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Encomplexed Brown invariant of real algebraic
surfaces in RP 3

Johan Björklund

Abstract. We construct an invariant of parametrized generic real algebraic surfaces in RP 3

which generalizes the Brown invariant of immersed surfaces from smooth topology. The invariant

is constructed using self-intersections, which are real algebraic curves with points of three local

characters: the intersection of two real sheets, the intersection of two complex conjugate sheets

or a Whitney umbrella. In Kirby and Melvin (Local surgery formulas for quantum invariants and

the Arf invariant, in Proceedings of the Casson Fest, Geom. Topol. Monogr. 7, pp. 213–233,

Geom. Topol. Publ., Coventry, 2004) the Brown invariant was expressed through a self-linking

number of the self-intersection. We extend the definition of this self-linking number to the case of

parametrized generic real algebraic surfaces.

1. Introduction

Following the philosophy of Viro in [4] we are interested in encomplexing invari-
ants from smooth topology to construct invariants in real algebraic geometry. In [4]
the writhe (which can also be considered as a self-linking number with the normal
vector field chosen along the direction of projection) of a curve was encomplexed.
While the writhe of a projected curve depends on the projection, the encomplexed
writhe of a real algebraic curve does not. Another example, immersions of curves in
the plane, has been extensively studied. Two immersions of curves lie in the same
component of the space of immersions if and only if they have the same Whitney
index. The Whitney index can be calculated from the self-intersections in the case
of a generic immersed curve. It turns out that this notion survives to (parametrized)
real algebraic curves of type I, where a corresponding encomplexed Whitney index
can be calculated from self-intersections (both solitary and nonsolitary), as proved
by Viro [5].

In this paper we study a similar situation concerning the space of generically
immersed oriented surfaces in R

3. The Brown invariant is an invariant up to regular
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homotopy of immersed surfaces in R
3. The Brown invariant of an immersed surface

can be defined using the self-intersection of the surface, as has been shown by Kirby
and Melvin [3]. In their article they express the Brown invariant by constructing
a certain curve called the “pushoff” close to the self-intersection. It has a natural
projection to the self-intersection, with four points in the preimage of each point
in the self-intersection. The linking number between this pushoff and the self-
intersection is shown to give the Brown invariant.

In this paper we will encomplex the Brown invariant, using the interpretation
in [3] as a self-linking number of the self-intersection.

Let MS denote the space of real algebraic mappings from some smooth projec-
tive real algebraic surface S into RP 3. We also define two discriminants, σ and γ.
The discriminant σ consists of those points in MS such that the corresponding
parametrized surface in RP 3 has topologically unstable singularities. The discrim-
inant γ consists of those points in MS such that the corresponding parametrized
surface has points in its self-intersection where the corresponding quadratic form
in the normal bundle of the self-intersection curve has a matrix which is a nonzero
multiple of the identity matrix. The discriminant γ is dependent on the metrics
chosen for RP 3 and CP 3. We construct an invariant called the fourfold pushoff
invariant, defined on points of MS \(σ ∪γ), in Section 3.

Theorem 1.1. The fourfold pushoff invariant is constant on connected com-
ponents of MS \(σ ∪γ).

In Remark 3.4 we explain that in the case of the real algebraic surface being an
immersed surface without solitary self-intersections the Brown invariant coincides
with the fourfold pushoff invariant.

Theorem 1.2. Counted mod 8, the fourfold pushoff invariant is constant on
connected components of MS \γ.

The corresponding smooth situation, immersed surfaces up to regular homo-
topy, has been studied by Goryunov in [1], where he describes the space of Vassiliev
invariants for this situation.

For proofs, see Section 3.

2. Preliminaries

Let S be a smooth projective real algebraic surface together with its complex-
ification CS. We consider the space Md

S of real algebraic maps of S into RP 3 of
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degree d. We also equip RP 3 and CP 3 with two Riemannian metrics. The met-
rics are the metric inherited from S3 and the Fubini–Study metric, respectively.
In Section 2.1 we examine the singularities of the parametrized surfaces closer. In
Section 2.2 we examine the self-intersections of the parametrized surfaces and show
how to use the quadratic forms in the normal bundle of such a self-intersection
curve to construct the pushoff, a curve lying very close to the self-intersection with
a fourfold projection to the self-intersection.

2.1. Singularities in the space Md
S

Lemma 2.1. The space Md
S is diffeomorphic to the complement Cd

S of a
codimension-2 subspace of the space of projections from Pm to P 3 for some m.

Proof. Since S is a projective variety, we naturally have that S ⊂Pn for some n.
The ring of regular functions of degree d on S is then generated by the monomials of
degree d on Pn. Consider the Veronese embedding vd from Pn into Pm. It is clear
that any map f of degree d from S to P 3 can be uniquely factorized as f=πh ◦vd,
where πh is the projection to some 3-space h, since they can be represented as
linear combinations of monomials from the ring of regular functions on Pn in each
coordinate. �

Remark 2.2. Locally, the space of projections from Pm to P 3 is naturally
diffeomorphic to the projections from Am to A3. Thus, a generic path in Md

S can,
by a compactness argument, be reduced to pieces which can be considered to be
paths in the space of projections from Am to A3, that is, paths in G(3, m).

Remark 2.3. Not all of the projections do correspond to points on Md
S since

we cannot let the (m−4)-plane we project from intersect S ⊂Pm. However, since
S is of dimension 2, this is at most a codimension-2 condition, so any generic path
of projections can be assumed to not intersect this subvariety.

Theorem 2.4. The space Md
S contains a subvariety σ of codimension 1 such

that outside of this codimension-1 hypersurface, the only possible topological local
configurations of self-intersections in the image of f ∈Md

S \σ are:
– two real sheets intersecting transversally ;
– three real sheets intersecting pairwise transversally ;
– two complex conjugate sheets intersecting transversally ;
– two complex conjugate and one real sheet intersecting pairwise transversally ;
– a Whitney umbrella.
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Proof. We begin by noting that the allowed types of intersections are topolog-
ically stable, and so cannot be avoided. Following Theorem 2.1 we can study the
space of projections from some Pm to P 3. We examine the affine real projections
from C

m to C
3 which form the real Grassmannian G(3, m) having dimension 3m−9.

The hypersurface σ consists of the subvariety of projections which result in deeper
singularities than the mentioned stable singularities.

We will calculate the dimension of σ by examining the singularities that ap-
pear in its top strata and their dimensions separately. Note that the stable cases
mentioned concern up to three distinct points ending up at the same point under
the projection, such that their tangent planes were in general position, and the
Whitney umbrella, arising from a projection which destroyed the tangent plane for
a single point.

The higher singularities we need to consider lie in the closure of the following
sets in Md

S : projections with quadruple points; projections with a triple point such
that the common intersection of two of the tangent planes lie tangent to the third;
projections with a double point such that the tangent planes are tangent to each
other; projections with a double point such that one point lacks a tangent plane
and one has a tangent plane (Whitney umbrella plus plane); and projections with
a single singularity where two Whitney umbrellas collide, arising from projecting
along a tangent vector with an odd intersection number with the surface (under
a generic projection). By Lemmas 2.5–2.9 below, we know that these singularities
have codimension at least 1. Any more complicated singularity will necessarily
have even higher codimension. It is also clear that this collection gives all the
codimension-1 singularities, since any singularity must necessarily have some point
in the preimage and we have examined the different singularities for 1−4 points
(and any singularity involving more than four points or deeper tangency would
have a higher codimension than the ones constructed from four points). �

We need to understand the higher singularities in Md
S . The strategy is to ex-

amine the space of projections admitting at least one such singularity by calculating
the dimension of the space of points chosen to end up at the singularity. We then
examine which vectors are prescribed to project along and finally how to complete
these prescribed vectors to a projection. We finish by comparing the dimension to
3m−9. To shorten the proof we omit the detailed calculations concerning genericity
of points (since we are on a Veronese embedding) and the defining equations for the
subvariety. In the case of two points with coinciding tangent planes we demonstrate
these calculations as well. In some of the situations we should also examine the case
of two of the involved sheets being complex conjugate sheets from the complexifi-
cation of S. However, this does not change dimensions since choosing one point in
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the complexification is a 4-dimensional choice while the other point is by necessity
its complex conjugate. This gives the same dimension as choosing two real points.
We use Goryunov’s notation of the singularities from [1].

Lemma 2.5. The points of Md
S corresponding to singularities of type Q, that

is, singularities with a quadruple point, are of codimension at least 1.

Proof. Consider the variety of projections with at least one quadruple point
(regardless of if they are arising from real or complex parts of the surface). For the
moment we assume that the points are real.

For a quadruple point in the image, we need four points on the surface in Pm

mapped to the same point by a projection. The surface is 2-dimensional, so the
configuration space of four points on the surface has dimension 8. The surface S

intersects a given (m−2)-hyperplane in a discrete number of points generically, so
choosing points in a line/plane would decrease the dimension by at least 6 and
4, respectively. To choose a projection from Pm to P 3 we need to complete the
3-dimensional space generated by the four points to an (m−3)-dimensional space,
i.e. we need to choose a point from G(m−6, m−3) which has dimension 3m−18. If
the points chosen were situated on the same line/plane we would only be proscribed
to use one and two vectors, respectively, giving an increase in dimension. However,
the original choice of points had a lower dimension, compensating for this increase.
The dimension of the space of projections with at least one quadruple point is then
at most 3m−10 and so the space of projections admitting a quadruple point has
codimension 1 in the space of projections. The dimension count for quadruple points
with two and four points arising from complex parts of the surface proceeds in the
same manner. �

Lemma 2.6. The points of Md
S corresponding to singularities of type T, that

is, singularities with a triple point such that the three sheets intersect with a common
tangent line, are of codimension at least 1.

Proof. The choice of three points is 6-dimensional. To give the three tangent
planes a common line after the projection we need to choose one line from each
tangent plane which we want to be the common line after the projection. This
choice is 3-dimensional. We need to choose a plane from the space spanned by
these three lines to project along. This is a 2-dimensional choice. We now have a
4-space which we need to project along (two dimensions for ensuring that the three
points ended up at the same points, and two to ensure that the tangent planes had
a common line). We complete it by choosing a point from G(m−7, m−4) which
has dimension 3m−21. The total dimension is then 3m−10. �
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Lemma 2.7. The points of Md
S corresponding to singularities of type H and E,

that is, singularities with a double point such that the two sheets are tangent (with
hyperbolic tangency for type H and elliptic tangency for type E ), are of codimension
at least 1.

Proof. To see that projections which result in two sheets tangent to each other
form a variety we observe that (in affine coordinates with the point of tangency being
the origin) the leading term of the polynomial defining such a degenerate surface
must be (ax+by+cz)2+O(x̄3), where x̄3 stands for terms of order 3. The matrix
corresponding to the quadratic form is thus degenerate and of rank 1. This can
be expressed in terms of the 2×2 minorants of the matrix being zero. This defines
a subvariety of G(3, m)×S which after projection to G(3, m) gives the projections
which result in these singularities.

The dimension of the space of projections with two points having the same
tangent plane in the image will now be calculated. We assume that the points are
real. Two distinct points in the Veronese embedding vd of Pn do not have a tangent
in common as long as d>1, and thus in particular the points on our surface do not
have a tangent in common. In the case of d=1 and S ⊂Pn, n>3, it is easy to see
that there are only a finite number of pairs of points with common tangent plane.
Thus, the choice of such points would contribute zero dimensions and completing
the projection would result in dimension 3m−12 resulting in codimension 3. We
can ignore such points henceforth and assume that the tangent planes of the points
chosen have no nonzero vectors in common. Choosing the two points contributes
four dimensions. Ensuring that they end up at the same point under the projections
gives one vector along which we need to project. The tangent planes will form
a 4-dimensional linear subspace from which we need to choose a 2-dimensional
subspace to project along to give a common tangent plane. Since dim(G(2, 4))=4
we get four additional dimensions. Again we wish to complete the three vectors
by choosing a point from G(m−6, m−3). Giving a total dimension of at most
3m−10. Either the tangency is elliptic (case E) or hyperbolic (case H) (described
by x2+y2=ε and xy=ε, respectively, in the common tangent plane). �

Lemma 2.8. The points of Md
S corresponding to singularities of type C, that

is, singularities with a double point such that a Whitney umbrella intersects a sheet,
are of codimension at least 1.

Proof. For the case of point and Whitney umbrella, we have a 4-dimensional
choice of points. To ensure that we get a Whitney umbrella, we need to destroy the
tangent plane of one of the points. We need to choose one vector in the tangent
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plane of one of the points to project along. This is a 1-dimensional choice. This
vector together with the vector along which we project to ensure that the two points
end up at the same space gives us two vectors. To complete them we need to choose
a point from G(m−5, m−2), which has dimension 3m−15. Again we have a total
dimension of 3m−10. �

Lemma 2.9. The points of Md
S corresponding to singularities of type B and K,

that is, singularities with a single point such that two Whitney umbrellas collide, are
of codimension at least 1.

Proof. For the final case, of a single point, we needed to destroy the tangent
plane to the point and so we have to choose one vector in the tangent plane. This
tangent vector is by definition tangent to the surface. The surface has some cur-
vature in this point. The surface has zero curvature only in finitely many points
(choosing such a point would decrease the dimension by 2, leading to codimension 2).
For a point with nonzero curvature only finitely many tangent lines intersect the
surface with an odd intersection number (two in the case of negative curvature, zero
in the case of positive curvature). Projecting along such a special tangent line will
yield a different picture, namely the result of two umbrellas colliding (along either
a real or a solitary self-intersection). Choosing our point is a 2-dimensional choice,
and choosing our tangent line is of dimension 0 since the choice was discrete. Com-
pleting to a projection necessitates a choice of a point from G(m−4, m−1) which is
of dimension 3m−12. The dimension of projections resulting in at least one point
with deeper singularity than the umbrella is then of dimension 3m−10. �

Remark 2.10. For a closer description of these singularities (and others of
higher codimension) see Hobbs and Kirk [2], more specifically Table 1. There B

and K correspond to S±
k ; H and E correspond to A2

0|A±
k ; C correspond to (A0S0)k;

T to A3
0|Ak; and Q to A4

0.

2.2. Constructing the pushoff from the self-intersection

Around generic points, the self-intersection CS of a parametrized surface asso-
ciated with a point in Md

S \σ arises from either two real sheets intersecting along
a real line or two complex conjugate sheets intersecting in a real line. A piece
of the self-intersection arising from two complex conjugate sheets is called a soli-
tary self-intersection. Around isolated points the self-intersection can also be either
a Whitney umbrella separating a real line appearing from two complex conjugate
sheets from a real line appearing from two real sheets, or three real sheets inter-
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secting, giving rise to three intersecting real lines or two complex conjugate planes
and a real plane, resulting in a single real line (and two complex conjugate lines
which are ignored). The set of self-intersection points CS will then be a collection
of immersed circles. Let the immersed circles CSi be indexed by i. Since the circles
are immersed, each circle has an associated normal bundle in RP 3 while their com-
plexification has an associated normal bundle in CP 3. Given a point p in CSi we
can examine the defining polynomial of the surface in CP 3 and examine its restric-
tion to the normal plane pn. This will associate a quadratic form to p by taking
the terms of at most order 2 from the polynomial (we do not have any linear terms
since we are in the self-intersection). This assigns a continuous family of quadratic
forms to CS . We can then associate a continuous family of eigenvectors as long as
the matrix associated with the quadratic form has two different eigenvalues. For
those points in CSi which are not triple points or Whitney umbrellas we can as-
sume that no such quadratic form has only one eigenvalue of multiplicity two (i.e.
the associated matrix is a multiple of the identity matrix). The condition of having
only one eigenvalue is of codimension 1 in Md

S as described by the following lemma.

Lemma 2.11. The points in Md
S \σ which correspond to parametrizations

which have a point in the self-intersection assigned a corresponding 2-form in the
normal bundle which has just one eigenvalue (i.e. the corresponding matrix is a
multiple of the identity matrix ) are of codimension 1.

Proof. Since the matrix depends on the metric, we can disturb the parametriza-
tion by some linear transformation of RP 3 which is close to identity to gain a differ-
ent parametrization which do not have a corresponding matrix which is a multiple
of the identity along the self-intersection. Since the set of points in the image with
such associated matrices is a discrete set, it is enough to show this for one point.
We assume that the associated 2-form is x2+tx2+y2 in local coordinates around
the point at the self-intersection x=y=0. By letting L(x, y)=(x, y+εx) we disturb
the intersection enough to remove the singular case.

The matrices which are a multiple of the identity matrix have codimension
2 in the space of real symmetric matrices. The self-intersection itself form a
1-dimensional space, and so the singular maps cannot be of higher codimension
than 1. �

Definition 2.12. We let γ denote the parametrizations in MS which has points
in the corresponding self-intersection such that the matrix associated with the quad-
ratic form is a multiple of the identity matrix.
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Remark 2.13. Note that changing the metric on the space would change γ. In
this article we assume that the metric is the natural Fubini–Study metric on CP 3.

Associated with each such form are then four (real) eigenvectors of unit length.
After scaling them by some small ε these four vectors will be four nonzero sections
in the normal bundle of the immersed circle and thus form a fiber bundle BSi over
it.

We now push off our original curve as follows. Take our original immersed
circle CSi and include the bundle BSi wherever it is defined (that is, over points
which come from exactly two sheets intersecting transversally). This will locally
give us four curves lying at the boundary of an ε-tubular neighborhood of CSi .
At the special points where the self-intersection does not look like two intersecting
sheets we may extend our construction as shown by the following lemma.

Lemma 2.14. The fourfold pushoff can be extended in a continuous way to
nongeneric points along an immersed circle CSi .

Proof. To see that this can be defined in a natural way we examine each situ-
ation, when necessary expressed in local coordinates x, y, z.

– Two complex conjugate sheets and one real sheet intersecting in a triple
point: we ignore the real sheet and extend by continuity.

– A Whitney umbrella, defined by y2 −zx2=0: the eigenvectors are kept, one
eigenvalue shifts sign.

– Three real sheets intersecting at a triple point: Defined by xyz=0. The
pushoff (following one of the intersection curves) will clearly be extendable by con-
tinuity, furthermore the pushoff and the self-intersections will be disjoint. �

Definition 2.15. Given such an immersed circle CSi the associated extended
fourfold pushoff will be denoted by P (CSi) and called the pushoff of CSi .

Lemma 2.16. The pushoff P (CSi) has either one, two or four components.

Proof. This is obvious, see Section 4 for some examples. �

Lemma 2.17. If the immersed surface S is orientable and if generic points of
CSi come from the intersection of two real sheets, then P (CSi) will consist of four
connected components.

Proof. Choose an orientation for the surface. At each generic point of this real
self-intersection the corresponding normal vectors will distinguish one eigenvector.
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Since this distinction does not depend on any local choice, all four components are
separate. �

3. The fourfold pushoff invariant

In Section 3.1 we define the fourfold pushoff invariant and show that it co-
incides with the Brown invariant for generic immersed surfaces without solitary
self-intersection. In Section 3.2 we restate and prove Theorem 1.1 from the intro-
duction. In Section 3.3 we restate and prove Theorem 1.2 from the introduction.

3.1. Defining the fourfold pushoff invariant

We wish to define a self-linking number of an immersed circle CSi in the self-
intersection using its pushoff P (CSi). In general, the linking number between two
chains is not well defined unless one of the chains is zero homologous. While CSi

is not necessarily zero homologous, we know that H1(RP 3)=Z2 and we know that
the pushoff P (CSi) is four times CSi in the homology (since we have a natural
fourfold projection to CSi) and thus zero homologous. Thus, the linking number
L(P (CSi), CSi) is well defined.

Definition 3.1. We define the fourfold pushoff linking number, T (CSi) of an
immersed circle CSi in the self-intersection as the linking number between CSi and
its pushoff P (CSi).

The definition does not depend on the orientation of the immersed circle, since
changing the orientation of CSi would change the orientation of P (CSi) as well.

Definition 3.2. We define the fourfold pushoff invariant T (S′) of a surface S′,
corresponding to a point p∈MS \(σ ∪γ), as

∑
i∈I T (CSi), where Si are immersed

circles in the self-intersection of S′ indexed by some set I .

Remark 3.3. Note that the fourfold pushoff invariant takes the value zero on
embeddings.

Remark 3.4. In the affine situation with no solitary self-intersections the four-
fold pushoff coincides with Kirby’s and Melvin’s definition of Brown’s invariant
in [3].

While Kirby’s and Melvin’s pushoff is defined by using the sheets intersected
with the boundary of a tubular neighborhood of the self-intersection, it is easy
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Figure 1. On the left-hand side the pushoff is constructed in the normal plane using
Kirby’s and Melvin’s definition. On the right-hand side the pushoff is constructed using
the definitions in this paper. The arrows indicate an isotopy taking the pushoffs to each
other.

to construct an isotopy taking their pushoff to P (CSi) as illustrated by Figure 1,
depicting the normal plane, by simply rotating, using the fact that RP 3 is orientable.

Remark 3.5. The fourfold pushoff invariant depends on the Riemannian metric
chosen. To see this we can change the metric around a solitary self-intersection.
The eigenvectors correspond to the axis vectors of the ellipses obtained by putting
the quadratic form equal to some small ε. By changing the metric locally we can
rotate these ellipses, changing the value of the invariant. As the metric changes,
so does γ. The value of the invariant changes just as the chosen parametrization
passes through γ.

Theorem 3.6. The fourfold pushoff invariant changes by 2 when passing
transversally through γ.

Proof. This can easily be seen by an examination of the equation zx2+y2+
2εxy=0, modeling the crossing, where the sign of ε marks which side of the strata
we are located on and z=1, x=y=0 is the point on the self-intersection on which
the singularity appears. �

The fourfold pushoff invariant changes by 2 exactly when passing through γ.
This can obviously only happen when two complex sheets intersect since the eigen-
values have different signs when two real sheets intersect.
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3.2. Proof of Theorem 1.1

We restate Theorem 1.1 presented in Section 1.

Theorem 1.1. The fourfold pushoff invariant is constant on connected com-
ponents of MS \(σ ∪γ).

Proof. This is obvious, since the pushoff varies continuously and is well defined
on each component. �

3.3. Proof of Theorem 1.2

We restate Theorem 1.2 presented in Section 1.

Theorem 1.2. Counted mod 8, the fourfold pushoff invariant is constant on
connected components of MS \γ.

Proof. From Theorem 2.4 and Lemma 2.11 we know that σ and γ are of codi-
mension 1 in MS . Given a path P in a component of MS \γ we can assume that P

passes through σ transversally. It is then enough to show that the invariant does
not change mod 8 during such a passage. We examine these singular cases and then
compute the invariant before and after the singularity. The codimension-1 compo-
nents of this discriminant are known from Theorem 2.4. Each case can have several
subcases depending on if the preimage under the projection is real or not. We recall
the different situations. If we have four separate points in the preimage we will
locally have a generic intersection of four planes at a single point. This situation is
denoted by Q, Q′ and Q′ ′ depending on how many of these planes are real. If we
have three distinct points, one of them is special and the other two come from two
transversal sheets. These situations are denoted by T and T ′, again depending on
if the two transversal sheets are complex conjugate or not. If we have two separate
points, we either have a plane traveling through a Whitney umbrella which we de-
note by C, or two tangentially intersecting planes which we denote by E, E′ and
H , H ′ depending on if the tangency is hyperbolic or elliptic. If we have one point,
we have two Whitney umbrellas colliding, either along the real self-intersection or
the solitary self-intersection. These are denoted by B and K.

For each of these subcomponents of σ we examine the change of the fourfold
pushoff.

– Four sheets intersecting at a single point, all of them real. This occurs when
a real sheet passes through a triple point. Examining the self-intersections, we see
that their positions relative to each other either do not change, or that one passes
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Figure 2. A type Q singularity.

Figure 3. A type T singularity.

through another. If the two curves in the self-intersection pass through each other,
the invariant changes by 8 or 0 depending on if the curves are pieces of the same
immersed circle or not. See Figure 2.

– Four sheets intersecting, two real and two complex conjugate. This occurs
when a solitary piece of the self-intersection passes through a nonsolitary piece.
The invariant changes by 8 or 0 depending on if the curves are pieces of the same
immersed circle or not.

– Four sheets intersecting, two pairs of complex conjugate sheets. Here two soli-
tary pieces of the self-intersection passes through each other, the invariant changes
by 8 or 0 depending on if the curves are pieces of the same immersed circle or not.

– Two triple points meet and annihilate each other along a real self-intersection.
See Figure 3. The invariant does not change.

– A solitary self-intersection passes through a real plane, creating two triple
points. The invariant does not change.

– Two real sheets intersecting tangentially in a single point. See Figure 4. The
value of the invariant on the new circle is 0.
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Figure 4. A type E singularity.

Figure 5. A type H singularity.

– Two complex conjugate tangent sheets intersecting tangentially at a single
point. The value of the invariant on the new circle is 0.

– Two sheets intersecting as a plane passing through the surface defined by
z=x2 −y2. See Figure 5. If the two components of the self-intersection are different
before and after, it may have caused two different immersed circles to join together
(or split apart). Globally, this changes the invariant by a multiple of 8.

– Two Whitney umbrellas collide and annihilate each other, either along a
solitary self-intersection or a real self-intersection. See Figure 6. The invariant does
not change.

– A real plane passes through a Whitney umbrella. See Figure 7. The invariant
does not change. �

Remark 3.7. Several of these codimension-1 passages have been studied for the
smooth case by Goryunov [1], in our setting additional codimension-1 singularities
arose from the additional structure from complex parts of the surface. We have
followed his notation for the different kinds of singularities, using ′ to denote variants
arising from solitary/complex conjugate pieces.
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Figure 6. A type B singularity and a type K singularity.

Figure 7. A type C singularity.

4. Examples

In this section we present some examples of surfaces together with the value of
their fourfold pushoff invariants.

Example 4.1. The Roman surface is an example of a parametrized projective
plane. It has six Whitney umbrellas and the fourfold pushoff takes value 0. It is
defined by the equation x2y2+y2z2+z2x2=xyz in affine coordinates.

Example 4.2. The parametrization

x(t, s) =
t3s+ts3

t4+s4
and z(t, s) =

2ts(t2 −s2)
t4+s4
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parametrizes a curve looking like the symbol ∞. In affine coordinates we get a
similar symbol by the solutions to the equation y4+y2=x2(1−x2). By rotating it
around a line in space we get a real surface parametrized by a torus such that its real
self-intersection is diffeomorphic to a circle (this surface will then be parametrized
by degree 8). The pushoff of this circle will result in four circles, none of them
linked to the self-intersection so the invariant is zero.

Example 4.3. Take our earlier parametrization x(s, t), z(s, t) of the ∞ symbol.
We want to rotate this parametrization by applying the following trick. We can
parametrize a circle easily by using p1(u, v)=2uv/(u2+v2) and p2(u, v)=(u2 −v2)/
(u2+v2). This allows us to consider p1 and p2 as the sin and cos functions. They
allow us to first apply a rotation matrix to the parametrization of the ∞ symbol
(by just multiplying with the parametrization), then moving it to the side, and then
rotating it around the z-axis as earlier. This will result in a degree-16 surface which
still has a circle as self-intersection while the pushoff is linked, giving a value of the
invariant of ±4 depending on our choice of direction of rotation, taken modulo 8
the values are of course equal.

Example 4.4. The equation x4+y4+(z2+t2)y2 −(z2+t2)x2=0 defines a sur-
face with two components in the pushoff of the self-intersection. The value of the
invariant is 0.

Example 4.5. The equation x4+y4+2(z2+t2)y2+(z2+t2)x2=0 defines a sur-
face with a real part consisting only of a solitary self-intersection looking like the
line defined by x=y=0. The value of the invariant is 0.

Example 4.6. The equation (t2+z2)y2=x2(x−z)(x−3z −t) defines a surface
which has a self-intersection located at the line defined by x=y=0. The self-
intersection consists of both solitary and nonsolitary parts. The value of the in-
variant is 0.

Example 4.7. The equation (t2+z2)y=±2tzx defines a surface which has a
self-intersection located at the line defined by t=z=0. The value of the invariant
is ±1.
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