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Nonself-adjoint operators with almost
Hermitian spectrum: Cayley identity
and some questions of spectral structure

Alexander V. Kiselev and Serguei Naboko
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a lot to the spectral theory of nonself-adjoint operators

Abstract. Nonself-adjoint, non-dissipative perturbations of possibly unbounded self-adjoint
operators with real purely singular spectrum are considered under an additional assumption that
the characteristic function of the operator possesses a scalar multiple. Using a functional model of
a nonself-adjoint operator (a generalization of a Sz.-Nagy—Foiag model for dissipative operators)
as a principle tool, spectral properties of such operators are investigated. A class of operators with
almost Hermitian spectrum (the latter being a part of the real singular spectrum) is characterized
in terms of existence of the so-called weak outer annihilator which generalizes the classical Cayley
identity to the case of nonself-adjoint operators in Hilbert space. A similar result is proved in
the self-adjoint case, characterizing the condition of absence of the absolutely continuous spectral
subspace in terms of the existence of weak outer annihilation. An application to the rank-one
nonself-adjoint Friedrichs model is given.

1. Introduction

In the present paper we consider(') nonself-adjoint, non-dissipative additive
perturbations L=A+iV of a self-adjoint operator A acting in Hilbert space H.
Operators of this class have been extensively studied, see, e.g., [18], [19], [31], [32]
and [33] (see also [8], [9], [15], [21] and [22] for directly related results on the oper-
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(1) The theory developed in this paper can be generalized to the case of operators with not
necessarily additive imaginary part, that is, to the class of operators with non-empty resolvent set.
However, this would lead to purely technical difficulties that would complicate the reading of the
paper. Due to this, we have elected not to include this generalization into the present paper.
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ators which are “close to unitary”). We are primarily interested in discussing the
properties of the singular spectral subspace N; of the operator L (see Section 2 for
definitions), in particular, its subspace N?, related to a part of the real spectrum.

Recall [20] that spectral subspaces N;", N, N?CN; can be naturally singled
out for an arbitrary nonself-adjoint operator L of the class under consideration. Here
N7 (N;7) [19] corresponds to the point spectrum in the upper half-plane and a part
of the real singular spectrum (resp. the point spectrum in the lower half-plane
and a part of the real singular spectrum), and is directly analogous to the singular
subspace of a dissipative (resp. adjoint to a dissipative) completely nonself—adjoint(z)
operator. The subspace N? (introduced in [20], see also [31] and [33]) corresponds
to a portion of the real singular spectrum and plays a special role in the spectral
theory of a nonself-adjoint, non-dissipative operator. In a way most new features of
non-dissipative operators (compared to dissipative and adjoint to dissipative ones)
are related to the presence and properties of N?. It is also worth mentioning that
the subspace N plays a special role in the investigation of the similarity of the
operator L to a dissipative operator, see [20]. We also mention that in the finite-
dimensional case the condition N=H leads to the class of non-Hermitian matrices
with real spectrum.

Under an additional assumption which effectively imposes a restriction of
“weakness” on the interaction between the positive and negative parts of the
perturbation (see [19]) it is possible to establish the identity N?={0} and to prove
that the angles between the spectral subspaces N., N;" and N, are positive. More-
over, it can be shown, that from the viewpoint of the similarity problem (to a self-
adjoint or to a dissipative operator) the operator L behaves essentially as an ortho-
gonal sum of a dissipative and an anti-dissipative operator.

In the general case, however, the singular subspace N? is non-trivial, which can
result in a zero angle between the subspaces N, and N; and even in non-triviality of
their intersection [33]. On the other hand, the presence of N? as such does not yet
lead to this. For example, in [31] and [32] it was shown that the similarity problem
can be successfully resolved and the angles between spectral subspaces estimated
from below even in the situation of a non-trivial N?, see also [8] and [9].

In [12] yet another important property of the spectral subspace N was estab-
lished in the case when the operator L is a trace-class nonself-adjoint perturbation
of a bounded operator A. Namely, it was shown that both the operator L and its
adjoint L* are weakly annihilated (see Section 4 for rigorous definitions) by some
scalar-valued bounded outer analytic function if and only if they both satisfy the
condition N?=H. This result extends the well-known Cayley identity to the case
of nonself-adjoint operators of the class under consideration. Further results on

(?) That is, the operator has no reducing self-adjoint parts, see also [28].
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the properties of the spectral subspace N were obtained in the matrix model case
(i.e., rank-two nonself-adjoint perturbations of a bounded self-adjoint operator A)
in [13].

It turns out that a similar consideration is also of considerable interest in the
self-adjoint case, leading to an extension of the Cayley identity for arbitrary self-
adjoint operators with purely singular spectrum. As a by-product of this analysis
we suggest a new criterion for the absence of the absolutely continuous spectrum of
a self-adjoint operator which is of independent interest.

Nonetheless, most of the questions on the spectral structure of operators such
that H=N} remain open and the understanding of the structure of N? lags to
a major extent behind the understanding of the other spectral components of
a nonself-adjoint operator.

In the present paper we continue the discussion of the phenomenon of weak
annihilation started in [12]. We consider a more general situation, when the oper-
ator L is not only no longer necessarily bounded but also (which is the most techni-
cally demanding task) the perturbation is no longer necessarily of trace-class. The
only significant restriction that we impose on the operator L is that the four factors
0;(N), ©4(N), j=1,2, of the characteristic function ©(A) of the operator L possess
scalar multiples (see Section 2 for definition). This is the most natural class of
operators, generalizing trace-class perturbations.

The paper is organized as follows. In Section 2 we introduce the functional
model of Sz.-Nagy—Foiag in its symmetric form due to Pavlov [18], [23], [24] and [28]
which we then use as a principle tool of the investigation. The singular spectral
subspace N} is introduced in functional model terms (following [20] and [33]).

An equivalent (non-model) description of N? in terms of the original Hilbert
space and operators acting in it is given in Section 3. This description is given in
both “strong” (see [12]) and “weak” (first introduced in this paper) flavours, and
their equivalence is proved.

In Section 4, we discuss the relationship between scalar multiples of the factors
0;(A), ©5()), j=1,2, of the characteristic function ©()) under the assumption that
the spectrum of the operator L is almost Hermitian. Essentially, this section general-
izes the results on the relationship between their determinants obtained in [33] in
the case when L is a trace-class perturbation of a bounded self-adjoint operator.
These results are not only an essential ingredient in passing over from trace-class
to non trace-class perturbations (in the case of trace-class perturbations, these
analytical difficulties do not arise due to the existence of corresponding generalized
determinants), but are also in our opinion of considerable independent interest.

Section 5 is devoted to the definition of weak outer annihilation and some
immediate implications of this phenomenon, namely on the non-real part of the
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spectrum of the operator L. In this section, as well as in Sections 6 and 7, we
attempt to follow the design of our paper [12], although the technique we use here
is quite different.

In Sections 6 and 7 we prove that both the operator L and its adjoint L* are
weakly annihilated by some scalar-valued bounded outer analytic functions if and
only if they both have almost Hermitian spectra, provided that the operator L is
such that all four operator-valued functions ©;(\), 99 (N\), j=1,2, possess scalar
multiples. Thus the Cayley identity is generalized to the class of operators with
almost Hermitian spectrum.

Section 8 is devoted to proving an analogous result in the self-adjoint case,
namely, that an arbitrary self-adjoint operator A possesses a weak outer annihilator
if and only if its absolutely continuous spectral subspace is trivial. This result was
absent until now in the spectral theory of self-adjoint operators. Thus it not only
rather transparently demonstrates the spectral meaning of the almost Hermitian
spectral component, but also has independent value. It is interesting to note that
this self-adjoint result is obtained based on essentially nonself-adjoint methods and
notions.

Finally, in Section 9 the results obtained are applied to the spectral analysis
of the rank-one nonself-adjoint Friedrichs model operator, i.e., a rank-one nonself-
adjoint perturbation of the multiplication operator, in La(R; do) over a measure o
singular with respect to the Lebesgue measure. In essence, here the results originally
presented in [12] without proofs and in a simplified form are generalized to the
unbounded case, and complete proofs are supplied.

2. The functional model

In the present section we briefly recall the functional model of a nonself-adjoint
operator constructed in [23] and [28] in the dissipative case and then extended
in [16], [17], [18] and [26] to the case of a wide class of non-dissipative operators. As
in [18], we consider a class of nonself-adjoint operators of the form L=A+1iV, where
A is a self-adjoint operator in H defined on the domain D(A) and the perturbation V'
admits the factorization V=aJa/2, where « is a non-negative self-adjoint operator
in H, and J is a unitary operator in an auxiliary Hilbert space F, defined as the
closed range of the operator a: E= IT@) . This factorization corresponds to the polar
decomposition of the operator V. It can also be easily generalized to the “node”
case [30], where J acts in an auxiliary Hilbert space $ and V=a*Ja/2, a being an
operator acting from H to $). In order for the expression A+iV to be meaningful,
we impose the condition that V is (A)-bounded with relative bound less than 1,
i.e., D(A)CD(V) and for some a and b (a<1) the condition ||Vu|| <al|Au||+b|u/,
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u€D(A), is satisfied, see [10]. Then the operator L is well-defined on the domain
D(L)=D(A).

Alongside with the operator L we are going to consider the maximal dissipative
operator Ll=A+ia?/2 and the one adjoint to it, L~I=LI*=A4—ia?/2. Since the
functional model for the dissipative operator Ll will be used below, we require that
LIl is completely nonself-adjoint, i.e., that it has no reducing self-adjoint parts. This
requirement is not restrictive in our case due to [18, Proposition 1].

We also note that the functional model in the general case of operators with
not necessarily additive imaginary part and with non-empty resolvent set has been
developed in [26].

Now we are going to briefly describe the construction of the self-adjoint dilation
of the completely nonself-adjoint dissipative operator L, following [23] and [28], see
also [18].

The characteristic function S(\) of the operator LIl is a contractive analytic
operator-valued function acting in the Hilbert space E, defined for Im A>0 by

(1) S(A) =TI+ia(L™I =X)L

In the case of an unbounded «a the characteristic function is first defined by (1) on
the manifold END(«a) and then extended by continuity to the whole space E. The
definition given above makes it possible to consider S(A) for Im A<0 with S(\)=
S*(A\)~! provided that the inverse exists at the point A. Finally, S()\) possesses
boundary values on the real axis in the strong topology sense: S(k)=S(k+i0),
k€R (see [28]).

Consider the model space H=_Lz( £ %), which is defined in [23] (see also [22] for
descriptions of general coordinate-free models) as Hilbert space of two-component

vector-functions (g, g) on the axis (§(k), g(k) € E, k€R) with metric

(00N (s ) ED)-C)), o

It is assumed here that the set of two-component functions has been factored by the
set of elements with norm equal to zero. Although we consider (g, g) as a symbol
only, the formal expressions g_:=(g§+S5*g) and g, :=(Sg+¢g) (the motivation for the
choice of notation is self-evident from what follows) can be shown to represent some
true Lo(E)-functions on the real line. In what follows we plan to deal mostly with
these functions.

Define the following orthogonal subspaces in H:

D = (HQO(E))’ D, = <HEO(E)> and K=He(D_4D.),
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where H?(E) (resp. H?(E)) denotes the Hardy class of analytic functions f in the

upper (resp. lower) half-plane taking values in the Hilbert space F [28]. These sub-

spaces are “incoming” and “outgoing” subspaces, respectively, in the sense of [14].
The subspace K can be described as

K={(§,9)€H:9 =§+S*gc H*(E) and g, ES@—I—QEHE(E)}.

Let Pg be the orthogonal projection of the space H onto K, then

(1) (150
9 9—P(Sg+9) )’

where P are the orthogonal Riesz projections of the space La(E) onto H2(E).
The following theorem holds true, see [28] and [23].

Theorem 2.1. The operator (L” —Xo) ! ds unitarily equivalent to the operator
Pr(k—Xo) 7Yk in the space K for all Ao with Tm \g<O0.

This means, that the operator of multiplication by k& in H serves as a minimal
(clostm az0(k—\) "L K =H) self-adjoint dilation of the operator LIl [28].

Provided that the non-real spectrum of the operator L is countable, the char-
acteristic function of the operator L is defined for Im A#0 by the expression

o\ =I+iJa(L*—\)"ta

and under the additional assumption that V' is a relatively compact perturbation(®)
can be shown to be a meromorphic J-contractive (0*(A)JO(X)<.J, Im A>0) oper-
ator-valued function [4]. The characteristic function ©(\) admits, see [1] and [16],
a factorization (also called the Ginzburg—Potapov factorization of a J-contractive
function [2]) in the form of a ratio of two bounded analytic operator-valued functions
(in the corresponding half-planes Im A< 0 and Im A>0) triangular with respect to de-
composition of the space E into the orthogonal sum E=X, EGX_E, X.:=(I+J)/2:

(2)  ©N)=07(\)(O3)"'(N), ImA>0; ©(N)=033)(87)'(A), ImA<0,
where the factors ©1 2 and ©1 , are introduced as follows [17]:

O1(N) =X_+SNX,,  Os(\) =X, +S\)X_;

) O/ (\) =X+ 5 (NX,, O4(\) =X +S (VA

and S()) is the characteristic function of the dissipative operator Lll.

(3) This assumption guarantees that the non-real spectrum of L is discrete.
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We will assume throughout the present paper that all four operator-valued
functions appearing in the factorization (2) possess scalar multiples [28], [18]. Re-
call that the scalar multiple of an analytic operator-valued function Q(\): E—FE
bounded in the half-plane C, (resp. C_) is a scalar-valued analytic function d(\)#0
bounded in the upper (resp. lower) half-plane such that

QNQN) =QNQ\) =d(\)I, AeC, (resp. A\eC_),

where Q(A) is some analytic operator-valued function bounded in the upper
(resp. lower) half-plane.

We remark that if (LI—Xo)~'—(L=I1=Xg)"1€&; for some Ao, Im \g7#0,
then our restriction is satisfied, i.e., all the operator functions ©;, @9, j=1,2, pos-
sess scalar multiples in their respective half-planes [18].

Following [17], we define the linear sets N. in H as follows:

(1) M= { <g) : (g) €M and P. (0} §+659) = P.(X.g,+X g ) :0}

and introduce the subspaces N.=clos PKJ/\\Ti. Then, as is shown in [18], one gets
for Im A<0 (resp. ImA>0) and (g, g)€N_ (resp. (§,9)EN,),

®) ey re () =Pt ()

Conversely, the property (5) for Im A<0 (resp. Im A>0) guarantees that the vector
(g, g) belongs to the set N (resp. ]/\\7+)

Absolutely continuous and blngular subbpaces of the nonself-adjoint operator L
were defined in [16]: let N= N,NAN_, N.=PxN; and N.=N,NN_. Then(*)

(6) Ne=clos(N,NN_)=clos Px N =clos N, and N;=K&N,(L*),

where N.(L*) denotes the absolutely continuous subspace of the operator L*, which
can be easily described in a similar way in terms of the same model space H.

One can also ascertain that the linear sets ]\Nfi can be characterized in terms,
independent of the functional model, in the following way:

(7) N.={ueH:X.a(L-\)"'ue H2(E)}.

Here X.a(L—)\)"tu(®) is treated as an analytic vector function of A€C. taking

values in the auxiliary Hilbert space E. It can be verified that the projections A
(%) The linear set N, is called the set of “smooth” vectors of the operator L (see [18]).

(°) That is, analytic continuations of the vector Xy+a(L—\)~1 u from the domain of analyt-
icity of the resolvent to the half-plane C+.
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can be dropped altogether in the definition (7), see [18]. The existence of this
description gives ground to calling the vectors belonging to the named linear sets
“smooth”.

The definition (6) in the case of maximal dissipative operators leads to the
same subspace as the classical definition by L. A. Sahnovich [27] (the latter def-
inition introduces the absolutely continuous subspace as the maximal invariant
subspace reducing the operator L to an operator with purely outer characteristic
function) and was later developed by V. A. Ryzhov (in the case of more general
non-dissipative operators) [26] and A. S. Tikhonov [29] (the so-called weak defini-
tion of the absolutely continuous subspace). Recently it turned out that the weak
definition coincides with the strong one (6) (see [25]).

The subspaces N, (L*) for the operator L* adjoint to L are defined in a similar
way using the same model representation.

The singular spectral subspace N; can be characterized in the following way [33]:

(8) N;= { (z) € K:07 (k+i0)g, (k)= (04) " (k—i0)g_(k) for a.a. k GR}.

Here the inverses ©7'(k+40) and (©))~'(k—i0) exist almost everywhere on the
real line due to the existence of scalar multiples and the uniqueness theorem for
bounded analytic functions [7].

The non-model description of it, see [15] and [33], is that NN; consists of all
vectors u€ H that ensure the zero jump of the resolvent in the weak sense,

Ny={ue H:((L—k—ie) ' —(L—k+ie) Ju,v) =0
for a.a. k€R as e =+ 0 and for all ve H}.

9)

Essentially for almost all real k£ the fact that the jump of the resolvent vanishes
weakly (9) is equivalent to the condition in (8) for the boundary values of analytic
vector-valued functions in the model representation [15], [33].

Following [19] we also introduce the subspaces N;"C N; as

~ ~ 2 /72
N;’ zclosN;’ N;’ = Py (H— (E)@(()_)lH— (E)>’
N =closN;, N; =P, 0
CTOT T TR (B) 60, HE (B) )

It can be shown that N;’Cﬁ,, whereas ZV[ CN,.

The subspace N, (resp. N; ) corresponds to the point spectrum in the upper
half-plane and a part of the real singular spectrum (resp. the point spectrum in the
lower half-plane and a part of the real singular spectrum) [19].



Nonself-adjoint operators with almost Hermitian spectrum: Cayley identity 99

Finally, singular spectral subspaces N? C N;, N?(L*)C N;(L*) were introduced
in [20], see also [33], as

(10) N?=NP(L):=Ko(N,(L*)VN_(L*)) and NP(L*): =Ko (N, VN_).

One should again emphasize that the analytic properties of the spectral subspace N
differ drastically from those of the singular subspaces of completely nonself-adjoint
dissipative operators.

We call an operator, for which the identities H=N?=N?(L*) hold, an operator
with almost Hermitian spectrum. The spectrum of the operator L|yo is real [33],
but there are much deeper reasons for the name used than this. '

First, in the matrix case (i.e., when dim(H)<oo) the class of operators with
almost Hermitian spectrum coincides with the class of completely nonself-adjoint
matrices with real spectrum.

A number of results (in the case of trace-class perturbations of bounded self-
adjoint operators, some remaining valid in the general case also), linking the prop-
erties of N? to those of the singular spectral subspace of a self-adjoint (rather than
dissipative!) operator B, have been obtained in [33]. In particular, it can be shown,
that the subspace N consists of, at least, all eigenvectors and root vectors of the
operator L, corresponding to real values of the spectral parameter \.

Further, if N?=H then the determinant of the characteristic function ©(\) is
trivial:

det®(A\) =1, ImA#0.

In terms of similarity, one can also prove that if L is similar to a self-adjoint
operator B (i.e., there exists a bounded, boundedly invertible operator X such that
L=XBX™!), then N?=XH,, where H; is the singular spectral subspace of the
operator B [33].

Yet another way to reveal the similarity between N? and the singular spec-
tral subspace of a self-adjoint operator B is in terms of the weak annihilator, see
Section 8 below. We also plan to give a much more detailed coverage of this topic
in a forthcoming publication.

3. Non-model description of the spectral subspace Ni0

In the present section, we will present two equivalent descriptions of the spectral
subspace N? in non-model terms. The first of these (the “strong” one, see also [12])
is analogous to (7) for the smooth vectors of the operator L, whereas the second (the
“weak” one) is an analogue of the “weak” description of the absolutely continuous
subspace [25] and [29].
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Theorem 3.1. (Strong description of N?) Let L be a nonself-adjoint operator
such that all four operator-valued functions appearing in the factorization (2) possess
scalar multiples, see [18] and [28]. Then the following statements are equivalent:

(i) The vector u€ H belongs to the singular spectral subspace N?;

(ii) The vector wu€ H belongs to the singular spectral subspace N; and the vector
a(L—X)"tu belongs to the vector Smirnov classes(®) N2(E), see [22], i.e., it can be
represented as ho(\)/0+(\), where ho € H2(E) and 6+(\) are scalar-valued bounded
outer analytic functions in the half-planes C.. Here the functions §+ can be chosen
independently of the vector u.

Proof. Recall, that in [33] it was proved, that in the model representation the
following characterization of the subspace NP holds (cf. (8)):

NO— { (g) €K+ g, (k+i0) = (O1); (k-+i0)v, (k-+i0),

9-(k—1i0) = (©3);(k—i0)v_(k—i0),

11
(1D where vy € H2(E), and for a.a. k € R the equality

(él)e_l(k—l—iO)m(k—i—iO) = ((:)'2)6_1(16—2'0)11, (k—1i0) holds}.

Here the canonical factorization, see [28], of the operator-valued functions ©; and ©%
into a product of their inner and outer factors is used, @1:(@1)i(é1)e and ©,=
(©4)5(6%)e. Assuming the conditions of Theorem 3.1 all the operator-valued func-
tions appearing in this canonical factorization also possess scalar multiples [28].
Therefore, by the uniqueness theorem for scalar-valued bounded analytic func-
tions [7], the inverses in (11) exist for almost all real k.

Let now u€ N?. Using the identities (see [18])

V21g. (AN =—601(Na(L—-\)"tu, ImA>0,

42 V2rg (A)=—-05(Na(L—\)"tu, ImA<O0,

and the representation (11), we immediately obtain, that for all AeC,,
(L= "tu=—v271(01), (N)vy (\) = —V215 7 H(AN)Q(N)vs (V),

where Q(A)(01)e(A)=(01)c(A)QAN)=0,(N)I, i.e., d, is a scalar multiple of the oper-
ator-valued function (©1). and therefore can be chosen to be an outer analytic
function in the upper half-plane [28]. In turn, ©()) is a bounded operator-valued

(6) That is, analytic continuations of the vector a(L—\)~1u from the domain of analyticity
of the resolvent to the half-planes C+ exist and belong to the corresponding Smirnov classes there.
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function in C,. An application of a similar argument to the vector g_ completes
the proof of the implication (i)=-(ii).
Conversely, if (ii) holds, then for all AeC,,

with some scalar-valued analytic function d,, outer in the upper half-plane, and
E-valued function h, € H2(E).
Put

It then suffices to prove (since the condition u€ N; guarantees that the last equality
n (11) holds, see (8)) that v, € H(E). Since &, ()) is an outer function in the upper
half-plane, this follows immediately from the vector version of Smirnov’s theorem [7]
and the fact that g, €H., whereas the operator-valued function (©1);(¢+10) is
unitary for a.a. t€R. An analogous consideration of the vector g_ () completes the
proof. O

Theorem 3.2. (Weak description of N?) Let L be a nonself-adjoint operator
such that all four operator-valued functions appearing in the factorization (2) possess
scalar multiples, see [18] and [28]. Then the following statements are equivalent:

(i) The vector u€ H belongs to the singular spectral subspace N?;

(ii) The vector u€ H belongs to the singular spectral subspace N; and the func-
tion ((L—\)"tu,v) belongs to the Smirnov classes N1 for all vEH, i.e., it can
be represented as hi(\)/0.(N), where hy €HY and §+()\) are bounded scalar-valued
outer analytic functions in the half-planes C.. Here the functions 0+ are independ-
ent of vEH and can be chosen independently of the vector w.

Proof. Let ue N and AeC,. Then in the model representation the following
formula describes the action of the resolvent (L—\)~! on the vector u [18]:

(13) (L—)\)‘1<g> :PKﬁ(@ _pKﬁ(&@IléA)gM))’

where (g, g)€ K is the model representation of the vector u. Then

o= (e G ) (FT ) ()
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where ( f.f ) is the model image of the vector v. The first term in the right-hand
side is clearly the Cauchy transform of an L;-function, whereas the second one can
be rewritten by residue calculus as

(5 (PO (1)) = amit o g, 0.1 e

By Theorem 3.1 the vector u is such that a(L—\)"'ue N2(E), and therefore by (12)
07 (N)gr(N)=h,(N)/d,(\) (the last formula is first established outside of the point
spectrum of the operator L in C, and then extended by analyticity to the whole
of C,) for some h, € H2(E) and some outer function &, bounded in the upper
half-plane. It follows that if one puts v(\):=1/(A+1), then

(L= 0) = ko (\) 2 5; k(). £ ()

= oo (8, ) =2l (). £ () ()] € N7,
since k1(A):=((k—\)~ () ( )> and f_( )€H2( ).

Conversely, if (ii) holdb let first @ be a bounded operator in H. Then for
all v€H one has (a(L—)\)"tu v)eNl( ). It follows, see [22], that the vector-
valued function &, (A)a(L—\)"'u belongs to the vector Hardy space H!(E) and
consequently a(L—\)"tu=h(\)/d, (A) for some vector-valued function h, € H!(E)
and scalar-valued outer function J, bounded in C,, independent of ve H.

Put, as in the proof of Theorem 3.1,

Since ueN; and g, (k)=(01);(k)vs(k), as in the proof of the previous theorem it
suffices to show that v, € H2(E). Clearly by its definition v, € N1(E); on the other
hand its boundary values belong to the space Lo(F) along with the function g (k).
Therefore, by the vector version of Smirnov’s theorem [22] v, € H2(E) indeed.

In the case of an unbounded « a simple regularization u,:=i7(L+i7)"u,
7>1 reduces the situation to the one already considered, where we have taken
into account that u, —wu as 7—oo.

An analogous argument applied to the case of C_ completes the proof. O

Remark 3.3. The results presented in the present section make it possible to
reveal the major differences between the parts of N corresponding to the real
singular spectrum of the operator L, on the one hand, and N?, on the other. That
is, the vectors from N corresponding to real values of the spectral parameter are
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“smooth” in one of the half-planes with strong singularity in the other, whereas the
vectors from the subspace N cannot be “smooth” in any of the half-planes (since
by [33] the subspace N? contains no smooth vectors), but their singularities on the
real line have to be relatively weak (as weak as zeros of an outer function on the
real line can be).

4. Relationship between the scalar multiples in the case
of almost Hermitian spectrum

In the case when the operator L is a trace-class perturbation of a bounded
self-adjoint operator A, the determinant of the characteristic function of L is iden-
tically equal to 1 provided that the spectrum of the operator L is almost Hermitian,
i.e., N’=H [33]. For the operator-valued functions (3) appearing in the factoriza-
tion (2) this identity immediately yields that det ©1(A\)=det ©2(A), Im A>0, and
det ©](A\)=det ©4(A), Im A<0. Here det O1(A)=det X\ S(A\)X, (and det Oz(\)=
det X_S(A)X_), where the last operator is treated as an operator in the auxiliary
Hilbert space X, E (resp. X_FE) and similar formulae hold for the other two deter-
minants (in the lower half-plane) [18]. Therefore,

det X, S(N)X, =det X_S(A\)X_, ImA>0,

provided that N?=H.

In our case, the operator-valued functions (3) might have no determinants.
The present section is devoted to the generalization of the result mentioned above
to the case when these four operator-valued functions possess just scalar multiples
in their respective half-planes.

We begin with the following lemma.

Lemma 4.1. Suppose that all four operator-valued functions appearing in the
factorization (2) possess scalar multiples in their respective half-planes. Further
let the characteristic function S()\) possess a scalar multiple itself (7). Let S(\) be
inner in the upper half-plane, i.e., its boundary values are unitary almost everywhere
on the real line, S*(k+i0)S(k+i0)=S5(k+1i0)S*(k+i0)=1I for a.a. kER. Then the
scalar multiple of S(X) can be chosen to be an inner analytic function in C,.

Proof. Since S(X) possesses a scalar multiple 6(X) in C,
(14) SAQAN) =QN)SAN) =8NNI

(") In general, the existence of a scalar multiple for S(\) does not follow from the existence
of scalar multiples for the operator-valued functions in (2).
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for some analytic operator-valued function (A) bounded in C,. Multiplying this
identity by S*(A) and taking into account that S(\) is inner in C,, we obtain
Q(k+i0)/5(k+i0)=S5*(k+i0) for a.a. real k. It follows, that the boundary values
of the functions Q(k+:0)/§(k+140) and, consequently, Q(k+:0)/d.(k-+1i0), where d.
is the outer part, see [7], of the function ¢, are uniformly bounded for a.a. real k.
Then by the operator version of Smirnov’s theorem [22] we obtain that Q(X)/dc ()
is a bounded analytic operator-valued function in C,. Dividing the identity (14)
by d¢(A) concludes the proof. O

By [33], in our setting the characteristic function ©(k) is a.e. J-unitary on the
real line, i.e., ©*(k+1i0)JO(k+i0)=0O(k+1:0)JO*(k+1i0)=J for a.a. real k, provided
that the operator L has a trivial absolutely continuous subspace, N.={0}. From
the identity (see [33])

05(N) (70" (\)JON)O5 (N) = I-S*(NS(\), AeC,,

it follows then that S*(k+:0)S(k+140)=1I for a.a. real k. A similar identity involving
J—0O(X)JO*(A) and T—S(A)S*(N) yields the identity S(k+140)S*(k+i0)=I. Con-
sequently, if NO=H (which readily implies that the absolutely continuous subspace
of the operator L is trivial), the characteristic function S(\) is an inner operator-
valued function in C,. Therefore, we arrive at the following corollary.

Corollary 4.2. Suppose that all four operator-valued functions appearing in
the factorization (2) possess scalar multiples in their respective half-planes. Further
let the characteristic function S(\) possess a scalar multiple itself. Let the spectrum
of the operator L be almost Hermitian, i.e., N)=H. Then the scalar multiple of the
characteristic function S(X) can be chosen to be an inner analytic function in C,.

The following theorem generalizes the result of [33] on the equality of de-
terminants in the case of almost Hermitian spectrum (see the very beginning of this
section) to the case considered in the present paper. We recall that if an operator-
valued function possesses a well-defined bounded determinant, it can be chosen as
a scalar multiple as well. In the case treated in the present section, the equalities
for determinants transfer into the corresponding equalities for the properly chosen
scalar multiples. Although we use this result as a lemma in the next three sections,
it is also of clear independent interest.

Theorem 4.3. Suppose that all four operator-valued functions appearing in
the factorization (2) possess scalar multiples in their respective half-planes. Let the
spectrum of the operator L be almost Hermitian, i.e., N'=H. Then the scalar mul-
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tiples(®) 1 (N), v2(A), ¥4 (\), 7%(N) of the operator-valued functions ©1()\), O(N),
O (), ©4(N), respectively, can be chosen in such a way that

(1) v1(A) and v2(N) are (scalar-valued) bounded outer functions in C.; vi(X)
and v5(X) are (scalar-valued) bounded outer functions in C_;

(ii) The following relations between them hold:

(15) NN =700, nA)=71R) and 12(A) =90

(iii) The operator-valued function v1(A)(©%)~1(\) is analytic and bounded in
the upper half-plane, and the operator-valued function v4(N\)O1*(\) is analytic and
bounded in the lower half-plane.

Proof. First observe that the condition N?=H guarantees, see [33], that the
characteristic function ©(\) is J-unitary a.e. on the real line and, consequently, the
characteristic function S()\) is inner in the upper half-plane (see above).

Next, by [33] again, the condition N?=H further implies that all the operator-
valued functions (3) are outer in their respective half-planes. Therefore, see [18]
and [28], their scalar multiples can be chosen to be outer bounded functions as well.

We are now going to prove that the choice v;(\)="~|(A) is possible. By [18],
the scalar multiple of the operator-valued function ©;(\) can be chosen equal to
the scalar multiple of the contractive operator-valued function X'y S(A\)X,, treated
as an operator in the Hilbert space X, F. Indeed, if 71 () is a scalar multiple of the
latter operator-valued function,

QF () (X SV = (X, SVX)QE () =1 V),
then
(NN X+ (I =X S(N) X, )1 (\)X)O1(N)
=0, () (1 WX+ (- XS (ML) =71 (VL.

Conversely, it is obvious (since X, Q1 (A)X_=0, where Q;()\) is the operator-
valued factor in the definition of the scalar multiple of ©1(\)) that the scalar mul-
tiple 1 (A) of ©1(A) is a scalar multiple of the operator-valued function X, S(\)X,
as well, hence for a.a. real k,

Qf (k+i0)X, S(k+i0)X, = X, S(k+i0)X, Qf (k+i0) =1 (k+i0) Ly,

for an analytic operator-valued function Q7 (A): =X, Q1 (A\)X; bounded in C,. Pass-

ing over to the adjoint equality, putting Q":=Q*()) and ~;:=71()\), we arrive at

(®) The notation v} () and v5(\) should not be mistaken for the derivatives of the functions
71(A) and y2(A).
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the conclusion that for a.a. real k,
Q' (k—i0) X, S* (k+i0) X, = X, S* (k+i0) X, Q7' (k—i0) = v} (k—i0)Ix, &

Since by construction Qf’ is an analytic bounded function in C_, whereas v} is an
outer bounded function in C_ as long as the function v, is outer in C,, we have

proved that the function ~7(\) can be chosen as a scalar multiple of the operator-
valued function X, S*(A\)X, in the lower half-plane. Thus by an argument similar
to the one presented above this function is also a scalar multiple for the operator-
valued function ©%(A) in C_.

Since quite analogously in the case of H=N? the scalar multiple 74 can be

chosen as v5="~2(\), it remains to verify (iii) and to prove that the function 7 ()
can be chosen as a scalar multiple of the operator-valued function ©%5()) in the
lower half-plane.

Note that O;(k+1i0)Q(k+1:0)=Q1(k+i0)0(k+i0)="~1(k+i0)] and S(X) is
inner in C;. Therefore S(k+i0)=01(k+i0)(05)~*(k—i0) for a.a. real k (see [33],
the expression (0%)~1(k—i0) is meaningful for a.a. real k due to the existence of
a scalar multiple), and we immediately obtain that

(16) Q1 (k+1i0)S(k+i0) =1 (k+1i0)(©%5) ' (k—i0)
a.e. on the real line. On the other hand, since N?=H and
(05) 7'\ =T+ia(L—-\)"taX_,

it is easy to see that for a.a. real k, (©4) 7 (k+i0)=(0%)~1(k—1i0) (this follows from
the a.e.-zero jump of the resolvent over the real line). From (16) and the unique-
ness theorem for analytic functions possessing boundary values almost everywhere,
see [7], it follows now that 1 (\)(©5)71()\) is a bounded analytic operator-valued
function in the upper half-plane, equal to 1(A\)S(A). The corresponding statement
for 4(A\)O7 () can be verified along the same lines.

On the other hand, the operator-valued function ©% possesses an outer bounded
scalar multiple 7/(A) in the lower half-plane and therefore

OL(NQ(\) =2 (NO,(\) =+ (NI, ImA<0,

with some bounded analytic operator-valued function £'(\) in the lower half-plane.

Choose ¥4 (A):=71(A). We will show that this function can be chosen as a scalar
multiple of the operator-valued function ©% in the lower half-plane. Let 5(\):=

Y1 (A\)(©%)71(N). If we prove that this is a bounded operator-valued function in the
lower half-plane, then 7% is a scalar multiple of ©5(\) in C_. Since for a.a. real k
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Q% (k—i0)="1(k+10)(0%) ! (k—1i0), the latter expression is uniformly bounded for
a.a. real k (see (16)), but at the same time

() =70

with an outer function 4 in the lower half-plane. Then by the operator version of
Smirnov’s theorem, see [22], the operator-valued function €2 is itself bounded in
the lower half-plane, which completes the proof. [J

Remark 4.4. From the proof given it clearly follows that in choosing scalar
multiples whose existence is claimed by the theorem one can start with an arbitrary
outer bounded scalar multiple of any of the four operator-valued functions (3). The
other three can then be obtained based on (15). It of course does not imply the
existence of the other three scalar multiples, which has to be pre-assumed.

5. Weak annihilation: the definition

In the present section we give the definition of weak outer annihilation (see [12],
where the case of trace-class perturbations of bounded self-adjoint operators was
considered) and discuss its immediate implications. As established in the paper
cited above, this phenomenon plays an important role in the spectral theory of
nonself-adjoint operators with almost Hermitian spectrum. In fact, the class of
these operators can be independently described in terms of existence of a weak
outer annihilator. In Sections 6 and 7 below we will generalize these results to the
case when the operator L is not necessarily bounded.

Throughout the present section (unless explicitly stated otherwise) we will
assume that the spectrum of the operator L is real.

In the case of trace-class perturbations of bounded self-adjoint operators the
following definition was given in [12].

Definition 5.1. Let v(\) be an outer, see [7], bounded scalar-valued analytic
function in the upper half-plane C,. We call this function a weak annihilator of
a nonself-adjoint operator (with real spectrum) L, if

(17) w—iiom'y(L—f—ie) =0.

For a bounded operator L the function (L +ie) can be defined using standard
Riesz—Dunford functional calculus [5]:

1
(18) y(L+ie)u=—=— ¢ y(A)(L+ie—\) " ud,
2mi Jr
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where the contour of integration I'CC, encircles the spectrum of the operator L+ie
in the upper half-plane.

Based on this definition, the scalar-valued function (y(L+ic)u,v), u,v€H, can
be rewritten, using the functional model of a nonself-adjoint operator (see Section 2
above) in the following way(?)

G (). (7)) =(era()-(7))
[ o ) (55) 1 (15)),

— 00

(19)

for all (g,g) and (f, f) in K, the model representation of the Hilbert space H.
Although it is tempting to use (19) as the definition of the operator vy(L+ie) for
an unbounded operator L, it can be easily seen that the latter expression is only
well-defined on a linear set dense in H, and even that only under some additional
assumptions on the asymptotic behaviour of the operator-valued function (045)~1())
in the lower half-plane along lines parallel to the real line. These assumptions cannot
be stated in terms of its scalar multiple due to the fact that the latter is not uniquely
defined.

Due to these reasons, we introduce a regularization for the (in general, un-
bounded) operator L. Consider the function w,(z):=(z+1i¢)/(1—icz) for e>0. This
analytic function in the upper half-plane maps C, conformally onto the interior of
a large circle in C, . Moreover, as € tends to zero, this circle enlarges to the whole C
and for every real z we have w.(z)—z as e—0.

We introduce a bounded operator L. defined by the formula

_ _ g i 1-—g? AN

(20) Lei=w.(L) = (Ltie)(1—icL) "' = =+ ——(L+1)
(the boundedness of the operator L. follows from the latter representation). The
spectrum of the operator L. is clearly a subset of the image of the real line under
the transformation w. and lies entirely in the upper half-plane. Moreover, in the
case when then the operator L is bounded it is easy to see that ||L.—L||—0 as
€—0. A similar regularization of the operator L has been used in the proof of the
Hille-Yosida theorem in [14] in the definition of the group of exponentials.

Since the operator L. is a bounded operator with spectrum in C,, for any
bounded analytic function (\) in the upper half-plane we can define the oper-

(°) We skip the details of this calculation since they are essentially the same as in [12]; see
also Section 7 below.
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ator y(L¢) based on the Riesz—Dunford calculus:

(21) HEu=—5= § v (Le=N) udA,
i Jp
where the integration contour I' is an arbitrary piecewise smooth contour lying
entirely in C, and encircling the spectrum of L.. For example, such a contour can
be chosen as the image of the real line under the transformation w, 5.
We now give the following definition.

Definition 5.2. Let v(\) be an outer, see [7], bounded scalar-valued analytic
function in the upper half-plane C,. We call this function a weak annihilator of
a nonself-adjoint operator L (with real spectrum), if
(22) w-lim y(w (L)) =0.

l0

Note that, if there exists a weak annihilator for the operator L in the upper half-
plane, there also exists a weak annihilator for the operator L* due to the following
almost obvious lemma which we will find useful in the next section.

Lemma 5.3. Suppose that a bounded outer scalar-valued function y(\) in
the upper half-plane weakly annihilates the nonself-adjoint operator L (with real
spectrum) in the sense of Definition 5.2. Then the bounded outer scalar-valued

function v« (X\):=~()\) in the lower half-plane weakly annihilates the adjoint opera-
tor L* in the lower half-plane, i.e.,

-li 'L —
W@gnv(ws( ))=0,

where wl(z):=w.(Z).

The proof can be easily obtained from (21) and (22) by passing over to the
adjoint operator in the inner product in the integral.

Finally, the following lemma allows us to “forget” about the non-real part of
the spectrum of the operator L in the case when both operators L and L* possess
weak annihilators. In order to still be able to use the Riesz—Dunford functional
calculus (21) in the case when the operator L may possess countable non-real spec-
trum (in particular, in the lower half-plane), we proceed as follows. For any >0
choose the integration contour I':=w, /5(R) in (21). If its intersection with the point
spectrum of the operator L is non-trivial (it might contain at most a finite number
of points) pick an &’ such that 0<e’<e and a new contour I':=w, /5, ./ (R) so that
the intersection of IV with the point spectrum is empty. Recall that under our
assumptions it is possible that the point spectrum of the operator L accumulates
at every point of the real line (from below in particular, see [18]). Nevertheless, we
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have only a finite number of eigenvalues outside the contour I'V. According to the
Riesz—Dunford calculus for piecewise-analytic functions we can now assume that
the function () is identically equal to zero in some neighbourhood of this finite
set of points.

Lemma 5.4. (See [12] for the bounded case) Let L=A+iV be a nonself-
adjoint operator such that all four operator-valued functions (3) possess scalar mul-
tiples.

(i) If there exists an outer bounded weak annihilator(*°) v()\) for the operator L,
the discrete spectrum of L in the upper half-plane is empty, o(L)NC,.=2.

(i) If there exists an outer bounded weak annihilator v.(\) for the operator L*,
the discrete spectrum of the operator L in the lower half-plane is empty, o(L)NC_=
.

Proof. We will check the implication (i); the proof of (ii) is carried out by
passing from the operator to its adjoint.

Due to the conditions imposed on the operator L it follows, see [10], that the
spectrum of the operator L is discrete in the open upper and lower half-planes of
the complex plane. Let Ag, Im Ay >0, be an eigenvalue of the operator L and wug
be the corresponding eigenvector. Then clearly v(L:)uo="~(w:(Ao))uo. The weak
limit of this expression, as e—0, exists and is equal to y(Ag)ug. Therefore, since
~(A) is an outer function in the upper half-plane, up=0. O

6. The implications of weak annihilations on the spectral structure

In the present section we will show how the existence of a weak annihilator
for the operator L affects its spectral structure. We will reveal the links between
the annihilation phenomenon and the class of operators with almost Hermitian
spectrum by proving, that if both the operator L and its adjoint L* are weakly
annihilated in the upper half-plane by some bounded outer scalar-valued functions,
then both L and L* have purely almost Hermitian spectrum. We start with the
following statement treating the absolutely continuous subspace of L and L*.

Theorem 6.1. Let L=A+iV be a nonself-adjoint operator such that all four
operator-valued functions (3) possess scalar multiples. Let the spectrum of the oper-
ator L be real. Then existence of either an outer bounded weak annihilator y(X\) for
the operator L or a corresponding annihilator for the operator L* implies, that the

operators L and L* have trivial absolutely continuous spectral subspaces, N.(L)=
Ne(L*)={0}.

(1°) The precise way to calculate (L) will be clarified in the proof.
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Proof. Assume that () is a weak annihilator for the operator L. The case
when there exists a weak annihilator for the adjoint operator is reduced to a similar
situation in C_ by conjugation. Suppose that the absolutely continuous subspace of
the operator L is non-trivial. Then there exists a non-zero smooth vector (g, g)€N,
for which the formula (5) holds for all non-real A. Then, taking into account the
assumption of absence of non-real spectrum, one gets

+(L2) P <9) @R (g) A

g 21 T
1 1 (g
(23) R ﬂ“)PKws(m—A(g)dA

“rel g =) ()

where the contour of integration I' encircles the spectrum of the operator L. and
lies inside the upper half-plane C,.

In order to prove the second equality in (23) we have used the formula (5) and
the following representation for the resolvent (L. —\)~!, which one can easily check,

(Le—X\) "' =—ie (L+§> (14+ixe)L—(A—ig))t

_ e |4 1—g2 I A—ie \ !
B T S A G Ey v

Therefore, by Cauchy’s formula we obtain the formula, for any vector (g, g) €N,

(24)

(25) sear (1) =pirtw (%),

The right-hand side here has a limit in H by the Lebesgue dominated convergence
theorem. Since v(A\) weakly annihilates the operator L it clearly follows that on
all vectors (g, g) from the linear set N this limit is equal to zero and therefore the
following identity holds:

(26) Pea((?) =0,

where y(k):=limg o v(we(k)) exist for a.a. k€R due to Fatou’s theorem [7].

Recall [18], that the linear set N consists of vectors (§,g)€H such that
O (k—i0)§+03(k+i0)g=0. This identity is meaningful due to (4). Therefore,
for any bounded scalar-valued Borel function (k) the vector 3(k)(g,g) also be-
longs to the linear set N. Consider a sequence of measurable sets d§, CR, defined
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for all natural n as d,:={k€R:|y(k)|>1/n}, and a sequence of corresponding char-
acteristic functions &,,. Clearly, for every n the function X, (k)/v(k) is a bounded
function on the real line. Therefore,

e 48]0 §)

and finally, passing to the limit as n—o00, Px (g, g)=0, which implies that Ne:{O}.

For the adjoint operator L*, consider an outer bounded analytic function 7, (\)
in the lower half-plane, which weakly annihilates the operator L* due to Lemma 5.3.
Therefore, a computation (in C_ instead of C,) similar to the one presented above
may be used to show, that the absolutely continuous subspace of the operator L*
is also trivial. This completes the proof. [

The following theorem establishes implications of existence of weak annihilators
on the smooth vectors of the operators L and L*.

Theorem 6.2. Let L=A+iV be a nonself-adjoint operator such that all four
operator-valued functions (3) possess scalar multiples. Let the spectrum of the op-
erator L be real.

(i) If a bounded outer scalar-valued function y(X) in the upper half-plane weakly
annihilates the operator L, then the linear sets N_(L) and N, (L*) are trivial.

(i) If a bounded outer scalar-valued function ~'(\) in the upper half-plane
weakly anmihilates the operator L*, then the linear sets N, (L) and N_(L*) are
trivial.

Proof. We shall prove that N_(L)=N,(L*)={0}, the assertion (ii) can be
established analogously.
As in the proof of the previous theorem, one can easily establish the formula

A(L2) P (g> — L @R @ A

g 21 T

“rol g o] ()

where (g, 9) €N_ and the contour of integration I' is chosen accordingly in C,.
Calculating the integral in the latter expression, we arrive at the formula (25).
Since () annihilates the operator L (see p. 111), we conclude, that for all vectors
(§,9)€N_ the identity (26) holds.
Recall [18], that the linear set N_ consists of vectors (g, g) €'H such that

P_(07(k—1i0)§+035(k+i0)g) =0
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(see (4) for the rigourous meaning of this formal expression). Therefore, for any
H®°(C,)-function §(k) the vector 3(k)(g, g) also belongs to the linear set N.
Analogously to the proof of Theorem 6.1, consider a sequence of bounded
analytic functions X/ (k) in the upper half-plane such that for every natural n the
function X (k)/v(k)e H>(C,) and X/ (k)—1 for a.e. k on the real line.
Such a sequence exists (cf. [33]) due to the following argument. Since y(\) is
an outer function in the upper half-plane, it admits the representation, see [7],

; 1 [% 1+tAlog|y(t)
2) = it —/ “TA S IML g
74 =e eXp(m' LA 1482 ’

where ¢ is a real constant. Let the sequence ¢, (\) be defined by the formula

1 /oo L+ tA log(|y(4)|+1/n) dt>'

. ) = —10 =
en(A)=e eXp( mi ) T 142

Clearly, ¢, (t)eHS® for all integers n and furthermore |y, (¢)y(¢)|<1 for a.a. real t.
By Kolmogorov’s theorem [7], there is a subsequence ¢, (\) such that o, (t)y(t)—1,
as [—o0, for a.a. real ¢t. Finally, we put X/(A):=ppn, (A)y(A).

Therefore,
Py ()| 24| (9) = ey (7) =0,

which implies that N_ ={0}.
The corresponding result for N, (L*) follows from consideration of the bounded

outer function in the lower half-plane v, (\):=7()), analogously to that in the proof
of Theorem 6.1. [

Note that Theorem 6.1 is a particular case of Theorem 6.2 due to the fact that
N.CN_ and N, (L*)C N, (L*).

Taking into account the definition of the spectral subspace N? (see Section 2)
and Lemma 5.4, we can now formulate a corollary of the results proven in the
present section in the following form.

Theorem 6.3. Let L=A+1iV be a nonself-adjoint operator such that all four
operator-valued functions (3) possess scalar multiples. Suppose that two outer
bounded functions v(A) and v.(\) in the upper half-plane weakly annihilate the
operator L and the operator L*, respectively(*'). Then the operators L and L*
both have almost Hermitian spectra, i.e., H=N?(L)=N?(L*).

(*1) For the rigourous definition of weak annihilation in the case of non-triviality of the
non-real spectrum see Section 5, p. 109.
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7. Existence of a weak annihilator in the case of almost Hermitian
spectrum. Generalized Cayley identity

In the present section we establish the fact that a weak annihilator exists for
both operators L and L*, provided that the spectrum of the operator L is almost
Hermitian. We begin with the following result.

Theorem 7.1. Let L=A+iV be a nonself-adjoint operator such that all four
operator-valued functions (3) possess scalar multiples. Suppose that the operator L
has almost Hermitian spectrum, i.e., H=N?. Then there exists a bounded outer
function y(X) in the upper half-plane, weakly annihilating the operator L. Moreover,
this function can be chosen to be equal to a scalar multiple of the operator-valued
function ©1(\)(*?). There also exists a bounded outer function v.()\) in the upper
half-plane, weakly annihilating the adjoint operator L*, and this function can be
chosen to be equal to an outer bounded scalar multiple of the operator-valued func-
tion O2(N). Due to Theorem 4.3 this function can be chosen equal to the function
v(A) above.

Proof. Observe first, that in conditions of the theorem the function y(X) can
be selected as a bounded outer function in the upper half-plane. Indeed, since
NP?=H, all operator-valued functions appearing in the factorization (2) are outer
and bounded in the corresponding half-planes [33] and therefore their scalar mul-
tiples can also be chosen outer and bounded [18] and [28].

Let v(A) be an outer bounded scalar multiple of the operator-valued function
©1()). As in Lemma 6.2, we can obtain by Riesz—Dunford calculus that

G (3 (3)) = oo 0) ()

where the contour of integration I' in C, has been chosen suitably.
We use the formulae obtained in [18] for the action of the resolvent of the
operator L in the model representation on the whole space K,

(L-N"" (g) = P (i) ~Pris (X (@'2>—?(A>9(A>>’

where (g,9)€K and AeC_, and

LN (z) - (g) P (?a@ﬁg»m(x))

(12) This scalar multiple can in turn be chosen equal to a scalar multiple of the operator-
valued function X4+S(N\)Xy, treated as an operator acting in Hilbert space Xy H, see Section 4.
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where (§,9)€K, AeC,, and g, (A\)=(Sg+9g)(\) and g_(\)=(§+S*g)(\) are values
at the point A of analytic continuations of the functions g. € Hy (E) into the upper
and lower half-planes, respectively. By Cauchy’s formula we then obtain using (24),

(28) ] -
(ia0) () -G ()2

2 0 .
X7§V(A)<(1:i5)2k_g X_(@gw(l:i)g_(l:i) ,(J;>>d)\.

14+i)e

Note that in the above formula we have actually used the model representation
of the action of resolvent in the lower half-plane. This is due to the fact that
the exterior of the contour w.(R) (of which the operators’ spectrum is a subset),
where the contour of integration belongs to, corresponds to the lower half-plane.
Here (0%)71(\)=Q%(\)/7%()\) with some analytic operator-valued function Q5()),
bounded in the lower half-plane (see [28] and [18]), where ~4()) is as before an
outer scalar multiple of the function ©4(A). On the other hand, by Theorem 4.3
the scalar multiple 74(\) can be chosen so that ~5(\)=+()) since the spectrum of
the operator L is almost Hermitian.

Using Cauchy’s formula once again, it is easy to see that the expression (28)
can be rewritten in the following form:

(29) )

(e(3)- (1) -G ()-(9))

v(A) 1—¢2 , [ A—ig A—ie A—ie
AN - X0 . AT N
+7€ o (i)’ 2\ T )9 e ) P e )

Choose the integration contour I' so that

A—ie ie t+ie/2
- ivalently, A= —— 1%
1+ire g OF CAuivaiently, (1—¢2/2)—ict’

and pass over to the variable t€R utilizing analytic properties of the functions
g+ €HY(E) and f.€Hy (E). Then we see that the expression (29) has a limit as ¢
tends to 0 and by Lebesgue’s dominated convergence theorem and Cauchy—Schwarz’
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inequality
ml().0)

_ <7 (g), <§)>+/Z zg:zg; (X Q(t—i0)g_ (t—i0), f1(t-+i0)) s dt.

In order to prove that this limit is ac:cually equal to zero, we recall (see
Section 2) that for all (g, g)€N; and for all (f, f)e K

(31) <[(L—k—z’5)1—(L—k+z’5)1] <;’) , <§> > 50, ase—0,

for a.a. real k. Again taking into account formulae describing the action of the
resolvent of the operator L in the model representation in upper and lower half-
planes, consider the following expression for arbitrary vectors (g, g),(f, f)eK=
NPCN{,I

ﬁ’y(t+i5)<[(L—t—ia)_1—(L—t—i—ia)_l] (g) (§>>

- 52 () ()

(X, (t+ie)g. (t+ie), f-(t—ie))p
+ 2 3 Qt—ie)g (i), f(t+ie)) s
v(t+ie)

(cf. (29)). Here the operator-valued function ;(A) is the factor in the definition
of the scalar multiple v1(A)=~(\) of ©1(N), i.e., O1(N)Q1(N)=Q1(N)O1(N) =y (NI
in C,. The expression on the right-hand side of (32) has a limit for a.a. tER,
equal to the integrand in (30) but for the term (X, Q;(¢4140)g, (t+140), f_(t—i0)) g,
the integral of which over the real line is equal to zero due to the orthogonality of
H2(E) and H2(E) in Ly(E). On the other hand, from (31) it follows, that this
limit is identically equal to zero for a.a. t. Thus we have completed the proof of the
fact that the function v(A) weakly annihilates the operator L.

Recall, that the condition that the operator L has almost Hermitian spectrum
is equivalent to the fact that the spectrum of the adjoint operator L* is also almost
Hermitian. Indeed, [33, Lemma 3.3] implies that the subspace N? does not contain
smooth vectors, i.e., NPON_:NPOJ\th{O}. Then N (L*)=Ko(N,VN_)=K by
the definition of N. Thus, the assertion concerning the operator L* can be verified
along similar lines. This observation completes the proof. O
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Remark 7.2. We remark that due to the specific choice of the function ~(X)
provided by Theorem 7.1 we can use Definition 5.1 of the weak outer annihilation
instead of Definition 5.2 in the statement of Theorem 7.1. The proof in this case is
obtained along the same lines as in [12].

A combination of Theorems 6.3 and 7.1 and Lemma 5.4 implies in particular
the following statement.

Theorem 7.3. Let L=A+1iV be a nonself-adjoint operator such that all four
operator-valued functions (3) possess scalar multiples. Then both operators L and
L* are weakly annihilated by some scalar-valued bounded outer analytic functions if
and only if one or (equivalently) both of them has almost Hermitian spectra.

8. The self-adjoint case

The present section is devoted to the proof of one statement concerning the
self-adjoint situation. It effectively shows, that in terms of weak outer annihilation
the singular spectral subspace N behaves in exactly the same way as the singular
spectral subspace of a self-adjoint operator. Moreover, due to this result it would
seem reasonable to include the singular component of the self-adjoint part of the
operator L (in the general case, when L is not necessarily completely nonself-adjoint)
into the singular subspace N?. It is also worth mentioning that not only the proof
of this theorem exploits essentially nonself-adjoint (in particular, functional model
related) techniques, but even certain crucial objects of the nonself-adjoint spectral
theory appear already in its statement.

Theorem 8.1. Let A be a (possibly, unbounded) self-adjoint operator in the
Hilbert space H. Then the following two statements are equivalent:

(i) the spectrum of A is purely singular;

(ii) there exists an outer bounded scalar-valued function ya(\) in the upper
half-plane, weakly annihilating the operator A, i.e.,

w-limy4 (A+ie) =0.
el0
Moreover, the function ya can be chosen as(*?)

Ya(A) =det (I+iVV(A—iV-))"WVV)

for any trace-class (or relatively trace-class) non-negative operator V in H such
that \/ 1 xp0(A=N)"'VH=H.

(13) Tt is easy to see that y4()) in fact coincides with the perturbation determinant
D aya—iv(A) of the pair (4, A—iV), see [6].
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Proof. Choose V to be a trace-class non-negative self-adjoint operator in the
Hilbert space H such that

(33) \/ (A-N"'VH=H.
Im A#0
Clearly, such a choice is always possible.

Consider the functional model developed in [18] for the operators L admit-
ting a representation L,,=A+asa /2, where o>0 is a non-negative operator in the
Hilbert space H and s is a bounded operator in the subspace E, E being the
closure of the range of . Choose a to be a Hilbert—Schmidt class operator de-
fined by the formula a=v2V €G,. Then the operator L, is well defined on the
domain D(L,)=D(A). Moreover, L,=A when »=0, i.e., Loy=A. Consider the
dissipative operator Ll=A4iV (this operator coincides with L; 1). Clearly, it is
a maximal dissipative operator in H; moreover, it is easy to see that the condi-
tion (33) guarantees that it is also completely nonself-adjoint.

Construct the functional model based on the operator Lll (see Section 2 above).
In the corresponding dilation space H the following formulae describe the action of
the resolvent (A—\)~! on all vectors (§,g)€ K, as above K being the model image
of H (see [18]),

S, R -
(34) (A=Y g> sy <g— (TH(5"M-Di) g<A>)’ fmA<0,

H(I+ (5 (M)~}
(3 L (3-3(+(SMN-DF) g
(35) (A-A)" ():pK < g 3) 9 ) ImA> 0.
g (k=) g
Here S()) is the characteristic function of the completely nonself-adjoint maximal
dissipative operator L, all the other notation has already been introduced above.
We introduce the following notation for the operator-valued functions, appear-

ing in this representation: ©4(A):=I+(S(\)—1I)3 and ©'4(A):=I+(S*(A)—1)3.
The functions ©4 and ©’, are bounded analytic operator-valued functions in the
half-planes C, and C_, respectively.

Observe that the characteristic function S(\) is an inner operator-valued func-
tion in the upper half-plane. Indeed, it suffices to show that the boundary values
of S(A) on the real axis are a.e.-unitary there. By the Hilbert identity,

S NS =T =0, Nal(A=N) " =(A=X)"aO (V).

On the other hand, since the spectrum of the operator A is purely singular, one has
the following property for all u,v€ H as €0:

(36) ([((A=k—ie) ' —(A—k+4ie) Yu,v) -0 for a.a. kER.

Combining these two facts with the existence of boundary values of S(X) in the
strong topology, it is easy to see that S*(k+140)S(k+i0)=1I almost everywhere on
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the real line. The second identity S(k+140)S*(k+1i0)=1I can be verified along similar
lines.

It follows that, since © 4(A)=(I+S(\))/2 and ©',(\)=(I+S5*()\))/2, they are
also outer (see [28]) in the half-planes C, and C_, respectively.

By the definition of S(X), both operator-valued functions also have well-defined
outer (see [28] and [33]) determinants y4 and «/, bounded (in fact, contractive)
in their respective half-planes, which can therefore be also chosen as their scalar
multiples [18]. Tt is also clear that 74 (\)=y4(}).

We will prove that y4(\) weakly annihilates the self-adjoint operator A, pro-
vided that its spectrum is purely singular. The function 7/ (), as can be easily
seen, will then annihilate the operator A in the lower half-plane. We remark, that
v4(A) is a clearly non-zero function since lim; o v (i7)=1.

The contractive (due to von Neumann’s inequality [28] or, alternatively, due to
the spectral theorem) operator v4(A+ie) is defined by the Riesz—Dunford integral,

(va(A+ic)u,v) = L </00+3i6/2 — /Oo+i6/2 >7A()\)((A+i5—)\)1u,v> dA.

2mi —oo+3ig/2 —oco+ie/2

Using the model representation (34) we then immediately obtain

(37)

a8y ()Gt () |
—/ a (i <k_(t1_2 w <%(@/ ekl (1= s)) <§)>dt

27172' Oom(t+l325><m< 1o, (t+ik 8)9+(t+z 5§> <f)>dt.

Proceeding exactly as in the previous section and using the property (36) once again,
we can quite easily ascertain that v, is indeed weakly annihilating the operator A
in the upper half-plane.

Conversely, let the self-adjoint operator A possess a weak outer bounded annihi-
lator y4(\). Let the vector u#0 belong to the absolutely continuous spectral sub-
space H,.. Then, by the spectral theorem and by Lebesgue’s dominated convergence
theorem it is easy to see that

/5 (k) o (k) = 0

(by taking Ea(d)v instead of v) for an arbitrary Borel set CR and the finite
absolutely continuous complex measure dp,, ,(k):=(dE4(k)u,v), see [3], where E4
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is the operator-valued spectral measure of the operator A and v is an arbitrary
element of H. Since the boundary values of 74 are non-zero almost everywhere on
the real line, this implies that the measure dy, , =0 for all v€ H, which completes
the proof. 0O

Remark 8.2. Note that the existence of a non-zero analytic bounded annihi-
lator of the operator A is clearly sufficient for the pure singularity of its spectrum.
Nevertheless, Theorem 8.1 asserts that this function can be chosen to be outer in C,
as well.

Remark 8.3. Suppose that the operator A is a self-adjoint operator with simple
spectrum. Then the trace-class operator V' of Theorem 8.1 due to (33) can clearly
be chosen as a rank-one operator in Hilbert space H [3]. In this situation, the
statement of Theorem 8.1 can be modified in the part concerning the choice of the
annihilator in the following way: the annihilator can be chosen as

1
1—i(D(N)—1)’

where D()\):=1+((A—X)"1p,¢) is the perturbation determinant of the pair (A,
A+(-,p)p) and ¢ is the generating vector for the operator A.

The proof is a straightforward application of the explicit formula for the re-
solvent of a rank-one perturbation of a self-adjoint operator, based on the Hilbert
identity.

Ya(A) =

9. Application

Consider an operator of rank-one nonself-adjoint Friedrichs model (see also [12]
and [13] for the bounded operator version of this example), i.e., a rank-one nonself-
adjoint perturbation of the operator of multiplication A in Lo(R;do), where do is
assumed to be a positive Borel measure on the real line R, singular with respect to
the Lebesgue measure:

(Au)(z) = zu(z),
(Lu)(z) = (Au)(z)+{(u, p)y(2),

u, p, W€ La(R;do), (-,-) denoting the inner product in Lo(R;do). Suppose also
that the operator L is completely nonself-adjoint, i.e., that |¢|+]¥|#0 a.e. on R
with respect to do (this condition is not restrictive since if it is not true one could
easily reduce the measure o to its part corresponding to the completely nonself-
adjoint operator. The self-adjoint part in the Langer decomposition will be then
reduced to the corresponding part of the operator A).

(38)
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Let ¢(z)y(z)=0 do-a.e. on the real line (in this case the perturbation de-
terminant is identically equal to 1 [11]). Then the operator « is a diagonal operator

in E=\/{p,¥}:

A Jol V2 1,
~(et) gt (i) rcoe

1
—W(<'»Sﬁ>¢—<w¢>¢)~

Further, the resolvent (L—\)~! satisfies the identity

(39) (L=N""u)(x) = (33; <f£t/)\,<p(t)>f(_xi-

We will now prove that the operator L is an operator with almost Hermitian

spectrum.

Proposition 9.1. (See [13] for the bounded case) Let L be a completely nonself-
adjoint operator of rank-one nonself-adjoint Friedrichs model in Lo(R;do), where
do is assumed to be a positive Borel measure on the real line, singular with respect to
the Lebesgue measure. Let the two functions ¢ and v determining the perturbation
have disjoint supports: o(x)ih(x)=0 do-a.e. on the real line. Then the operator L
is an operator with almost Hermitian spectrum, i.e., Lo(R;do)=N2(L)=N?(L*).

Proof. 1t suffices to check that the operator L has no smooth vectors, i.e., that
N_=N,={0} [33]. Assume that N_ is non-trivial (the proof in the case of N+ is
conducted along similar lines). Then there exists a vector u€ Ly(R;do) such that
a(L—N)"tue H2(E) [18].

A direct computation yields

oL )= <%>Ui|?|<z(_x;w<x>>so
o () Rl ) (2 o) ]
Since (p,1)=0, it follows that for this vector to belong to the space H2(E)

it is necessary that the scalar-valued analytic function v(\):=(u(x)/(z—\), p(z))
belongs to the space H2. This in turn implies, see [7], that

P(z)u(z) @),
/R P do(z)= iy dx
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for some function f€Lo(R). The left-hand side of the latter identity represents the
Cauchy transform of a singular measure, whereas the right-hand side represents the
Cauchy transform of an absolutely continuous one, from where on the basis of the
F. and M. Riesz theorem, see [7], we conclude that pu=0 a.e. with respect to do.
Applying an analogous argument to the second term in the right-hand side of (40)
(since the second term in the square brackets vanishes identically) we conclude that

1Yu=0 a.e. with respect to do, which completes the proof due to the assumption of
complete nonself-adjointness of the operator L. [J

Let

2
2—iser,(N) =iz ry (A) —rp (Mg (N)

(41) a(n) =

where r,(A):=(p(x)/(x—A), p(z)) and ry(X):=(x)/(x—A), ¥(z)). The following
result is an application of Theorem 7.1, see [11] for the details of the computation
of the characteristic function S(\).

Theorem 9.2. Let L be a completely nonself-adjoint operator of rank-one
nonself-adjoint Friedrichs model in Lo(R;do), where do is assumed to be a posi-
tive Borel measure on the real line, singular with respect to the Lebesgue measure.
Let the two functions @ and 1 determining the perturbation have disjoint supports:
o(2)Y(x)=0 do-a.e. on the real line. Then the operator L is weakly annihilated by
the outer bounded analytic function a(X\) in the upper half-plane defined by (41).
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