε ↪→UL, for
sufficiently small ε>0, such that

(1) (φ1)|N×0=e1.
(2) Fix the contact form α=αN +r2dθ in the manifold N×D̊2

ε. The map φ1 is
a contact embedding.

By construction we have L⊂N . Define the family of embeddings ϕt :L→UL, t∈
[0, 1] as ϕt=(et)|L.

Promote the family ϕt into a family of formal Legendrian embeddings (ϕt,Φt),
t∈[0, 1]. Apply Theorem 26 to (ϕ1,Φ1) as formal Legendrian embedding of the man-
ifold φ1(N×D̊2

ε), to create a family of formal Legendrians embeddings (ϕt,Φt)t∈
[1, 2] such that (ϕ2,Φ2) is a loose Legendrian embedding into φ1(N×D̊2

ε). Since, by
hypothesis ϕ0 is loose, we can apply the second part of Theorem 26 to show that
ϕ0 and ϕ2 are Legendrian isotopic in M .

But the image of ϕ2 lies in φ1(N×D̊2
ε). Thus, (φ1)−1

¨ϕ2 is a Legendrian
embedding into (N×D̊2

ε, ker(αN +r2dθ)). Theorem 1 concludes that ϕ2 posseses a
positive loop. Lemma 14 provides one for the original Legendrian embedding ϕ0.

6. Proof of Theorem 4 and Corollaries

Proof of Theorem 4. Notice that U(2) acts by contactomorphisms on M×D̊4
ε.
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Now consider the contact vector fields X1=∂θ1 and X2=∂θ2 with associated
Hamiltonians H1=r2

1 and H2=r2
2, respectively. The contact vector field X=X2−

X1=∂θ2−∂θ1 , whose associated Hamiltonian is H=r2
2−r2

1, generates a loop that
preserves M+ and is positive on this domain. Denote by At the unitary matrix(

e2πit 0
0 e−2πit

)
,

then the flow associated to X reads as φt

(
p,

(
z1

z2

))
=

(
p,At

(
z1

z2

))
.

Realize that At is contractible in U(2) since det(At)=1 and SU(2) is simply
connected. Therefore, there exists a family of loops Ãt,s∈U(2) with s∈[0, 1] such
that

Ãt,0=Id,

Ãt,1=At.

Hence, φt,s

(
p,

(
z1

z2

))
=

(
p, Ãt,s

(
z1

z2

))
is the contraction of the positive

loop. �

Proof of Corollary 5. We mimic the proof of Theorem 2. A neighborhood UL

of L is diffeomorphic to N×R4. By an application of classical h–principles, we can
find an isotopy φt :N×D̊4

ε→UL such that is the identity for t=0 and is a contact
embedding for t=1.

Denote by ϕ0 :L→UL the given Legendrian embedding. We create a path of for-
mal Legendrian embeddings (ϕt,Φt) starting at ϕ0 an such that ϕ1(L)⊂φ1(N+)⊂
φ1(N×D̊4

ε). Finally, applying twice Theorem 26 and Theorem 4, we conclude the
result. �

Proof of Corollary 6. (R2n+1, ξstd) is contactomorphic to (R2n−3×R4,

ker(αstd+r2
1dθ1+r2

2dθ2)). By compactness of the Legendrian submanifold, we can
assume that L⊂R2n−3×D2

R×D2
R, for some R>0.

Applying Lemma 23 to N=R2n−3×D2
R(0, 0), the domains R2n−3×D2

R(0, 0)×
D2

R(0, 0) and R2n−3×D2
R(0, 0)×D2

R(10R, 0) are contact isotopic. Therefore, we
can assume that the Legendrian embedding can be pushed into R2n−3×D2

R(0, 0)×
D2

R(10R, 0)⊂(R2n−3)+. We apply Theorem 4 to conclude the result. �

Proof of Corollary 7. Consider (R2n−3, ξ̃ot=ker(α̃ot)) with ξ̃ot any overtwisted
contact structure on R2n−3. (R2n−3×R4, ker(α̃ot+r2

1dθ1+r2
2dθ2)) is the overtwisted

at infinity contact structure on R2n+1. The complementary of L is overtwisted, thus
L is loose. The result follows immediately from Corollary 5. �
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