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Energy characteristics of subordination chains

Alexander Vasil’ev

Abstract. We consider subordination chains of simply connected domains with smooth
boundaries in the complex plane. Such chains admit Hamiltonian and Lagrangian interpretations
through the Lowner—Kufarev evolution equations. The action functional is constructed and its
time variation is obtained. It represents the infinitesimal version of the action of the Virasoro—Bott
group over the space of analytic univalent functions.

1. Introduction

Many physical processes may be interpreted as expanding dynamical systems
of domains in the complex plane C or in the Riemann sphere C. This leads to
the study of time-parameter Lowner subordination chains. In particular, we are
interested in Lowner chains of simply connected univalent domains with smooth
(C*°) boundaries. There exists a canonical identification of the space of such do-
mains (under certain conformal normalization) with the infinite dimensional Kéhler
manifold whose central extension is the Virasoro-Bott group. A Léwner subordi-
nation chain €(t) is described by the time-dependent family of conformal maps
z=f(¢,t) of the unit disk U onto Q(t), normalized by f((,t)=a1(t)(+az(t)(?+...,
a1 (t)>0. After the 1923 seminal Lowner’s paper [16] a fundamental contribution to
the theory of Lowner chains was made by Pommerenke [19] and [20] who described
governing evolution equations in partial and ordinary derivatives, known now as the
Lowner—Kufarev equations due to Kufarev’s work [14]. A particular case of subordi-
nation dynamics is given by the Laplace growth evolution (or Hele-Shaw advancing
evolution) consisting of the Dirichlet problem for a harmonic potential where the
boundary of the phase domain is unknown a priori (a free boundary), and, in fact,
is defined by the normality of its motion (see, e.g., [9], [22] and [27]). The aim
of our paper is to give Hamiltonian and Lagrangian descriptions of the subordina-
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tion evolution. In particular, we discuss the relations between the Lowner—Kufarev
equations in partial and ordinary derivatives, construct the action functional, and
obtain its time variation. This variation represents the infinitesimal version of the
action of the Virasoro—Bott group over the space of analytic univalent functions.

2. Hamiltonian formulation of the subordination evolution

The parametric method for univalent functions emerged more than 80 years
ago in the celebrated paper by Lowner [16] who studied a time-parameter semigroup
of conformal one-slit maps of the unit disk U arriving then at an evolution equation
named after him. His main achievement was an infinitesimal description of a semi-
flow of such maps by the Schwarz kernel that led him to the Lowner equation. This
crucial result was generalized, then, in several ways (see [20] and the references
therein).

A time-parameter family Q(¢) of simply connected hyperbolic univalent do-
mains forms a subordination chain in the complex plane C, for 0<t<t (where 7
may be o), if Q(t)C(s), whenever t<s. We suppose that the origin is an interior
point of the kernel of {Q(¢)}7_,, and the boundaries 9§2(¢) are smooth (C>°). Let us
normalize the growth of the evolution of this subordination chain by the conformal
radius of Q(t) with respect to the origin to be e¢’. By the Riemann mapping theorem
we construct a subordination chain of mappings f(¢,t), (€U, where each function
f(¢, t)=et¢+aa(t)¢?+... is a holomorphic univalent map of U onto Q(t) for every
fixed t.

Pommerenke’s result [19] and [20] says that given a subordination chain of
domains €Q(t) defined for t€[0, 7), there exists an analytic regular function

p(¢ 1) =14p1(O)C+p2 ()P .., (€U,
such that Rep(¢,t)>0 and

(1) D

0f(¢t)
a¢

p(¢;1)

for (€U and for almost all t€[0, 7). The equation (1) is called the Léwner-Kufarev
equation due to two seminal papers: by Lowner [16] with

tu(t)

where u(t) is a continuous function for t€[0,7), and by Kufarev [14] in the general
case, where this equation appeared for the first time.
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In [28], the case of smooth boundaries 0€(¢), being embedded into the class of
quasidisks, has been proved to admit a specific integral form of the function p(¢, )
as
¢ v(w,t)

- dw
2mi Jg1—gy w(w—()

for almost all t€[0, 7], where the function v(w,t) belongs to the Lie algebra Vect St
of the vector fields on the unit circle S!, with the the Poisson-Lie bracket given by

[v1, V2] =11V — a1,

where the derivatives are taken with respect to the angle variable of S*. Comparing
with the Herglotz representation

pe.)=C [ e duent

for the family of Herglotz measures y normalized by |, g1 dp(w,t)=1, we deduce that
dp(w, t)=p(w, t)|dw|, we S, and

ple t) = Eu(ew, t).
From the other side, Rep(e®?, t)=2mp(e?, t) and the real-valued function p(e?, ) is
non-negative for almost all t€|0, 7).
To arrive at the Hamiltonian interpretation of subordination dynamics, let us
rewrite equation (1) in the form

of'(¢.t) _ OH(C [ 1)

where H(C, f',t)=Cf'(¢,t)p((, t), and the derivative f’ is taken with respect to the
complex variable {. Interpreting the function H (¢, f’,t) as a Hamiltonian we must
write

0 oH !
(4) 8_52_%:_417(470;

formally yet. Equations (3) and (4) constitute the conjugate pair of Hamilton’s
relations, however this requires some additional clearance to give sense to the equa-
tion (4). This equation is just the Léwner—Kufarev equation in ordinary derivatives
= _Cp(<7 t)'

The equation (1) represents a growing evolution of simply connected domains.
Let us consider the reverse process. Given an initial domain Q(0)= (and there-
fore, the initial mapping f(¢,0)=fo(¢)), and a function p(¢,t) with positive real
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part normalized by p(¢,t)=1+4p1{+..., we solve the equation (1) and ask whether
the solution f((,t) represents a subordination chain of simply connected domains.
The initial condition f({,0)=fo({) is not given on the characteristics of the partial
differential equation (1), hence the solution exists and is unique. Assuming s as
a parameter along the characteristics we have
% =1, % =—(p(¢,t) and Z—J; =0,

with the initial conditions #(0)=0, ((0)=z and f({,0)=fo(¢), where z is in U. Ob-
viously, t=s. We still need to give sense to this formalism because the domain
of ¢ is the entire unit disk, however the solutions to the second equation of the
characteristic system range within the unit disk but do not fill it. Therefore, intro-
ducing another letter w in order to distinguish the function w(z,t) from the variable
¢, we arrive at the Cauchy problem for the Léwner—Kufarev equation in ordinary
derivatives for a function (=w(z,t),

) W — (1),

with the initial condition w(z,0)=z. The equation (5) is a non-trivial charac-
teristic equation for (1). Unfortunately, this approach requires the extension of
fo(w™(¢, 1)) into U (w~! denotes the inverse function) because the solution to (1)
is the function f(¢,t) given as fo(w=1(¢,t)), where (=w(z, s) is a solution of the ini-
tial value problem for the characteristic equation (5) (or (4)) that maps U into U.
Therefore, the solution of the initial value problem for the equation (1) may be
non-univalent.

Let A stand for the usual class of all univalent holomorphic functions f(z)=
z+azz?+... in the unit disk. Solutions to the equation (5) are regular univalent
functions w(z,t)=e tz+az(t)z%+... in the unit disk that map U into itself. Con-
versely, every function from the class A can be represented by the limit
(6) f(2) = lim e'w(z,t),

t—o0
where there exists a function p(z,t) with positive real part for almost all ¢>0, such
that w(z,t) is a solution to the equation (4) (see [20, pp. 159-163]). Each function
p(z,t) generates a unique function from the class A. The reciprocal statement is
not true. In general, a function f€A can be determined by different functions p.

From [20, p. 163] it follows that we can guarantee the univalence of the solu-
tions to the Lowner—Kufarev equation in partial derivatives (1) assuming the initial
condition fy(¢) given by the limit (6) with the function p(-,t) chosen to be the
same in the equations (1) and (5). Originally, these arguments have been made by
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Prokhorov and the author in [21]. We remark also that an analogous Hamiltonian
H can also be found in [4].

The Hamiltonian H is linear with respect to the variable f’, therefore, the
Hamiltonian dynamics which is generated by H is trivial and the velocity is con-
stant. In [21] we studied another Hamiltonian system for a finite number of the
coefficients of the function w(z,t) generated by the equation (5). It turns out that
the Hamiltonian system generated by the coefficients is Liouville partially integrable
and the first integrals were obtained and were proved to form a finite-dimensional
grading algebra generated by truncated Kirillov operators [1], [10] and [11] for a rep-
resentation of the Virasoro algebra. However, the Hamiltonian was again linear with
respect to the conjugate system, and we have both systems accelerationless. In order
to describe a non-trivial motion we proceed with the Lagrangian formulation.

3. Lagrangian formulation of the subordination evolution

Let us consider a subordination chain {Q(¢)}7_,, 0€£2(¢), and the time-param-
eter family of the real-valued Green functions G(z,t) of Q(t) with the logarithmic
singularity at 0. If z=f((,t) is the Riemann map from the unit disk U onto (¢),
f/(0,t)=e!, then G(z,t)=—1log|f 1(z,t)|. The unit normal vector n to dQ(t) in
the outward direction can be written as

_¢f'G1)

n=Trcor SIEh

Therefore, the normal velocity v,, of the boundary 9Q(t) at the point f(e?,t) may
be expressed as

f

eiOf/

. ew f/

1]

vy, = Re

/' Re =If'lp(e”, 1),

where the function p(e?,t) was defined in the preceding section. Thus, p(e?,t)=
vn|VG].
The easiest Lagrangian is given by the Dirichlet integral

// IVG|* do.,
D

where do.=|4dzAdz|, locally for any measurable set DCQ(t)\{0}. However, this
functional cannot be defined globally in €2(¢)\{0} because of the parabolic singu-
larity at the origin. To overcome this obstacle we define the energy represented by
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this Lagrangian in the following way. Let Q.(¢t)=Q(t)\{z:|z|<e} for a sufficiently
small e, U.={(:e<|(|<1}. Then the finite limit

(7) —hm<// |VG|2dJZ+27rloga>

exists. Applying the conformal map z=f((,t) and changing variables we arrive at
the classical representation of the energy

£ =E[f] = 2mlog |£(0, )] = 2nt,

as the capacity (or the conformal radius in this case) of 9Q(¢). In other words,
& represents the classical action for the Lagrangian defined by the Dirichlet inte-
gral. This interpretation allows us to get a less trivial Lagrangian description of
subordination dynamics, that in particular, emerges in the Liouville part of the
classical field theory [18] and [24].

The classical field theory studies the extremum of the action functional, and its
critical value is called the classical action. The critical point ¢* satisfies Hamilton’s
principle (or the principle of the least action), i.e., 6S[¢*]=0, which is the Euler—
Lagrange equation for the variational problem defined by the action functional S[¢].
For the action given by the Dirichlet integral the classical action is achieved for the
harmonic ¢* and the principle of the least action leads to the Laplacian equation
A¢p=0 with relevant boundary conditions as above. The Liouville action plays
a key role in two-dimensional gravity and leads to the Liouville equation, a solution
of which is the Poincaré metric of constant negative curvature. This conformal
metric is of a particular interest, because no flat metric satisfies the Einstein field
equation. The conformal symmetry of classical field theory is generated by its
energy-momentum tensor T' whose mode expansion is expressed in terms of the
operators satisfying the commutation relations of the Virasoro algebra. The (2,0)-
component of the energy-momentum tensor in the Liouville theory is given by the
expression T,,=¢.. — +¢? that leads to the classical Schwarz result T,,=Sy(¢) with
the Schwarzian derivative Sy, where f is the ratio of two linearly independent
solutions to the Fuchsian equation w’” + %Tww:O.

In the case of subordination chains our starting point will be the Riemannian
metric ds?=e%(*)|dz|?. In the case of the Liouville theory, the real-valued poten-
tial ¢ satisfies the Liouville equation gozz—le‘p (generally, with certain prescribed
asymptotics which guarantee the uniqueness). Geometrically, this means that the
conformal metric ds? has constant negative curvature —1 on the underlying Rie-
mann surface corresponding to the prescribed singularities. Let us consider the com-
plex Green function W (z,t) whose real part is G(z,t)=log|f1(z,t)|, 2€Q(¢)\0, as
before. We have the representation W(z,t)=—log z+wo(z,t), where wo(z,t) is an
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analytic function in Q(¢). Because of the conformal invariance of the Green function
we have the superposition

(Wof)(g7t):_1ogg7

and the conformally invariant complex velocity field is just

Wzt = —((F )/ F )0,
where (=f"!(z,t) is the inverse to our parametric function f and prime denotes
the complex derivative. Rewriting this relation we get
CQ
I
The velocity field is the conjugation of —W’. In other words the velocity field is
directed along the trajectories of the quadratic differential in the left-hand side
of (8) for each fixed moment ¢. The equality (8) implies that the boundary 9€(t)
is the orthogonal trajectory of the differential (W’(z,t)dz)?, which has a double
pole at the origin. The dependence on t yields that the trajectory structure of this
differential changes in time, and in general, the stream lines are not inherited in
time. These lines are geodesic in the conformal metric |W'(z,t)||dz| generated by
this differential. Let us use the conformal logarithmic metric generated by (8),

(8) (W'(z,1) dz)* =

—1y/[2
d82=|(f_)| |dz|2 |Wl| |dz|2
[f1?
which is intrinsically flat. Unlike the Poincaré metric, the hyperbolic boundary is
not singular for the logarithmic metric whereas the origin is. But it is a parabolic
singularity which can be easily regularized similarly to the Dirichlet integral (7).
The density of this metric satisfies the usual Laplacian equation ¢,z=0 in Q(¢)\ {0},
where ¢(z)=log(|(f _1)'|2/|f‘1|2). The function ¢ possesses the asymptotics

1
and |p,|~—5, asz—0,

~log — EE

|2 |2’

therefore, the finite limit

(9) S=S[p —hm(// 2|2 daz+27710g5>
e—0

exists and is called the logarithmic action.

The construction of the Riemannian metric ds? implies the rotation invariance
instead of the Poincaré group in the classical field theory. Like in the Liouville
theory we have no reason to discard the conformal factor (Weyl rescaling). Another
important fact is that the infinitesimal structure at the boundary is invariant under
the mapping f, i.e., the stream lines within the unit disk are radial, orthogonal
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to the unit circle and remain orthogonal under the conformal map f. In order to
complete the boundary conditions we assign the boundary values ¢(e?’)=uv, to the
potential ¢, where the normal velocity v, is taken at the boundary point f(e?, ).

The logarithmic action (9) represents the reduced area of (t) in the Rieman-
nian metric ds?.

The potential ¢(z) possesses the following geometric meaning. It gives rise to
a vector field Vi, whose projection onto each normal outward vector to the level
line of the Green function G is the curvature of this line, dp/On=7s.

Lemma 1. The Euler—Lagrange equation for the variational problem for the
logarithmic action S[P] is the Laplacian equation Ap=—4mdy(z), 2€Q(t), where
00(2) is the Dirac distribution supported at the origin, where ¢ is taken from the
class of twice differentiable functions in Q(t)\ {0} with the asymptotics p~—log|z|?,
as z—0.

Proof. Let us consider first the integral

siel= [ ol o= J[xewlo ..

where xq_() is the characteristic function of Q. (). Then, due to Green’s theorem,

(10) lim Sclothul-5-10] 2 // xa. () Re¢:u. do.
c

h—0 h
:—1// uA¢ daz—i—l/ u% ds,
2 ) Ja. 2 Joa.) On

in distributional sense for every C*°(C) test function u supported in ©(¢). On the
other hand, we have 9¢/On~—2/¢, as e—0, and u=0 on 9Q(t). Therefore, the

expression (10) tends to
1
——// ulA¢ do, —2mu(0),
2 JJaw)

as €—0, and the latter must vanish, which is equivalent to the Laplacian equation
mentioned in the statement of the lemma. Obviously, the logarithmic term in the
definition of S[¢] does not contribute to the variation. O

The above Dirichlet problem is related to an interesting property of plane
domains discussed in [23]. If w(z) is harmonic in a domain Q and satisfies, on its
boundary, the relation

0%w Ow

25>~ “on’
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then
2
—1 8_ dz?

0z2

is a quadratic differential on €.
A straightforward calculation gives

ey
Pe=" f’(f’+C> f iz,

Hence, the action S can be expressed in terms of the parametric function f as

fl/

e—0

(11) S=8lf]= hm(

da<+27rlog5> +27log | f'(0,¢)],

or adding the logarithmic term into the integral we obtain
1
do¢+2mlog|f'(0,1)).

(12) n=/] <‘ T B

Within the quantum theory of Riemann surfaces the Liouville action is a Kahler po-
tential of the Weil-Petersson metric on the space of deformations (the Teichmiiller
space), see [29] and [30]. We use a flat metric instead. Nevertheless, as we show
further on, there are several common features between smooth subordination evo-
lution and the Liouville theory. In particular, we shall derive the variation of the
logarithmic action § and give connections with a representation of the Virasoro

algebra and the Kéhler geometry on the infinite dimensional manifold Diff S*/S?.

4. Variation of the logarithmic action and the Kahler geometry on
Diff §1/S?

We denote the Lie group of C* sense-preserving diffeomorphisms of the unit
circle S'=0U by Diff S'. Each element of Diff S! is represented as z=¢"*(?) with
an increasing, C* real-valued function ¢(f), such that ¢(6+27)=
#(0)+2m. The Lie algebra for Diff S! is identified with the Lie algebra Vect S!
of smooth (C*°) tangent vector fields to S! with the Poisson—Lie bracket given by

[v1, V2] =1V — a1,

There is no general theory of such infinite-dimensional Lie groups, as the one under
consideration. The interest in this particular case comes first of all from the string
theory where the Virasoro algebra appears as the central extension of Vect S' and
gives the mode expansion for the energy-momentum tensor. The central extension
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of Diff S! is called the Virasoro-Bott group. The entire necessary background for
the construction of the theory of unitary representations of Diff S is found in the
study of Kirillov’s homogeneous Kéhlerian manifold M=Diff S'/S'. The group
Diff ST acts as a group of left translations on the manifold M with the group S!
as a stabilizer. The Kéhlerian geometry of M has been described by Kirillov and
Yuriev in [12]. The manifold M admits several representations, in particular, in
the space of smooth probability measures, a symplectic realization in the space of
quadratic differentials, and an analytic representation used in this paper. Let A
stand for the class of all analytic regular univalent functions f in U normalized by
£(0)=0 and f’(0)=1. The analytic representation of M is based on the class A of
functions from A which being extended onto the closure U of U are supposed to
be smooth on S'. The class A is dense in A in the local uniform topology of U.
There exists a canonical identification of A with M by the conformal welding. As
a consequence, A is a homogeneous space under the left action of Diff S1, see 1,
Theorem 1.4.1], [10], [11], [12] and [13]. As was mentioned in Section 2, see also [28],
a smooth subordination evolution is governed by the Lowner—Kufarev equation (1)
with a function p(¢,t) which may be represented by the Cauchy—Schwarz formula
with the boundary values p(e?,t), such that 4rp€ Vect S*.

Theorem 1. Let z=f((,t) be the parametric function for the subordination
evolution Q(t), t€[0,7), f(¢, t)=e'C+.... Let S[f] stand for the logarithmic action.
Then,

d o 0N 2 A A
dts[f] /0 {Re(l—i—%)} V(ele,t)de—l—/o Re(e? S )v(e,t) df—2m,

where veVect ST, v>0 and fo% v(e?,t) df=4r.

Proof. We start rewriting the expression for S[f] as

// <’f” ¢t) f"(¢ 1)

€ =
¢f'61)

son-an | T ) (5 G oo

Now applying the Léwner-Kufarev representation f=¢f'p(C, ), we get

f1=2Re // (f” )(( +(J;l,/> (C,t)+§p’(c,t)>lda<+2w.

) do¢+2mt,

and therefore,
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In order to apply Green’s theorem, we remove the singularity at the origin by
splitting the integral into two terms as

O f]:2Re(//U€ ...+//|<|<E...)+27r,

where the second term

27 " 10
/ / / / <f ) (holomorphic function)r df dr — 0,
I |<€

as €e—0. Applying Green’s theorem to the first term and taking into account that
p(0,t)=1, we obtain

// ( /S At C_E...d§>—>(—%/51 ...dg_ﬁ>,

as e—0. Thus, we have

d _ o i f” in/, 0, 1
Gsin=re [ (1+e@7>((1+e 7)p< O+ (e >> .

2

or

d _ 27 i f//
Gsl=ox | L

1+e 7

27 "
p(e® 1) do + / Re<1+ei9%) Ree®p' (¥ 1) do
0

27
+/ Im(l—i—ew];f >Imelep'( ,t) do.
0

These equalities are thought of as limiting values making use of the smoothness of f
on the boundary. Let us denote by Jy, J2 and Js, the first, the second and the third
term, respectively, in the latter expression. We have

27 " 2m 0 i
9 A
ng/ Im(l—l—e’ef )Im/ (eﬁp(em,t)dade.
0

f/ et 67‘9)

Obviously,

0 [e*+(¢ B —2(ie™™
%( ‘ —c)‘(em—OQ'

Integrating by parts and applying the Cauchy—Schwarz formula we obtain

" " 171\2
J3=277Re/0 < OJ;,—F@%G (ff—/—<%> >>p(ei0,t)d9.
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Using the representation of the function p((,t) the integral Jo admits the form

27 » f// 2m 267,9 i )
= 1 wl =~ = i )
Jo /0 Re( +e f’) Re/o (e’a—e’9)2p(e ,t) dadf

Changing the order of integration implies that

2 2 " 6 i
Jp = / Re/ Re(1+ of” >(26 (e, t)dadb

f/ et 67’9)
B i i f// 2€i06ia
—1%(3‘/O p( ,If)<‘/0 Re<1+€ fl>md9 da
Integrating by parts we obtain that
2 27 0 | i
. ) 8 0 fll e’L +e
ng/o p(e',t) (Re(—z) ; %Re (1—|— ¢ ) do | da.

The inner integral represents an analytic function by the Cauchy formula (modulo
an imaginary constant). Taking into account the normalization at the origin we get

2m " " 11\2
o (5
Jo=2 Re/o <e f’+6 7 7 p(e*,t) da=Js.

Summing up J;+J2+J3, and taking v=4mp into account, concludes the proof. [

In the particular case of the Laplacian growth evolution this theorem has been
proved in [8, Theorem 7.4.10]. The normal velocity of the boundary is equal to the
gradient of the Green function and v(e®,t)=2/|f"(e?,1)|2.

In two-dimensional conformal field theories [6], the algebra of the energy-mo-
mentum tensor is deformed by a central extension due to the conformal anomaly,
and becomes the Virasoro algebra. The Virasoro algebra is spanned by the elements
er=C1"*0, (=€, k€Z, and ¢, where c is a real number, called the central charge.
The commutator is defined by

&
[em; en]Vir = (n_m)em+n+ Em(mQ - 1)5n,—m; [67 ek] =0.

The Virasoro algebra Vir can be realized as a central extension Vect S @R of Vect S!
by defining
c
[¢8+CCE, wa_‘_Cb]Vir = (¢’l/)l - ¢I¢)a+ Ew(¢7 ¢)7
(whereas [, 1] =@’ —¢'1p), where the bilinear 2-form w(¢,v) on Vect S! is given
by

27

w0y == [ @+,
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and a and b are real numbers. This form defines the Gelfand—Fuchs cocycle on
Vect S* and satisfies the Jacobi identity. The factor of % is merely a matter of
convention. The manifold M being considered as a realization A admits affine
coordinates {c;}?2,, where ¢y, is the kth coefficient of a univalent functions f€ A.
Due to de Branges’ theorem [5], M is a bounded open subset of

{{er ey i lek| < k+e for k=2,3,...}.

The Goluzin—Schiffer variational formula lifts the actions from the Lie algebra
Vect S* onto A. Let f€A and let v(e?) be a O™ real-valued function in 6€ (0, 27]
from Vect S' making an infinitesimal action as 6+—6+7v(e?). Let us consider
a variation of f given by

2 / 2
(13) Lo =8 [ (M) et
T Jar\ f(w) ) fw)=f(C) w

Kirillov and Yuriev [12] and [13] have established that the variations L,[f]({) are
closed with respect to the commutator and the induced Lie algebra is the same
as Vect S1. Moreover, Kirillov’s result [10] states that there is an exponential map
Vect S'—Diff S! such that the subgroup S' coincides with the stabilizer of the map
f(¢Q)=( from A.

It is convenient [11] to extend (13) by complex linearity to C Vect S*— Vect A.
Taking vy =—ie**?, k>0, from the basis of C Vect S*, we obtain the expressions for
Lp=0,f, fe A~ M (see formula (13)), as

Lo=(f'(¢)—f(¢) and Ly=¢""*f for k>0.

The computation of Ly for k<0 is more difficult because of the poles of the
integrand. For example,

!
L= f/—l_ZCQf and L_o= fz— % —3co+ (C%—4Cg)f
(see, e.g., [11]).

In general, we have real vector fields in Vect S'. The computation of Lz must
be carried out with respect to the basis 1,e**¥ that leads also to Lj; with k£<0.
However, we deal with holomorphic functions and Lj with k>0 are to be treated
as complex vector fields (see the discussions in [11, p. 738] and [1, pp. 632-634]).

In terms of the coordinates {cx}2°, on M,

o0 o0
L0:chn8n and Lk:f)‘k—l—Z(n—i—l)cn&‘km for k>0,
n=1

n=1

where 0, =0/0¢k1.
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Neretin [17] introduced the sequence of polynomials Py, in the coordinates
{ck}72 5 on M by the following recurrent relations

Lin(Py) = (n+m)Pn,m+1—02m(m2— D)opm, Po=P =0, Pu(0)=0,

where the central charge c is fixed. This gives, for example, P,=c/2(c3—c3), P3=
2¢(cy—2cacz3+c3). In general, the polynomials Py, are homogeneous with respect to
rotations of the function f. It is worth to mention that estimates of the absolute
value of these polynomials have been a subject of investigations in the theory of
univalent functions for a long time, e.g., for |Ps| we have |c3—c3|<1 (Bieberbach
1916 [3]), for estimates of | P3| see [7], [15], [25] and [26]. For the Neretin polynomials
one can construct the generatrix function

ZP &= 5,(0)

where Sf(C) is the Schwarzian derivative of f. Let v€C Vect S' and 19 be the
associated right-invariant tangent vector field defined at g€Diff S'. For the basis
vp=—ie**?09, one constructs the corresponding associated right-invariant basis vy
By {¢_k }x we denote the dual basis of 1-forms such that the value of each form on
the vector v} is given as

(’L/)k, Vygz) = 5k+n,0-

Let us construct the 1-form ¥ on Diff S* by
(oo}
U= (Prom)y,
k=1

where 7 denotes the natural projection Diff S1— M. This form appeared in [1]
and [2] in the context of the construction of a unitarizing probability measure for
the Neretin representation of M. It is invariant under the left action of St. If fe A
represents g and v€Vect S!, then the value of the form ¥ on the vector v is

2
(\I/,y)f:/ e* 01 (') S} df),
0

see [1] and [2]. So the variation of the logarithmic action given in Theorem 1
becomes

d 2 i £\ 72 )
ES[f]:/O {Re(l—i—eff )] v(e? t) dd+Re(W, v) s —27.
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Taking into account the definition of the mean curvature (z,t) of the boundary of
Q(t), and the normal velocity v, we conclude that

iS[f]:élw/ (5¢v,)?|dz|+Re(¥, v) ; —27.
dt 20(t)
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