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Determining all (2, 3)-torus structures of a
symmetric plane curve

Remke Kloosterman

Abstract. In this paper, we describe all (2, 3)-torus structures of a highly symmetric
39-cuspidal degree 12 curve.

A direct computer-aided determination of these torus structures seems to be out of reach.
We use various quotients by automorphisms to find torus structures. We use a height pairing
argument to show that there are no further structures.

1. Introduction

Let f∈C[u, v, w] be a reduced non-constant homogeneous polynomial and
denote with C⊂P2 the corresponding plane curve. A (p, q)-torus structure (or
(p, q)-torus decomposition) of the curve C consists of two homogeneous polynomi-
als g, h∈C[u, v, w] such that gp+hq=f , a (p, q, r)-quasi-torus structure consists of
three homogeneous polynomials (g, h, k) such that gp+hq=krf and gcd(g, h, k)=1.

The (2, 3, 6)-quasi-torus structures correspond to the non-identity elements in
the group E(C(s, t)), i.e., the C(s, t)-points on the curve E given by

y2 =x3+f(s, t, 1).

The group E(C(s, t)) is finitely generated and torsion-free (due to our assumptions
on f). Cogolludo-Agustín and Libgober [1] showed that for a certain class of plane
curves (including curves with at most A1 and A2 singularities) the rank of this
group equals twice the vanishing order at a sixth primitive root of unity of the
Alexander polynomial of the curve C. A precise description of the class of reduced
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plane curves for which this result holds and similar results for other values of (p, q, r)
can be found in [4].

Given a plane curve one can ask the following two questions:
1. Determine the number of (2, 3)-torus structures.
2. Do the (2, 3)-torus structures generate the group E(C(s, t)) of (2, 3, 6)-quasi-

torus structures?
For cuspidal curves of degree 6 we answered both questions in [4]. The first

question was answered using a height pairing on E(C(s, t)). It turned out that
the answer to the second question is "yes" for each cuspidal plane curve. D.T. Pho
considered the case of the 9-cuspidal curve in [6]. For other geometric interpretations
of (2, 3)-torus structures and their relevance for singularity theory, we refer to [2].

In general, the answer to the second question may be negative: in [4] we
constructed a degree 12 plane curve such that the rank of E(C(s, t)) is two, but
this curve does not admit any (2, 3)-torus structures.

For most cuspidal curves of degree 12, one can easily determine all (2, 3)-torus
structures, sometimes using the results for degree 6 curves. A notable exception is
the degree 12 curve with 39 cusps. To the author’s knowledge, there is only one
family of such curves described in the literature. This is a four-dimensional family.
It contains a two-dimensional subfamily of curves, which are Z/3Z×Z/3Z-covers of
the three-cuspidal quartic curve. These curves play an important role in Hirano’s
construction of curves with many cusps [3].

In this paper, we consider only one member of this family:

f = −v12−w12−3v6w6−2v3w9−2v9w3

+(−12v3w6−12v6w3+12w9+12v9)u3

+(−42v6−42w6+138v3w3)u6+(36w3+36v3)u9+27u12

This curve has an additional automorphism, switching v and w. In [1] it is shown
that the Alexander polynomial of this curve equals (t2−t+1)4, hence the Mordell-
Weil rank is eight. Using a deformation argument, one can show that each curve in
the above mentioned family with 39 cusps and no further singularities has Alexander
polynomial (t2−t+1)4.

Consider a (2, 3)-torus structure h2+g3=f of C. If we multiply g with a third
root of unity and h with 1 or −1 then we obtain again a (2, 3)-torus structure.
Hence there is a natural μ6-action on the torus structures. Two torus structures are
equivalent if they are in the same μ6-orbit. We show the following result.

Theorem 1.1. The curve {f=0} admits precisely 6 inequivalent (2, 3)-torus
structures and the torus structures generate the Mordell-Weil group.

Moreover, we will give explicit expressions for these torus structures.
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In order to determine all (2, 3)-torus structures, we could take generic poly-
nomials g, h∈C[u, v, w] of degree 6 and 4 and consider the coefficients uivjw12−i−j

of
g2 =h3+f

This gives 91 equations in 43 unknowns. We could try to ask a computer algebra
package like Singular to solve this system. The main step is then to find a Groebner
basis for the ideal defined by these 91 equations. We aborted an attempt to do this,
because of the long run time.

In this paper, we exploit the existence of the automorphisms to determine
all torus structures: Let G be a subgroup of the automorphism group of C and
let f̃=0 be a plane model for C/G. We now study the Mordell-Weil group of
y2=x3+f̃(s, t, 1). Since f̃ has lower degree or is significantly more singular we can
easily find torus structures for f̃ . We can then pull these back to C.

By varying G we find four inequivalent torus structures (hence 24 in total).
A simple argument using the action of the automorphism group on these structures
shows that these torus structures generate a rank 8 subgroup Λ of the Mordell-Weil
group, hence Λ is of finite index.

We then consider the height pairing on Λ. In [4] we showed that the height
pairing is integral. We determine all vectors v∈Λ⊗Q such that the height pairing
on Λ+Zv is integral. For each such v we then use explicit formulas for the group
law on E to show that v does not correspond to a point in E(C(s, t)) unless v∈Λ.
This shows that Λ is the Mordell-Weil group, and that E(C(s, t)) is generated by
torus structures.

The torus structures correspond to the vectors with length 4 in Λ. It is a
straight-forward exercise to find all length 4 vectors in a given positive definite
integral lattice. It turns out that we have precisely 36 such vectors.

Finally, note that f∈Q[u, v, w]. Hence, we also have a Gal(Q/Q)-action on
the torus structures. In the second part, we describe the Galois action. We show
that for y2=x3−1296f all points in E(C(s, t)) have coordinates from E(Q(ω)(s, t)),
where ω is a primitive third root of unity. Moreover, we show that E(Q(s, t)) has
rank 4 and we give generators for E(Q(s, t)).

2. Mordell-Weil group

Let E/C(s, t) denote the elliptic curve

y2 =x3−1296f(s, t, 1).

The factor −1296 simplifies several formulas later on.
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Since f is irreducible and its degree is divisible by 6, we have E(C(s, t)) is
torsion-free. Since the Alexander polynomial of f=0 is (t2−t+1)4 [1, Example
6.3] we have rankE(C(s, t))=8. Moreover, as an elliptic curve it has complex
multiplication by (x, y) �→(ωx, y), where ω2=−ω−1. In particular, E(C(s, t)) is a
free Z[ω]-module of rank 4.

Take now the following xi

x1 = 36u(u3+w3)
x2 = 36u(u3+v3)
x3 = −12(ω2v4−ωv3w−ω2vw3+ωw4−3ω2u3v−3ωu3w+3v2w2)
x4 = −12(ω2w4−ωw3v−ω2wv3+ωv4−3ω2u3w−3ωu3v+3v2w2)
x5 = 36u(7u3−v3−w3)
x6 = 12(3u3v+3u3w−v4+v3w−3v2w2+vw3−w4)

Moreover, let

y1 =36(3u6−6u3v3+v6+12u3w3+v3w3+w6)

and let y2 be obtained from y1 by interchanging v and w.
We have that x3

4−1296f(u, v, w) is a square, say y2
3 , with y3∈C[u, v, w]. Let

y4 be obtained from y3 by interchanging v and w in y3. A direct calculation shows
that y3, y4∈Q(ω)[u, v, w].

Denote Pi :=(xi(s, t, 1), yi(s, t, 1)).
Using the formula for the group law on E one easily checks that x5 is the

x-coordinate of P1+P2 and x6 is the x-coordinate of P3+P4. Denote with y5 and
y6 the respective y-coordinates.

The formulas for y3, y4 and y6 are slightly more complicated than the formulas
for the x-coordinates. Therefore, we choose not to include them.

Proposition 2.1. We have that

E(C(s, t))=⊕4
i=1Z[ω]Pi

Proof. We start by determining the height pairing (as introduced in [4]) on the
set {Pi, ωPi |i=1, ..., 4}.

From [4, Section 5] it follows that the heights of the Pi and ωPi are 4, and
that the pairing of Pi with ωPi is −2. Moreover, the same results give a formula
for the pairing of ωiPk and ωjPm in terms of the degree of the gcd of ωixk−ωjxm
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and yk−ym. This is straightforward and we obtain the following Gram matrix

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −2 −2 1 0 0 0 0
−2 4 1 −2 0 0 0 0
−2 1 4 −2 0 0 0 0
1 −2 −2 4 0 0 0 0
0 0 0 0 4 −2 −2 1
0 0 0 0 −2 4 1 −2
0 0 0 0 −2 1 4 −2
0 0 0 0 1 −2 −2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The determinant of this matrix is 38. In particular, the Pi and ωPi generate a rank 8
group. Hence, these points generate a sub-lattice of finite index in the Mordell-Weil
lattice.

Suppose the Pi generate a proper sub-lattice of the Mordell-Weil lattice then
there would be a vector v=(a1, ..., a8)∈Q8 such that the height of

a1P1+a2ωP1+...+a8ωP4

is integral, and the height pairing with each of the Pi and each of the ωPi is integral.
In particular, A.v has integral entries. Using that the entries of A−1 are in

1/9Z (or using that the lattice is a direct sum of two lattices of discriminant 34) we
obtain that for each i we have 9ai∈Z.

One easily checks that if (a1, a2, a3, a4) are not all integral, but A.v is integral
then there exists r, s, t,∈Z such that

(a1, a2, a3, a4)≡
1
9(4r+6(s+t), 2r+3s, 2r+3t, r) mod Z.

Similarly

(a5, a6, a7, a8)≡
1
9(4r′+6(s′+t′), 2r′+3s′, 2r′+3t′, r′) mod Z

Also vTAv has to be integral. A straightforward calculation shows that this is

2
9(6s2+9st+6sr+6t2+6tr+2r2+6s2+9s′t′+6s′r′+6t′2+6t′r′+2r′2)

In particular r2+r′2 is divisible by 3. Since 2 is not a square modulo 3, the only
possibility is that both r and r′ are divisible by 3. Replacing r by 3r and r′ by 3r′
and considering the above quantity modulo integers reduces the above formula for
height to

1
3(s2+t2+(s′)2+(t′)2)
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modulo integers. Hence either all four of {s, t, s′, t′} are zero modulo three, or
exactly one of them is zero modulo 3.

We did not use the ω-action and −1 action until now. Since ω sends the vector
(r, s, t, r′, s′, t′) to (r+t, s, t, r′+t′, s′, t′) and −1 sends (r, s, t, r′, s′, t′) to minus itself
we may assume that we are in one of the following cases

• t=1, r=0 and precisely one of (s, r′, s′) is zero.
• t=0, t′=1, r′=0 and s, s′ are nonzero.
• t=0, t′=0, but then also s′=s=0. In this case, we have r=1 or (r=0 and

r′=1).
This leads to 52 cases.

For each of the 52 cases, we let a computer calculate the point

[r+2(s+t)]P1+[2r+s]ωP1+[2r+t]P2+[t]ωP2
+[r′+2(s′+t′)]P3+[2r′+s′]ωP3+[2r′+t′]P4+[t′]ωP4

We used then the 3-division polynomial to check whether this point is divisible by
three in the Mordell-Weil group. It turned out that this is never the case.

Hence the Pi generate the Mordell-Weil group as Z[ω]-module. �

Proposition 2.2. The points of E(C(s, t)) with coordinates in C[s, t] are pre-

cisely the points in the μ6-orbits of P1, P2, P1+P2, P3, P4, P3+P4.

Proof. The torus structures correspond to the length 4 vectors. Let h(x, y,
z, w)=4w2+w(2x−4y−4z)+4x2−4x(y+z)+4y2+2yz+4z2.

Now the height of (a1, ..., a8) equals h(a1, a2, a3, a4)+h(a5, a6, a7, a8). Since
the shortest vectors in the lattice have length 4, and the lattice is a direct sum, we
have that any length 4 vector satisfies a1=a2=a3=a4=0 or a5=a6=a7=a8=0.

By completing squares, we find that

h(x, y, z, w)= 4(w+ 1
4x−

1
2y−

1
2z)

2+3(z− 1
2x)2 =3(x− 1

2y)
2+ 9

4y
2

Hence to have a length 4 vector we need 9/4y2≤4. This yields that y is in
{−1, 0, 1}. Repeating the same argument for the other coordinates we find that
each of x, y, z, w∈{−1, 0, 1}. One calculates easily which vectors occur. It turns out
that there are 18 vectors of length 4. Up to the μ6-action we get that the length 4
vectors correspond with (1, 0, 0, 0), (0, 0, 1, 0) and (1, 0, 1, 0).

Hence the inequivalent torus structures correspond to P1, P2, P1+P2, P3, P4,

P3+P4. �

Remark 2.3. Recall that x1, ..., x6 are precisely the x-coordinates of P1, P2, P3,

P4, P1+P2, P3+P4. Hence their knowledge suffices to obtain explicit equations for
all torus structures.
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2.1. Galois action

All the Pi are defined over Q[ω][u, v, w]. We would like to find all points with
coordinates in Q[u, v, w]. For this, we need to know the Gal(Q[ω]/Q) representation
on the Mordell-Weil group. First, note that the generator σ of the Galois group is
an involution, so all eigenvalues of σ acting on the vector space E(Q[ω](s, t))⊗ZQ
are 1 and −1. We start by determining the 1-eigenspace of E(Q[ω](s, t))⊗ZQ.

Lemma 2.4. We have E(Q(s, t))∼=Z4.

Proof. Consider the Galois action on E(Q(s, t))⊗Q. Let σ be the genera-
tor of the Galois group. Let v be an eigenvector for σ for the eigenvalue 1.
Then, after clearing denominators, we may assume that v has integral coordi-
nates and corresponds to a point P in E(Q(s, t)). Since P=(x(s, t), y(s, t)) with
x(s, t), y(s, t)∈Q(s, t) we have that ωP=(ωx(s, t), y(s, t)). Hence σ(ω(P ))=ω2P .
The latter equals −P−ωP .

Let v now be an eigenvector for the eigenvalue −1. Then, after clearing denom-
inators, we may assume that v has integral coordinates and corresponds to a point
P in E(Q(s, t)). Write P=(x(s, t), y(s, t)) with x(s, t), y(s, t)∈Q(ω)(s, t). Since
σ(P )=−P , we have that σ(x(s, t))=x(s, t) and σ(y(s, t))=−y(s, t). In particular
σ(ωP )=σ((ωx(s, t), y(s, t)))=(ω2x(s, t),−y(s, t)). Hence σ(ωP )=−ω2P . Hence we
have on both eigenspaces that σω=ω2σ. From this it follows that if v1, ..., vn is a ba-
sis for the 1-eigenspace then (1+2ω)v1, ..., (1+2ω)vn generate an n-dimensional sub-
space of the −1-eigenspace, and if w1, ..., wm form a basis for the −1-eigenspace then
(1+2ω)w1, ..., (1+2ω)wn generate an n-dimensional subspace of the 1-eigenspace.
In particular, both eigenspaces have the same dimension. Hence the σ-invariant part
of E(Q(s, t))⊗Q has dimension 4. Since E(Q(s, t)) is free it follows that E(Q(s, t))
has rank 4. �

Proposition 2.5. The points P1, P2, P3−P4, P3+ωP3+ωP4 generate

E(Q(s, t)).

Proof. From the explicit expressions for P1 and P2 it follows that they are
in E(Q(s, t)). The fact that P3−P4 and P3+ωP3+ωP4 are in E(Q(s, t)) can be
checked by directly computing these points using the group law.

One can shorten the calculations a bit by the following observations: A straight-
forward calculation shows that Q:=P3+P4 is of the form (x(s, t),

√
−3y(s, t)) with

x(s, t), y(s, t)∈Q(s, t). Hence σ(Q)=−Q and by the proof of the previous lemma
R:=(1+2ω)Q is invariant under σ.

Similarly, S :=P3−P4 is of the form (x(s, t), y(s, t)) with x(s, t), y(s, t)∈Q(s, t).
Hence R+S=2(P3+ωP3+ωP4) is rational. Clearly, P3+ωP3+ωP4∈E(Q(ω)(s, t)).
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Let σ∈Gal(Q(ω)/Q). Then 2(σ(P3+ωP3+ωP4))=2(P3+ωP3+ωP4). Since
E(Q(s, t)) is torsion-free it follows that σ(P3+ωP3+ωP4)=P3+ωP3+ωP4. There-
fore P3+ωP3+ωP4∈E(Q(s, t)).

The matrix ⎛
⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 1
0 0 0 0 1 0 1 1

⎞
⎟⎟⎠

has clearly rank 4, so these points are independent.
The points ωP1, ωP2, P4, ωP4 and the above four points generate E(C(s, t)).

In particular, each subset of this set generates a saturated subgroup of E(Q(s, t)).
In particular, P1, P2, P3−P4 and P3+ωP3+ωP4 generate E(Q(s, t)). �

Remark 2.6. The points P1 and P2 have height 4. The point P3−P4 has height
12, the point P3+ωP3+ωP4 has height 6.

3. How to find the Pi

In this final section, we describe which methods we used to find P1, P2, P3, P4.

3.1. P1, P2

Note that f :=g(u3, v3, w3) for some quartic polynomial g. A quartic curve can-
not have a (2, 3)-torus structure. However, sextics may have such a structure. Now
reducible sextics that are reduced do not have (2, 3)-torus structure [5, Theorem
34], but non-reduced reducible sextics may have them.

It turns out that u2g has various torus structures. A torus structure of u2g can
be pulled back to a torus structure of f if and only if the x- and the y-coordinate are
both divisible by u. Now setting x=u� and y=uc with � a generic linear form and c

a generic quadric and solving y2=x3−1296u2g yields 15 equations in 9 unknowns.
This system can be easily solved by a computer algebra package.

One of the solutions is x=−36u(u+w), then x3−1296u2g is a square y2 with

y=36u(3u2+u(−6v+12w)+v2+w2+vw)

If we now substitute u=u3, v=v3, w=w3 in this torus structure then we find a
(2, 3)-torus structure of −1296u6f . Since both x and y are divisible by u3 we can
divide x by u2 and y by u3 and we find a torus structure of −1296f .

Swapping v and w gives another torus structure.
This procedure yields the points P1, P2.
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3.2. P3, P4

We can find a further generator as follows. The equation is symmetric in v

and w. Hence there is a polynomial h in s and t of weighted degree 12 (with
deg(s)=1,deg(t)=2) such that f(1, v, w)=h(v+w, vw).

We can then consider the degree 12 curve r12h(s/r, t/r)=0. Using a computer
algebra package, one easily finds two torus structures. The point P1+P2 is clearly
symmetric in v and w and is the pullback of one the torus structures. The pull back
of the other torus structure has x-coordinate

−12(v4+w4−v3w−vw3+3v2w2−3u3(v+w).

Call this point P7.
Apply now v �→ωv to P7. The obtained torus structure is one of ±ω2P3. Simi-

larly, apply now w→ωw to P5. Then we obtain one of ±ω2P4. In order to simplify
several formulas, we decided to work with P3 and P4 rather than with the points
obtained here.
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