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Matrix subspaces and determinantal
hypersurfaces

Marko Huhtanen

Abstract. Nonsingular matrix subspaces can be separated into two categories: by being

either invertible, or merely possessing invertible elements. The former class was introduced for

factoring matrices into the product of two matrices. With the latter, the problem of characterizing

the inverses and related nonlinear matrix geometries arises. For the singular elements there is

a natural concept of spectrum defined in terms of determinantal hypersurfaces, linking matrix

analysis with algebraic geometry. With this, matrix subspaces and the respective Grassmannians

are split into equivalence classes. Conditioning of matrix subspaces is addressed.

1. Introduction

The notion of invertible matrix subspace was introduced in connection with
factoring a matrix A∈C

n×n into the product A=V1V2 with the factors constrained
to belong to prescribed subspaces V1 and V2 of C

n×n over C (or R) [21].(1) The
linear structure of an invertible matrix subspace is preserved under inversion. Then,
if V2 is invertible with the inverse W , this factoring problem can be converted into
considering

(1) AW =V1,

with the (nonzero) elements W ∈ W and V1 ∈ V1 regarded both as variables. This
is an equivalent task in case A is invertible. Certain other bilinear factorization
problems can be treated similarly. For instance, also of practical importance is
the Kronecker product representation problem A=V1 ⊗V2.(2) Motivated by such

Supported by the Academy of Finland.

(1) For operator factorization problems, see [24] and [29]. For their perturbation theory,
see [5]. On the factorization of a matrix-valued function, see [25].

(2) With V1=Cn1×n1 and V2=Cn2×n2 the problem is solved with the singular value decom-
position [28]. Then we are dealing with the Segre map. This, however, does not apply as soon as
V1 and V2 are more complicated matrix subspaces.
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factorizations, this paper is concerned with matrix subspaces, their spectra and
related nonlinear matrix geometries.

Regardless if the matrix subspace W is invertible or not, consider (1). The
validity of the identity can be verified by inspecting

(2) W �−→ (I −P1)AW , with W ∈ W ,

where P1 is a projection on C
n×n onto V1 and I denotes the identity matrix (re-

garded as acting on C
n×n). If this linear map has a nontrivial nullspace with

invertible elements W , equalities are attained and

(3) A=V1W
−1

holds with V1=P1AW .(3) Such a factorization is of interest whenever the inverses
of invertible elements of W admit a characterization.

With a characterization, the family of matrices representable as (3) yields a
nonlinear structured subset of C

n×n. There appears a need for such geometries,
for example, most recently in nonlinear dimensional reduction, where alternative
structures to low rank approximations are constantly being seeked for better com-
pression [30]. With an invertible W , several classical examples were revisited in [21].
Otherwise the problem of characterization is challenging in general. Motivated by
discretizations of partial differential equations, it has apparently been considered
in a nontrivial case for the first time in [3]. Certainly, a lot of effort has been de-
voted to the task of describing the inverses of Toeplitz matrices; see [11], [13] and
references therein. We show that Fk, the set of matrices of rank at most k, which
is probably the most encountered bilinear matrix family in practice, can be recov-
ered (at the limit) with the inverses of invertible elements of a fairly large family of
matrix subspaces. Related matrix structures are also looked at.

For the factorization (3) there arises a need to know how the nullspace of (2)
possesses invertible elements. For the singular elements of a matrix subspace (of
C

n×n over C) with invertible elements, there is a natural concept of spectrum.(4)
Given by determinantal hypersurfaces in the complex projective space, this links
matrix analysis and computations with classical topics in algebraic geometry.(5)
The weakest arising equivalence relation splits matrix subspaces into equivalence
classes. Two of its stronger forms split the Grassmannian Grk(Cn×n) consisting of
k-dimensional subspaces of C

n×n into equivalence classes. In an equivalence class

(3) Finding the inverse of a nonsingular A∈Cn×n can also be formulated as a matrix factor-

ization problem once we set W =Cn×n and V1=CI .

(4) Naturality can be argued by the fact that it generalizes the concept of spectrum of a
matrix.

(5) For the terminology, in matrix analysis we follow [17] and in algebraic geometry [16].
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the spectra coincide and the invertible elements can be regarded as having a closely
related structure. From the viewpoint of matrix computations, to have a well-
conditioned element in the factorization (3), a concept for conditioning of matrix
subspaces is proposed. This conditioning is then related to a matrix factorization
problem.

The paper is organized as follows. In Section 2 matrix subspaces with invertible
elements are considered. In the invertible case the structure associated with the
inverses can be characterized. The general nonlinear case is approached through
examples. A fairly versatile structure is proposed whose inverses can be viewed as
the product of three matrix subspaces. In Section 3 determinantal hypersurfaces are
related with the singular elements of matrix subspaces. The spectrum of a matrix
subspace is defined. Conditioning of matrix subspaces is addressed.

2. Matrix subspaces possessing invertible elements

In what follows we are concerned with (square) matrix subspaces possessing
invertible elements.(6) Otherwise a matrix subspace is called singular. (Such sub-
spaces are also of interest [10], [8].) If there exists an invertible element in a subspace
V of C

n×n over C (or R), then the set of invertible elements is a dense and open
subset of V [21, Theorem 2.2]. Such subspaces can be separated into two categories:
by being either invertible, or merely possessing invertible elements.

2.1. Invertible matrix subspaces

Denote by GL(n, C) the group of invertible n×n complex-entried matrices and
set

Inv(V ) = {V −1 : V ∈ V ∩GL(n, C)}

for a matrix subspace V of Cn×n over C (or R) with invertible elements.(7) The
so-called invertible matrix subspaces were introduced as an intermediate structure
between a matrix subspace and a matrix subalgebra. They possess invertible el-
ements and are confined to preserve the linear geometry under inversion in the
following sense.

(6) In operator theory a closed subspace of B(H), the algebra of all bounded operators on a
Hilbert space H , is called an operator space [9]. It has grown to be an active area of research.

(7) Although we are primarily concerned with the geometry of Inv(V) for matrix subspaces,
the structure is of interest for any set V of square matrices. An anonymous referee suggests
looking at homogeneous sets, i.e., those V for which tV =V for any 0 �=t∈C. He/she also suggests
considering the adjugate operation instead of inversion. We are grateful for these interesting
remarks.
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Definition 2.1. Let V and W be two subspaces of C
n×n over C (or R). Then

W is the inverse of V if

Inv(V ) = W ∩GL(n, C) �= ∅.

Equivalently, the closure of Inv(V ) is required to equal W .
In the invertible case we use the notation V −1=W . Certainly, if V is a subal-

gebra of C
n×n possessing invertible elements, then always V −1=V , i.e., V is closed

under inversion.
Invertibility of a matrix V ∈C

n×n can be formulated equivalently in terms of
invertibility of the respective matrix subspace V =span{V } whose inverse in the
invertible case is V −1=span{V −1}. Many classical concepts can be stated analo-
gously, and more generally, in terms of matrix subspaces. (The spectrum is consid-
ered in Section 3.) For instance,

(4) V =span{I, V, ..., V k−1}

is invertible if and only if the degree of V satisfies deg(V )≤k.(8)

Example 2.2. Suppose A∈C
m×m, B ∈C

n×n and C ∈C
m×n. Then solving the

matrix equation AX+Y B=C is equivalent to the matrix factorization problem[
A C
0 B

]
=V1V2 with V1 and V2 belonging to the matrix subspaces

V1 =span
{(

A Y B

0 B

)
: Y ∈ C

m×n

}
and V2 =span

{(
I X

0 I

)
: X ∈ C

n×m

}
,

respectively, see [12]. We have V −1
2 =V2.(9)

A matrix subspace V of C
n×n is said to be polynomially closed over C (or R) if

p(V )∈ V for every V ∈ V and every polynomial p with complex (real) coefficients. In
particular, a polynomially closed matrix subspace contains the scalars. A polyno-
mially closed matrix subspace is invertible with V −1=V by the fact that the inverse
of a nonsingular matrix V is a polynomial in V .

Example 2.3. The set of symmetric matrices is polynomially closed over C.
The set of Hermitian matrices is polynomially closed over R. Hence they are both
invertible matrix subspaces.

The converse does not hold.

(8) Matrix subspaces of this form are of great importance in matrix computations. Their
elements have the rare property of being commutative.

(9) Linearizing the matrix factorization problem A=V1V2 at (V1, V2)∈ V1 × V2 gives rise to
the matrix equation V1X+Y V2=A−V1V2.
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Example 2.4. The matrix subspace V ⊂C
n×n, with n=km, spanned by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

0 0 ... 0 A1

I 0 ... 0 A2

0 I ... 0 A3
... ... ... ... ...
0 0 ... I Am

⎞

⎟
⎟
⎟
⎟
⎠

: Aj ∈ C
k×k for j =1, ..., m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

is invertible with the inverse spanned by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

B1 I 0 ... 0
B2 0 I ... 0
... ... ... ... ...

Bm−1 0 0 ... I

Bm 0 0 ... 0

⎞

⎟
⎟
⎟
⎟
⎠

: Bj ∈ C
k×k for j =1, ..., m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Clearly, V is not polynomially closed.

Next we demonstrate that being polynomially closed is always related to in-
vertible matrix subspaces. For this, consider a subspace V of C

n×n with invertible
elements. The linearization of the inversion operation at an invertible matrix V̂ ∈ V
yields an approximation to the inverse of V̂ +V as

(5) V̂ −1 −V̂ −1V V̂ −1 = V̂ −1(V̂ −V )V̂ −1 with V ∈ V ,

hence giving rise to the matrix subspace V̂ −1V V̂ −1, i.e., the tangent space of Inv(V )
at V̂ −1. Since the map V �→V −1 from V ∩GL(n, C) to Cn×n is thus an injective im-
mersion, we can conclude that Inv(V ) is a submanifold of C

n×n. (For submanifold,
see [27, p. 234].)

If V is invertible, then this linearization is independent of V̂ as follows.

Theorem 2.5. If V is an invertible subspace of C
n×n over C (or R), then

(6) V −1 =V −1V V −1

for any invertible V ∈ V . Conversely, if V is a subspace of C
n×n over C (or R)

possessing invertible elements such that the right-hand side of (6) is independent of
V ∈ V ∩GL(n, C), then V is invertible.

Proof. Consider first the case of V being an invertible subspace of C
n×n over C.

Suppose first that CI ⊂ V . We show that then V is polynomially closed. For this,
look at the resolvent identity

(7) (μI −V )−1 −(λI −V )−1 =(λ−μ)(λI −V )−1(μI −V )−1
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for any differing scalars λ and μ outside the spectrum of V ∈ V . Since V −1 is a
subspace, the left-hand side is in V −1. Therefore so is the right-hand side. Inverting
both sides and subtracting an appropriate first-degree polynomial, we can conclude
that V 2 is in V . Therefore all the second-degree polynomials are in V .

For higher powers, split a polynomial p as p=p1 −p2. Then a generalization of
the resolvent identity (7) (derived analogously) reads

(p2(V )−q(V ))−1 −(p1(V )−q(V ))−1 = p(V )(p1(V )−q(V ))−1(p2(V )−q(V ))−1

for any polynomial q for which the appearing inverses exist. With p(V )=(λ−μ)V
and q(V )=V 2 we can conclude analogously that V 3 is in V . Then with p(V )=λ−μ

and q(V )=V 2 we can conclude that V 4 is in V . Using this argument inductively,
we can infer that all the polynomials in V are in V . Thus V is polynomially closed.

Take now an invertible V . By the fact that V −1 is a polynomial in V , we can
conclude that V −1 ∈ V . Hence V −1=V .

To prove finally that (6) holds, take any invertible V ∈ V . Then V −1V is an
invertible subspace with the inverse V −1V . Since CI ⊂V −1V , we have V −1V =
V −1V . Consequently, V −1=V −1V V −1.

If CI �⊂ V , then take an invertible V ∈ V and consider V −1V . It is an invertible
subspace with the inverse V −1V . Also CI ⊂V −1V . Therefore V −1V =V −1V , i.e.,
V −1=V −1V V −1.

Consider now the case that V is an invertible subspace of C
n×n over R. First

suppose that RI ⊂ V . Then for any V ∈ V , by analogous arguments, all the real
polynomials in V are in V . We have p(V )=

∑2n
j=0 αjV

j =0 for a monic polynomial
p of the least possible degree with real coefficients. If V is invertible, then α0 �=0.
Therefore V (

∑2n
j=1 αjV

j−1)=−α0I , i.e., V −1 is a real polynomial in V and hence
belongs to V . Thus V −1=V . The remainder of the proof proceeds as in the complex
case.

The converse claim is immediate. �

Invertible matrix subspaces of dimension k in Cn×n is hence the largest subset
of the Grassmannian Grk(Cn×n) with the property that the inversion operation is
well-defined in Grk(Cn×n).

Observe that for an invertible matrix subspace V there is no immediate way to
improve the approximation (5) of the inverse of V̂ +V since it is already in V −1.

Corollary 2.6. V is an invertible subspace of Cn×n over C (or R) if and
only if V =V V̂ with an invertible V ∈C

n×n and a matrix subspace V̂ of C
n×n over

C (or R) that is polynomially closed.
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In particular, if V contains the scalars, then V is invertible if and only V is
polynomially closed. If not, then consider V̂ =V −1V which contains the scalars for
any invertible V ∈ V .

Example 2.7. Let V ⊂C
n×n be the subspace of Toeplitz matrices (over C) with

n≥2. We have CI ⊂ V . To see that V is not invertible, take V ∈ V with the entries tj
on the jth diagonal, for −n+1≤j ≤n−1. Then the difference between the (1, 1) and
(2, 2) entries of V 2 is tn−1t−n+1 −t−1t1. Hence V 2 /∈ V generically. Consequently,
V is not invertible.

Suppose a matrix subspace V possesses invertible elements without being in-
vertible. For simplicity, assume V contains scalars. Then the smallest invertible
matrix subspace containing V is constructible through forming polynomials in the
elements of V and spanning them. The process is continued until a polynomially
closed matrix subspace is obtained.

A matrix subspace V possessing invertible elements without being invertible
has the property that the matrix subspace on the right in (6) depends on V ∈ V .

Example 2.8. Analyzing the resolvent operator of W ∈C
n×n is equivalent to

inspecting the submanifold Inv(V ) for the matrix subspace V =span{I, W }. Then
the right-hand side of (6) is

span{(λI −W )−1, (λI −W )−2}

and span{I, W } when V varies in V . It remains fixed, i.e., we have an invertible
subspace, if and only if deg(W )≤2.

If V has invertible elements without being invertible, then Inv(V ) is not readily
characterizable by the fact that then the arising geometry is, by definition, nonlin-
ear. Whenever a characterization (or partial) can be given, the matrix structure is
intriguing.

2.2. Characterizing inverses and related matrix structures

When a subspace V ⊂C
n×n possesses invertible elements without being invert-

ible, the formula (6) is no longer applicable as such. Then giving a simple charac-
terization of the submanifold Inv(V ) is a nontrivial task. In what follows, we look
at the problem of characterization in some special cases.
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Example 2.9. For the matrix subspace of Hankel matrices, recall the elegant
characterization according to which the inverses of its invertible elements coincide
with the invertible Bézout matrices [11, Theorem 7.13].

The following can also be regarded as classical.

Example 2.10. The Cayley transform yields a characterization for the matrix
subspace

V = {rI+iH : r ∈ R and H∗ =H ∈ C
n×n}

of Cn×n over R. Then the inverses of the invertible elements can be expressed as
(1/2r)(U+I) with U=(rI −iH)(rI+iH)−1 unitary for r �=0. With r=0 we have
the set of invertible skew-Hermitian matrices.

The Cayley transform and the respective characterization of the inverses exists
also in other classical Lie algebras.

Occasionally a matrix subspace is naturally represented as the sum V1+V2

of two matrix subalgebras V1 and V2 of C
n×n over C (or R) possessing invertible

elements. Associated with this, consider the sum

(8) V1V2+V1V2.

Example 2.11. Let V1 and V2 be the subalgebras of circulant and diagonal
matrices of C

n×n. The matrix subspace V1+V2 appears in solving Schrödinger
equations numerically [22]. The sum (8) arises in diffractive optics [21].

It can be more useful to view (8) alternatively as the product of three matrix
subspaces as follows.

Proposition 2.12. Let V1 and V2 be two subalgebras of C
n×n having invert-

ible elements. Then the closures of (8) and

(9) V1(V1+V2)V2

equal.

Proof. Since we are dealing with subalgebras, evidently any element of the
space V1(V1+V2)V2 is an element of V1V2+V1V2.

Conversely, for any element V1V2+V̂1V̂2 ∈ V1V2+V1V2, there are invertible el-
ements Ṽ 1 ∈ V1 and Ṽ 2 ∈ V2 arbitrarily close to V1 and V̂2, respectively [21, Theo-
rem 2.2]. Hence, the claim follows after factoring

Ṽ 1(V2Ṽ
−1
2 +Ṽ −1

1 V̂1)Ṽ 2 ∈ V1(V1+V2)V2. �
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Consequently, the submanifold Inv(V1+V2) also plays a central role in charac-
terizing the inverses of the sum V1V2+V1V2.

Example 2.13. Consider the set of circulant V1 and skew-circulant matrices V2,
both subalgebras of C

n×n with invertible elements. Then V1+V2 is the subspace of
Toeplitz matrices. For its invertible elements, the inverse of a Toeplitz matrix has
been shown to be in (8) [13]. Hence, with (9) the inverses of invertible elements
of V1V2+V1V2 can be characterized. Also Example 2.9 can be used here since any
Toeplitz matrix is the product of the backward identity and a Hankel matrix.(10)

The entries of (8) are of second degree while those of (9) are of third degree
as polynomials in the entries of the factors. This is intriguing since an alternating
iteration can be devised for approximating a matrix A∈C

n×n with elements from (8)
(and hence from (9)). For this, freeze the left multipliers and the right multipliers,
alternatingly, and find the nearest element in the respective subspaces.

In view of this, consider the Kronecker product. For the Kronecker product of
two matrix subspaces V1 and V2 we have

Inv(V1 ⊗ V2)= Inv(V1)⊗Inv(V2),

so that in the following special case we are dealing with matrix subspaces.

Proposition 2.14. If V is an invertible matrix subspace, then V ⊗CI and
CI ⊗ V are invertible matrix subspaces.

Suppose kl=n and consider the subalgebras V1=Ck×k ⊗CI and V2=CI ⊗Cl×l

of C
n×n. Then V1+V2 is the matrix subspace consisting of the Kronecker sums while

V1V2+V1V2 consists of the sums of two Kronecker products. (For the Kronecker
sum, see [18, Chapter 4.4].) As is well known, we have eV1+V2 =GL(k, C)⊗GL(l, C),
i.e., the exponentials of V1+V2 are readily characterizable. We are not aware of a
simple characterization of Inv(V1+V2), which is quite unsatisfactory.

Consider next Fk ⊂C
n×n, the set of matrices of rank at most k. Being a

nonlinear matrix structure, let us look at it in terms of the product

(U, V ) �−→UV ∗ with U, V ∈ C
n×k

and linearize this map at (Û , V̂ ). (Hence, Fk can also be regarded as the product of
two matrix subspaces.) The constant term can be ignored (after making a change

(10) The backward identity is otherwise a zero square matrix except that all its main anti-
diagonal entries equal one.
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of variables U=−Û +Ũ ), giving us the matrix subspace

(10) UV̂ ∗ +ÛV ∗ with U, V ∈ C
n×k,

which we denote by C
n×kV̂ ∗ +ÛC

k×n. This is a subset of F2k. Possessing no
invertible elements for 2k<n, it appears natural to consider the matrix subspace
consisting of the sum

(11) W = V +C
n×kV̂ ∗ +ÛC

k×n

for any fixed invertible subspace V of C
n×n over C. This can be regarded as the

tangent space of V +Fk at a point.(11)
With the freedom to choose V̂ , Û and V , there is a fair amount of versatility

in this family of matrix subspaces. Also, now Inv(W ) admits a symmetric charac-
terization in terms of the product of three matrix subspaces as follows.

Theorem 2.15. Let W be defined as in (11). Then the closure of Inv(W )
equals the closure of

(12) (CI+C
n×kV̂ ∗)V −1(ÛC

k×n+CI).

Proof. The matrix subspaces V +C
n×kV̂ ∗ and W contain invertible elements

since V does. By [21, Theorem 2.2], in each of these subspaces the set of invertible
elements is open and dense.

Suppose M+UV̂ ∗ +ÛV ∗ ∈ W is invertible. We may assume, after an arbitrary
small perturbation, if necessary, that M and M+UV̂ ∗ are invertible as well. Let
N=I+ÛV ∗(M+UV̂ ∗)−1. Then the inverse can be expanded as

(M+UV̂ ∗ +ÛV ∗)−1 = (N(M+UV̂ ∗))−1

= (M+UV̂ ∗)−1N −1 =(I+M −1UV̂ ∗)−1M −1N −1.

With this, recall that, for X, Y ∈C
n×k, the matrix I+XY ∗ is invertible if and only

if (I+XY ∗)−1=I −X(I+Y ∗X)−1Y ∗. Therefore the first and second factors in the
expansion can be written as I −Ũ V̂ ∗ and I −Û Ṽ ∗ with Ũ , Ṽ ∈C

n×k. This proves
that the closure of Inv(W ) belongs to the closure of (12).

The sets (CI+C
n×kV̂ ∗)V −1(CI+ÛC

k×n) and (I+C
n×kV̂ ∗)V −1(I+ÛC

k×n)
have the same closures since V is a subspace of C

n×n over C. Therefore, reversing
the steps yields the converse inclusion. �

With the following choices Fk is recovered with the product (12).

(11) V +Fk can be regarded as the set of “small rank perturbations” of the matrix subspace V .
Such structures have been studied, e.g., in [19].



Matrix subspaces and determinantal hypersurfaces 67

Corollary 2.16. Suppose there exists M ∈ V −1 such that V̂ ∗MÛ is invertible.
Then the set (12) contains Fk.

Proof. For any α, β ∈C and M ∈ V −1 we have

(αI+C
n×kV̂ ∗)M(βI+ÛC

k×n)(13)

=αβM+αMÛC
k×n+βC

n×kV̂ ∗M+C
n×kV̂ ∗MÛC

k×n.

Setting α=β=0 yields Fk, whenever V̂ ∗MÛ is invertible. �

For the simplest option (but a very important one in view of applications),
choose V =CI and, let us say, Û=V̂ =

(
I
0

)
∈C

n×k with the identity matrix I of size
k ×k. Then the matrix subspace W consumes the same amount of storage as Fk.
For a fixed A∈C

n×n, this can be viewed as providing an alternative to the structure
appearing in the approximation problem

(14) min
λ∈C

U,V ∈Cn×k

‖A−λI −UV ∗ ‖.

We are not aware of a formula or a simple way of solving this with the canonical
forms.(12) As opposed to this, approximations in the residual sense with W can be
found. For this, take the linear map (2), choose V1=CI and consider

min
W ∈W

‖W ‖F =1

‖(I −P1)AW ‖F .

(See also [21, equation (2.6)].) This problem can be solved by invoking the singular
value decomposition of (2). Since this yields AW ≈I , the actual approximation of
A is in Inv(W ) whose closure is, according to (12), a subset of CI+F2k.

Certainly, the inverses of invertible elements do not necessarily need a par-
ticular characterization even though solving (1) approximately and subsequently
finding the inverse is of interest. In squaring and scaling for the matrix exponential
this arises in the form of a rational approximation problem

(15) A= eV ≈ p(V )q(V )−1

for the exponential of V ∈C
n×n, with polynomials p of degree k and q of degree l at

most. These are then the respective matrix subspaces V1 and W defined as in (4).
For another illustration, with iterative methods for solving very large linear

systems, there arises the problem of approximating

(16) AWV −1
1 ≈ I

(12) For matrices from CI+Fk , the exponential can be computed fast [20].
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for an invertible A∈C
n×n with invertible preconditioning matrices W ∈ W and

V1 ∈ V1. Now the subspace V1 is required to consist of matrices for which it is
possible to solve linear systems fast, whenever V1 is invertible [7].

3. The spectrum and conditioning of matrix subspaces

For the factorization (3) there arises a need to understand how the nullspace
of (2) possesses invertible elements. Consequently, in what follows, we are concerned
with the singular elements of a matrix subspace W of C

n×n over C possessing
invertible elements. The real case W ⊂R

n×n is not considered here.(13) Belonging to
the realm of real algebraic geometry, it leads to very challenging problems requiring
different techniques. (For an illustration of this, see Example 3.3 below.)

3.1. The spectrum of a matrix subspace

For the singular elements, suppose W1, ..., Wk is a basis of the matrix subspace
W ⊂C

n×n and set

(17) p(z1, ..., zk)=det(z1W1+...+zkWk)

for z=(z1, ..., zk)∈C
k. This is a homogeneous polynomial of degree n. Therefore

(18) V (p) = {z ∈ C
k : p(z1, ..., zk)= 0}

determines a hypersurface in the (k −1)-dimensional projective space P
k−1(C). (Hence

we assume k ≥2.) For obvious reasons, such hypersurfaces are called determinantal.

Definition 3.1. The hypersurface (18) is called the spectrum of W in the basis
W1, ..., Wk.

The spectrum is always nonempty and continuous. For these claims, see Ap-
pendix A for the metric used and the proof.

Although V (p) depends on the basis used, any other such a hypersurface is
obtained through a change of variables as XV (p) with an invertible X ∈C

k×k. Such
hypersurfaces are said to be projectively equivalent. It is readily seen that they yield
all the possible spectra of W .

(13) The real case is of equal importance in view of real matrix factorization problems.
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Example 3.2. Consider the matrix subspace of Example 2.4 with k=1, i.e.,
the span of companion matrices. Let W1 be the nilpotent forward shift and Wj

otherwise be zero except that the (j −1, n) entry equals one, for j=2, ..., n+1. Then
p(z1, ..., zn+1)=(−1)n−1zn−1

1 z2 yielding readily V (p).

The concept is also related to the following “property P” arising in scattering
theory.

Example 3.3. Motivated by hyperbolic partial differential equations, in [1] it
was studied when the spectrum of W in a certain given basis W1, ..., Wk does not
intersect P

k−1(R). (More precisely, how large k can be such that this is still possi-
ble.(14)) When W ⊂Rn×n, this illustrates how problems in real algebraic geometry
are different, i.e., all the nonzero elements of a matrix subspace can be invertible.

Projective equivalence splits matrix subspaces into equivalence classes as fol-
lows.

Definition 3.4. Matrix subspaces W and V are projectively equivalent if their
spectra are projectively equivalent.(15)

This is seemingly the weakest equivalence relation of interest. A stronger form
consists of requiring the polynomials (17) to coincide in some bases of W and V .
Then W and V are said to be strongly projectively equivalent. This forces, for
instance, W and V to be in the same C

n×n. An even stronger equivalence relation
requires W =XV Y to hold for some invertible matrices X, Y ∈C

n×n. Then the
matrix subspaces W and V are said to be equivalent.(16)

With these two stronger equivalence relations, it is natural to work with the
Grassmannian Grk(Cn×n) consisting of k-dimensional subspaces of C

n×n over C,
for 1≤k ≤n2.

Example 3.5. The set of Toeplitz and the set of Hankel matrices are equivalent.
For this, take X to be the backward identity and Y =I .

Theorem 2.5 has the following corollary.

(14) Zeros of real homogeneous polynomials in a large number of variables have received
attention recently; see [2] and references therein.

(15) Although they must be of the same dimension, we do not require W and V to be in the

same Cn×n.

(16) This complies with the terminology used in connection with the generalized eigenvalue
problem.
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Theorem 3.6. An invertible matrix subspace is equivalent to its inverse.

For one more instructive example, set W T ={WT :W ∈ W }. By elementary
properties of the determinant, any matrix subspace W is strongly projectively equiv-
alent to W T .

Certainly, to actually recover the singular elements from a spectrum of W ,
the associated basis must be known. This assumption is implicitly made with the
spectrum of a matrix. Then a fixed basis is always employed, guaranteeing the
uniqueness of the concept.

Example 3.7. The spectrum of a matrix W ∈C
n×n is related to the matrix sub-

space W =span{I, W }. Typically, the elements of a matrix subspace are regarded
as indistinguishable whereas with this particular W , the identity matrix is assigned
a special role. This means that one is concerned with the determinant of λI −W

as opposed to (17). Hence the basis used with the spectrum is always W1=I and
W2=−W . Then

det(λI −W ) =
n∏

j=1

(λ−λj) ⇐⇒ p(z1, z2) =
n∏

j=1

(z1 −λjz2),

where λj denote the eigenvalues of W .

Given a matrix subspace, it is an intriguing question, which type of spectra can
arise. In algebraic geometry one is concerned with the related question, whether a
given hypersurface is determinantal or not, typically in the subspace of symmetric
matrices; see [4], [26] and references therein.

For the two-dimensional case, let W1 and W2 be a basis of W with W1 being
invertible. Then W is equivalent to span{I, W −1

1 W2} and therefore it suffices to
consider the following case.

Theorem 3.8. For two matrices V and W , span{I, V } and span{I, W } are
projectively equivalent if and only if the eigenvalues (in some order, not counting
multiplicities) of V and W are related through a linear fractional transformation.

Proof. Assume first that V and W are invertible. Denote by λj(V ) (resp.
λj(W )) the distinct eigenvalues of V (resp. W ). Then span{I, V } and span{I, W }
are projectively equivalent if and only if

(19) X

(
λj(V )

1

)
=Y

(
λj(W )

1

)
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for some invertible X, Y ∈C
2×2 and for the distinct eigenvalues in some order. Writ-

ing Y −1X=
(

a b
c d

)
, this gives

λj(W ) =
aλj(V )+b

cλj(V )+d

after dividing the equations.
In the singular case, proceed analogously with translations of V and W which

are invertible. �

Corollary 3.9. Suppose V, W ∈C
n×n. Then span{I, V } and span{I, W } are

strongly projectively equivalent if and only if the eigenvalues (in some order) of V

and W are related through a linear fractional transformation such that the corre-
sponding eigenvalues have the same algebraic multiplicities.

The matrix subspaces W and XW Y of dimension k are equivalent for any
invertible X, Y ∈C

n×n. In particular, if there exist invertible X, Y ∈C
n×n such that

XWjY are upper triangular for j=1, ..., k, then the spectrum of W is a union of
at most n linear varieties, in any basis. For k=2 this is always so. (Recall also
that any homogeneous polynomial in two complex variables factors completely into
linear homogeneous polynomials.) For k ≥3 this is no longer true in general.

By employing the Jordan canonical form, this yields us the following proposi-
tion.

Proposition 3.10. For any V ∈C
n×n the spectrum of the polynomial matrix

subspace (4) in any basis is a union of at most n linear varieties.

3.2. Conditioning of matrix subspaces

To compute a factorization (3) in practice, knowing the spectrum of a matrix
subspace W , or that of the nullspace of (2), in some basis is not quite sufficient. For
the numerical stability of matrix computations, there should exist elements whose
inverses are reliably computable. Recall that the condition number of a matrix is
the ratio of its largest and smallest singular values. The best conditioned matrices
are unitary. Hence the question arises, how near to unitary matrices can we get by
scaling. (Scaling is a standard operation before executing the Gaussian elimination
for the inverse [14].)

Although a very interesting problem, finding a best conditioned element of W
seems very challenging as soon as dim(W )>1. For a more tractable tool, scale the
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determinant function by setting

(20) h(W ) =
|det(W )|

∏n
j=1 ‖wj ‖ ,

where wj denotes the jth column of W ∈Cn×n.(17) It can be instructive to alterna-
tively write h(W )=|det(WD)| with D=diag(1/‖w1‖, ..., 1/‖wn‖). By Hadamard’s
inequality [17, Corollary 7.8.2], 0≤h(W )≤1 with the latter equality holding if and
only if W has orthogonal columns, i.e., there exists a factorization

(21) W =UD

of W with a unitary U and an invertible diagonal matrix D.

Proposition 3.11. Suppose W ∈C
n×n has the singular value decomposition

W =UΣV ∗ with V having entries of equal modulus. Then h(W )=nn/2
∏n

j=1 σj/

(
∑n

j=1 σ2
j )n/2.

Proof. For the numerator, we have |det(W )|=
∏n

j=1 σj . For the denominator,
‖wj ‖=‖(ΣV ∗)j ‖=(1/

√
n)(

∑n
j=1 σ2

j )1/2. �

Example 3.12. Suppose W ∈Cn×n is circulant. Then the assumptions of Propo-
sition 3.11 are satisfied and h(W )=nn/2

∏n
j=1 |λj |/(

∑n
j=1 |λj |2)n/2, where λj , for

j=1, ..., n, denote the eigenvalues of W .

If h(W ) is not very small, then there are unitary matrices nearby as follows.

Theorem 3.13. An invertible W ∈C
n×n can be scaled from the right with a

diagonal matrix D such that
WD =Q+Δ

with Q unitary and ‖Δ‖F ≤
√

1/h(W )2 −1.

Proof. Let W =QR be the QR-factorization of W with the diagonal entries of
R satisfying rjj >0. Inserting this into (20) yields

∏n
j=1 rjj =h(W )

∏n
j=1 ‖rj ‖ by

the properties of the determinant and by the fact that ‖wj ‖=‖rj ‖. Since h(W ) is
invariant under scalings from the right, take D=diag(1/r11, ..., 1/rnn) to have

(22) 1 =h(W )
n∏

j=1

‖rj/rjj ‖.

(17) Here h refers to Hadamard by the fact that the so-called Hadamard number of W is
defined as 1/h(W ) [6].
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Since the jth entry of rj/rjj is 1, write ‖rj/rjj ‖2=1+xj with xj ≥0. Then from
the identity (22) we have

1
h(W )2

=
n∏

j=1

(1+xj) ≥ 1+
n∑

j=1

xj

so that
∑n

j=1 xj ≤1/h(W )2 −1. Therefore WD=QRD=Q(I+Δ̃) with the norm
satisfying ‖Δ̃‖F ≤

√
1/h(W )2 −1 proving the claim by the unitary invariance of the

Frobenius norm. �

Recall that in the operator norm

min
U unitary

‖WD −U ‖ = max
1≤j≤n

|σj(WD)−1|

(see [17]). Hence, with the diagonal matrix D used in the proof, the condition
number satisfies

ˇ(WD) ≤ 1+
√

1/h(W )2 −1
1−

√
1/h(W )2 −1

.

When the diagonal entries of D are chosen to equal the reciprocals of the norms of
the columns, then ˇ(WD)≤2/h(W ) [15].

Consider a matrix subspace W . Fix a basis W1, ..., Wk of W . Then, in the
complement of V (p), the map

(23) (z1, ..., zk) �−→h

( k∑

j=1

zjW

)2

admits computation of its gradient(18) in a closed form. Consequently, finding now
the extreme points (with a descent method) is a more tractable problem as opposed
to finding a best conditioned element from W .

Definition 3.14. The scaled condition number of a matrix subspace W ⊂C
n×n

is the square root of the supremum of the map (23).

This quantity obviously does not depend on the basis used.

(18) Here Ck is identified with R2k .
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Example 3.15. Let W ⊂C
n×n be the subspace of upper triangular matrices.

For j ≤k, take Wjk=eje
∗
k to be its basis, where ej denotes the jth standard basis

vector of C
n. Then

h

( n∑

k=1

k∑

j=1

zjkWjk

)2

=

∏n
j=1 |zjj |2

∏n
k=1

∑k
j=1 |zjk |2

whose critical points are readily seen to be located at the subspace of diagonal ma-
trices. There the function attains the constant value 1 (whenever invertible) which
cannot be improved. All this was undoubtedly evident since there are diagonal
unitary matrices in W .

3.3. Matrix factorization problem and conditioning of matrix subspaces

To formulate the matrix factorization problem (21) in more general terms, let
V1 denote the set of unitary matrices and suppose that V2 is an invertible matrix
subspace of C

n×n over C (or R). Denote the inverse of V2 by W . Then, for a given
nonsingular matrix M ∈C

n×n, the question of whether there exists a factorization

(24) M =V1V2 with V1 ∈ V1 and V2 ∈ V2

turns into a question concerning the conditioning of a matrix subspace.(19)
Namely, the existence of a factorization (24) is equivalent to having M ∗M=

V ∗
2 V2. For this latter identity, denote the positive definite matrix M ∗M by A

and consider the linear map (2) with the matrix subspaces V1=W ∗ and W =V2.
Assume that its nullspace N possesses invertible elements. Then A=V ∗

2 V2 if and
only if (AV )∗ =V −1 for an invertible element V in the nullspace. This yields us the
following characterization.

Proposition 3.16. Let A=XDX∗ be positive definite with a unitary X and a
diagonal matrix D. Then, for an invertible V there holds (AV )∗ =V −1 if and only
if V ∗X can be factored as (21).

Proof. We have

(AV )∗ =V −1 ⇐⇒ V ∗AV = I ⇐⇒ (D1/2N)∗(D1/2N) = I

with N=X∗V . The last identity holds if and only if D1/2N is unitary. �

Consequently, the question of whether M can be factored as (24) converts
into the question of whether the matrix subspace N ∗X={N ∗X :N ∈ N } possesses
perfectly scaled elements measured in terms of (20).

(19) Besides (24), also the QR-factorization is a problem of this type.
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4. Conclusions

A square matrix subspace with invertible elements is either invertible or merely
possesses invertible elements. The former case can be regarded as well-understood
while for the latter there does not seem to be a general way to characterize the
inverses. For the singular elements of a matrix subspace there exists a concept for
the spectrum. This allows for classifying matrix subspaces in terms of projective
equivalence. Scaling the determinant function yields a criterion for finding stably
invertible elements from a matrix subspace.

Appendix A

To prove that the spectrum is always nonempty, we need to show that (18)
contains nonzero points (z1, ..., zk). The claim is clear if some Wj is singular. So let
us assume that all W1, ..., Wk are invertible. Then it suffices to put z2=1 and z3=
...=zk=0 and look at the univariate polynomial q(z1)=det(z1W1W

−1
2 +I) which

has zeros by the fundamental theorem of algebra. Clearly, all these zeros have a
strictly positive modulus.

Although seldom employed in matrix analysis, the following concepts are stan-
dard in algebraic geometry.

On P
k−1(C) the Kähler metric is used. For the Kähler metric, see [23, p. 247].

On any matrix subspace W ⊂C
n×n the inner product

(W1, W2)= tr(W ∗
2 W1)

is used, for W1, W2 ∈ W .
With this inner product, consider the Grassmannian Grk(Cn×n). Suppose

W , V ∈Grk(Cn×n) and denote by PV and PW the orthogonal projectors on C
n×n

onto W and V . Then also

d(W , V ) = ‖PW −PV ‖2

yields a metric on Grk(Cn×n), where ‖ · ‖2 denotes the operator norm.
In the Grassmannian Grk(Cn×n), suppose a sequence Vj converges to W . Then

a sequence {Vj,1, ..., Vj,k } of bases of Vj is said to converge to a basis W1, ..., Wk of
W if

lim
l→∞

Vj,l =Wj

for l=1, ..., k.
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Proposition. Suppose a sequence {Vj,1, ..., Vj,k } of bases of Vj converges to a
basis W1, ..., Wk of W . Then the sequence V (pj) of the respective spectra converges
to V (p).

Proof. Assume that W =
∑k

l=1 zlWl and Vj =
∑k

l=1 μj,lVj,l. Then limj→∞ μj,l=
zl for every l=1, ..., k if and only if limj→∞ Vj =W .

If W is invertible, then so is Vj =W (I −W −1(W −Vj)) for ‖W −1(W −Vj)‖<1.
Hence a sequence of singular elements cannot converge to W and therefore V (pj)
do not converge to any points in the complement of V (p).

Suppose next that W is singular and there does not exist a subsequence of Vj

of singular elements. Necessarily, though, limj→∞ ‖V −1
j ‖2=∞. Hence, Vj +Ej is

singular with Ej having the Frobenius norm 1/‖V −1
j ‖2. Expand Ej =

∑k
l=1 εj,lVj,l.

Since each Vj,l converges as j→∞, necessarily limj→∞ εj,l=0. �
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