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Normality and fixed-points 
of meromorphic functions 

J i a n m i n g  Chang,  Mingl iang  Fang  and  Lawrence  Za lcman  

Abs t r ac t .  Let 5 t" be families of meromorphic functions in a domain D, and let R be a 
rational function whose degree is at least 3. If, for any f c~ ' ,  the composite function R(f) has 
no fixed-point in D, then 5 is normal in D. The number 3 is best possible. A new and much 
simplified proof of a result of Pang and Zalcman concerning normality and shared values is also 
given. 

1. I n t r o d u c t i o n  

Let  D be  a d o m a i n  in C and  j r  a fami ly  of  meromorph ic  funct ions  defined on D. 
o ~  j r  j r  is sa id  to  be no rma l  in D,  in the  sense of  Montel .  if each sequence {f~},~=l C 

has  a subsequence  {fnj }~=1 which converges spher ica l ly  local ly  un i formly  in D,  to 

a m e r o m o r p h i c  funct ion or oc (see [6], [10] and  [14]). 

A f ixed-point  of a meromorph ic  funct ion  f is a po in t  z a t  which f ( z )=z .  In 

1952, Rosenb loom [9] proved the  following results .  

T h e o r e m  A .  Let f be a transcendental entire function and let k ~ N ,  k>_2. 
Then the k th iterate fk has infinitely many fixed-points. 

Here,  f 2 = f ( f )  and  fk is defined induc t ive ly  v ia  f k=f ( f k_ l ) ,  k = 3 , 4 ,  . . . .  

T h e o r e m  B.  Let P be a polynomial with d e g P > 2 ,  and let f be a transcen- 
dental entire function. Then the composite function P( f )  has infinitely many fixed- 
points. 

Ess~n and  Wu [1] proved a co r respond ing  no rma l i t y  c r i te r ion  for T h e o r e m  A, 

t he reby  answer ing  a ques t ion  of Yang [13, P ro b l e m 8]. 

T h e o r e m  C.  Let jr be a family of analytic functions on a domain D. If, for 
any f Ejr, there exists k=k ( f )>  l such that the k th iterate fk has no fixed-point in 
D, then jr is normal in D. 

Fang  and  Yuan [3] p roved  a co r respond ing  no rma l i t y  c r i te r ion  for T h e o r e m  B. 
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T h e o r e m  D. Let Jr be a family of analytic functions on a domain D, and let 
P be a polynomial with degP>_2. If, for any rE jr, the composite function P( f )  
has no fixed-point, then jr is normal in D. 

Let R(z)=P1 (z)/P2(z), where P1 and P2 are relatively prime polynomials. In 
this paper, max{deg P1, deg P2} is called the degree of R and denoted by deg R. 

Gross and Osgood [5] extended Theorem B to meromorphic functions. 

T h e o r e m  E. Let R be a rational function with degR 3, and let f be a tran- 
scendental meromorphic function. Then the composite function R( f )  has infinitely 
many fixed-points. 

It is natural to ask whether there exists a corresponding normality criterion for 
Theorem E. In this paper, using the method of Yang [12], we give an affirmative 
answer to this question. 

T h e o r e m  1. Let jr be a family of meromorphic functions on a domain D, and 
let R be a rational function with degR_>3. If, for any f Ejr, the composite function 
R( f ) has no fixed-point in D, then jr is normal in D. 

Remark 1. If j r  is a family of analytic functions, then we need only d e g R > 2  
in Theorem 1. In other words, Theorem D remains valid if the polynomial P is 
replaced by a rational function R with deg R_> 2. 

Remark 2. The following two examples show that deg R_>3 is best possible in 
Theorem 1. 

Example 1. Let 

(-1F j 
z 

COS V ~ j=0 

f ( z ) =  (sinv/_~)/x/~ ~ ( -1)  j z j 

j=0  

and let jr={fn}n=l,~ where 
i 

fn(z) = ~ f(nz),  

Let D={z:]z]<l}, and let R(z)=z 2. Then 

R(fn(z) )= 1 1-(sinx/~-z) 2 -  - = 
n [ (sin v/-~ ) / v / -~  ] 2 

n = l . 2 , . . . .  

1 

n[(sin 
On the other hand, the family j r  clearly fails to be equicontinuous at O, as f~ has 
both zeros and poles in any neighborhood of 0 for large n. Thus j r  is not normal 
at O. 
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Example 2. Let D = { z : l z - l [ < l } ,  and let 

f ( z )  = 

(-1) J 
(sin v~) /v / -~  , :  ~ z  

cos 4 - /  ( -  1)J ' 

j=O ~ 

and r  Let J r={fn}~_~,  where 

f~ (z) = ix/~ ~p(z) f (n(z-  1)), 

and let R(z) = (z 2 + 1)/(z  2 - 1). Then 

z + l  

n---- 1,2, . . . ,  

R(fn(z))=z- {sin  

On the other hand, just as before, Jr fails to be normal at z0 = 1. 

In Example 1, Jr  is not normal at zo and R(z)~zo  has a finite solution, while 
in Example 2, Jr is not normal at z0 and R(z)=zo has no finite solution. 

Let f and g be meromorphic functions on a (fixed) domain D in C, and let 
a and b be complex numbers. If  g(z)=b whenever f ( z )=a ,  we write f ( z ) = a  ~ 
g(z)=b. In a different notation, we have E l ( a )CEg(b ) ,  where 

Eh(c) = h -~ (c)~D = { z e D: h(z) = c}. 

If f ( z ) = a  ~ g(z)=b and g(z)=b ~ f ( z )=a,  we write f ( z ) = a  r g(z)=b; in this 
case E / ( a ) = E g ( b ) .  If f ( z ) = a  ~=~ g(z)=a, we say that  f and g share the value a 
in D. 

Now let ~" be a family of meromorphic functions on D. Schwick [11] was the first 
to draw a connection between values shared by functions in Jr  and their derivatives 
and the normality of the family Jr. Specifically, he showed that  if there exist three 

distinct complex numbers al ,  a2 and a3 such that  f and f '  share aj ( j=l ,  2, 3) on 
D for each f E j r ,  then Jr is a normal family on D. Pang and Zalcman [7] extended 
this result as follows. 

T h e o r e m  F. Let jr be a family of meromorphic functions on a domain D, 
and let a, b, c, and d be complex numbers such that c~a and d~b. If, for each 
/ E  Jr, f ( z ) = a  r f ' ( z )=b  and f ( z ) = c  r f ' ( z )=d ,  then 3= is normal in D. 

Choosing a=b, c=d, we see tha t  Schwick's result actually holds when f and f '  
share two (rather than three) finite values in D. 

In this paper, we improve Theorem F as follows. 
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T h e o r e m  2. Let jr be a family of meromorphic functions on a domain D; and 
let a, b, c, and d be complex numbers such that b~O, c~a, and dr If, for each 
fEjr ,  f ( z )=a ~=~ f ' (z)=b and f ( z )=c  ~ f ' (z)=d,  then jr is normal in D. 

Theorem F is an instant corollary of Theorem 2, since not both b and d can be 
zero. 

Example 3. ([41) Let 

nz) 
f n ( Z ) :  (nz)2_ 1, n = l , 2 , . . . ,  

and let jr={fn}n=l,~ D={z:[z[<I}. Then 

-2n2z 
f : (z)  -- [(nz)2-1] 2' 

Obviously, if f E j r ,  f and f l  vanish only at 0; also, f # l .  Thus we have f ( z ) = 0  4=> 
f ' ( z ) = 0  and f ( z ) = l  ~ f ' ( z )=d for any d (since f # l ) .  However, j r  is not normal 
on D. This shows that  the condition br is necessary in Theorem 2. 

For families of analytic functions, b can be allowed to be zero (see [2]). 

Acknowledgments. Jianming Chang would like to express his gratitude to his 
adviser Prof. Huaihui Chen for his many valuable suggestions. The research of Ming- 
liang Fang was supported by the NNSF of China (Grant No. 10471065), the SRF for 
ROCS, SEM., the Presidential Foundation of South China Agricultural University. 
The research of Lawrence Zalcman was supported by the German Israeli Foundation 
for Scientific Research and Development, G.I.F. (Grant No. G-643-117.6/1999). 

2. A useful  l e m m a  

The proofs of Theorems 1 and 2 are based on the following result of Pang and 
Zalcman. 

L e m m a  1. ([8, Lemma 2]) Let jr be a family of functions meromorphic on 
the unit disc, all of whose zeros have multiplicity at least k, and suppose that there 
exists A>>_I such that If(k)(z)l<A whenever f ( z )=0 .  Then if jr is not normal, 
there exist, for each 0 < a < k ,  

(a) a number 0 < r < l ;  
(b) points zn, Iznl<r; 
(c) functions fn e jr; 
(d) positive numbers Qn-+O, 
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such that Q ~  f,~(zn+Qn()=g~(()-+g(() locally uniformly with respect to the spheri- 
cal metric, where g is a nonconstant meromorphic function on C, all of whose zeros 
have multiplicity at least k, such that g#(~)<g#(O)=kA+ l. In particular, g has 
order at most two; and, in case g is an entire function, it is of exponential type. 

3. P r o o f  o f  T h e o r e m  1 

Let zoED. We show that  Y is normal at Zo. We consider two cases. 

Case 1. R ( z ) - z o  has at least three finite distinct zeros a, b and c. Assume 
that  5 r is not normal at z0. Then by Lemma 1, there exist points zn-+zo, positive 
numbers pn--+0, and functions fn C~" such that  

(3.1) g~ (~) = f ,  (z~ + ~)~) --+ g(~) 

locally uniformly with respect to the spherical metric, where g is a nonconstant 
meromorphic function on C. 

Thus we have 

(3.2) R(gn (~)) - (Zn + ~n~) --4 R(g(~) ) -  z0, 

the convergence being uniform on compact  subsets of C disjoint from the poles of 
g and R(g). 

Since R(gn (~)) - (zn + Qn~) = R ( f ~  (z,~ + ~)n~)) - (z~ + Q~)  #0,  by Hurwitz 's  the- 
orem, either R(g(~))-zo~O, or R(g(r  If R(g(())-zo=-O, then g is con- 
stant.  If  R(g(~))-zo#O,  then g (~ )#a ,  b, c; so by Picard 's  theorem, g is again con- 
stant. Thus, whichever alternative holds, we obtain a contradiction. Hence in 
Case 1, ~- is normal at zo. 

Case 2. R ( z ) - z o  has at most two distinct finite zeros. We claim that  there 
exists a positive number 50 such that  9 v is normal in D ~ ~o (z0)= {z :0 < Iz-zol <60}. 
Indeed, by the argument of Case 1, we need only prove that  there exists a positive 

number 50 such tha t  for any Zl E D~o (Zo), R ( z ) - Z l  has at least three distinct finite 
zeros. 

Let S={zEC:R' (z )=O}U{cc}  and E = R ( S ) = { R ( z ) : z E S } .  Then E is a finite 
set. Hence there exists a positive number 50 such that  

(3.3) D ~ (zo)NE = O. 50 

Thus for any zlED~o(zo) , R ( z ) - z l  has no multiple zeros. Hence R ( z ) - z l  has at 
least 3 (~deg  R) finite distinct zeros. The claim is proved. 
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Next we consider three subcases. 

Case 2.1. R(z)-zo has at least one multiple finite zero z=a. Thus there exists 
a positive number 51 < 50 such that  

(3.4) 

and 

(3.5) 

R({z: Iz-al < 6,}) c (z: Iz-z01 < &}, 

R(z) = z0 +TVk(z). 

where k>2  is an integer, r # 0  is a constant, and z~(z) is a univalent analytic function 
in Oh1 (a)={z: ]z-a] <61 } with normalization ~p(a)=0, and r  1. 

Set 

(3.6) ~ --- { f (R)  : f e )t-}. 

Then 

(i) G is normal in O~(a)={z:O<lz-al<61}; 
(ii) for any zCDa~ (a) and gEG, 

(3.7) R(g(z) ) # R(z): 

(iii) G is normal at a if and only if ~" is normal at z0. 
Let r /be  a positive number such that 

~-1  (Dn(0)) C D, h (a). 

Choose a positive number 52 < 61 such that  

r (a)) C D,(0) .  

Thus, for any zED~2(a ) and any gEG, we have 

g(z) 7s162162 j = 0 , 1  .... , k - l ,  

where wj =-e 27rij/k. Indeed, suppose there exist z c D~ 2 (a) and 0 < j  < k -  1 satisfying 

g(z) = r  

Since r we have ~(z)CDn(O) and so also wj~(z)EDo(O). But then 
g(z)=r Thus ~(g(z))=wj~(z), whence [r k. 
But then, by (3.5), R(g(z))=R(z), which contradicts (3.7). 
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I 
max 

We have shown that  

g(z)#~z-l(wjr zCD~2(a), j = 0 , 1 , . . . , k - 1 .  

In particular, for any zED~2(a), we have 

g ( z ) # z  and g(z)#~p-l(wlr 

Set ?- /={g- id :gEG},  where id denotes the identity mapping. Then 
(iv) 7-/is normal in D~2(a); 
(v) for any z E D~ 2 (a) and h E 74, 

h(z)#O and h(z)#g,-l(Wl~P(z))-z; 

(vi) 7 / i s  normal at a if and only if ~ is normal at a. 
Next we prove that  7-/is normal at z=a. 
Let {hj}j~ 1 be a sequence in ?-/; then there exists a subsequence of {hj}~= 1 

(which, without loss of generality, we may again denote by {hi }~-1) which converges 
locally spherically uniformly on D ~ ~2 (a) to a function h. We consider two subcases. 

Case 2.1.1. h~0 .  Then, by Hurwitz's theorem, h # 0  in D~(a). Therefore, 

rain h(a+ ~ e ~~ 2 )l > A > 0  
0<0<2~ 

for some constant A. 
Hence for sufficiently large j ,  

min hj(a+�89176189 
0_<O_<2~r 

Since hj is meromorphie and h i # 0  in D~ (a), 1~hi is holomorphic in D~ 2 (a). Thus 
1~hi is holomorphic in D~2/2(a)={z:lz-a I 1 _< ~ 52 }, and 

2 
<~- 

By the maximum principle, we conclude that 

SO 

1 2 
max - -  < 

Iz-al<_*2/2 ]hj(z)] A' 

A 
rain Ihj(z)[ > > O. 
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Hence there exists a subsequence o f  {hj}~= 1 which converges locally spherically 
uniformly in D62/2(a ). 

Case 2.1.2. h-O. Then {hj}~L 1 converges locally uniformly to 0 in D~:(a). 
oc , ec ~2 Thus {r and {r also converge locally uniformly to 0 in D ~ (a), where 

hi(z) ~ 1. (3.8) ~j (z)  = ~_~ (~ r 

Hence, denoting by N(r, a. f) the nmnber of poles of f in D~(a), we have by the 
argument principle for sufficiently large j, 

52 1 1 

Thus 
a ,  1 

It follows by (3.8) that  for sufficiently large j, 

N ( ~ , a , r  = N ( ~ , a , f ~ J - 1 )  = N ( ~ , a :  r =O" 

Thus ~j has no pole in D~2/2(a ) for sufficiently large j ,  and so neither does hi. 
Hence there exists a subsequence of {hi}~= 1 which converges locally spherically 
uniformly in D52/2(a ). Thus 7 / i s  normal at a. By (iii)-(vi), ~ is normal at z0. 

Case 2.2. R(z)-zo has only finite simple zeros and has at least one finite zero. 
Then either 

z - - a  
R(z) = zo+ p, (z----'-)' (3.9) 

o r  

(3.10) R ( z )  = z0~ ( ~ - a ) ( z - b )  p~(z )  ' 

where P1 is a polynomial with deg P1 >3 and a and b are distinct finite values which 
are not zeros of P1. 

Since R(f(z)) ~z, zC D& (Zo), 

(3.11) f(zo) r ~c. 

As in Case 2.1, there exists a positive number 53 such that 
(vii) R is a univalent analytic function in D53(a)={z:]z-a]<~3); 
(viii) G is normal in V2~(a)={z:O<Jz-at<~3}: 
(ix) ~ is normal at a if and only if $" is normal at z0; 
(x) for any zCDs3(a) and gE~,  R(g(z))~R(z), and g(a)=f(R(a))=f(zo)#Cc. 
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Now we consider two subcases. 

Case 2.2.1. R has the form (3.9). Then by (x), we have 

(3.12) (z-a)Pl(g(z))-(g(z)-a)P1 (z) # 0, z �9 D~3(a ). 

Let P l (Z)=~P=o &jzJ with p_>3 and Ape0. Then 

(3 .13)  

P 

(z-a)P1 (w)- (w-a)P1 (z) = (z-a) E )UwJ - (a;-a)P1 (z) 
j = O  

P 

= (z-a) E Ai((a~-z)+z)J -(z-a)Pl(z) 
j=O 

-(~-z)Pl(z) 
P J )1 -- (z-a/[E Z 

L j = 0  t = 0  J 

-(w-z)Pl(z) 

=(w-z)[(z-a) E Aj E Ctzj- tOM-z) t - l -gl (z)  
j = l  t = l  

where Ct=j!/t!(j-t)! and Qs (s=O, 1, ... , p - 1 )  are polynomials. In particular, 

Qo(z) = (z-a)P~(z)-Pl(z), Qp-l(z) = Ap(z-a) ,  

and Q0 (z) ~0,  z E D~ 4 (a), where 54 < 53 is a positive number. 
By (3.12) and (3.13), we have 

p - 1  

(3.14) g(z)~z, and EQs(z)(g(z)-z)Sr 
s=O 

Let 7/={g-id:gEG}. Then 
(xi) 7/ is normal in D ~ 
(xii) 7 / i s  normal at a if and only if ~ is normal at a: 
(xiii) for any zcD~4(a), and hE'/-/, 
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(3.15) h(z)r ~ h ( Z ) = E ~ - t Q ~ ( z ) h ( z ) ~ - I  p } and h(a)=g(a)-ar  
Qo(z) 

Using the  same a rgumen t  as in Case 2.1, one can prove t h a t  7-/is no rma l  at  a. We 

omi t  the  detai ls .  I t  follows t h a t  .7- is no rma l  at  zo. 

Case 2.2.2. R has  the  form (3.10). Then  

(w-a)(w-b) (z -a)(z -b)  = (w-a)(w-b)Pl(z) - (z-a)(z-b)Pl(w)  
Pl(w) P~(z) P~(w)Pl(z) ' 

where  Pl(Z)=~zk-[-elzk-l-{-...7t-Ck with k_>3 and  A r  We have 

(z - a ) ( z  - b)P1 (w) - (w - a)(w - b)P1 (z) 

= (z-a)(z-b)Pl(Z+W-z)-[(w-z)+(z-a)][(~z-z)+(z-b)lPl(z) 

k p(1 j) (z) (~_ z)J 
= ( z - a ) ( z - b ) ~  J! 

j=0 

-[(~-z) ~+(2z-a-b)(~-z)+(z-a)(z-b)]p~(z) 
k p(lj)(z) 

= (z-a)(z-b) E j! (w-z)J -Pl(z)(w-z)2-Pl(Z)(2z-a-b)(w-z) 
j = l  

= (w-z) ((z-a)(z-b)P~(z)- (2z-a-b)P1 (z) 

k P~J)(z) 
+[2(z-a)(z-b)P;'(z)-Pl(z)](w-z)+(z-a)(z-b)j~=3 j, (w-z) 3-1) 

k 

= (~-z) ~ Qj(z)(w-z) j-~, 
j = l  

where  Q1, Q2, . . . ,  Qk are  po lynomia ls .  In pa r t i cu la r ,  

Ql(z) = (z-a)(z-b)P~ (z)-(2z-a-b)Pl (z), 

Q l ( Z ) ~ 0 ,  zcD~(a) for sufficiently smal l  & and  Qk(z)=A(z--a)(z--b). T h e  same  

a r g u m e n t  as in Case 2.2.1 then  shows t h a t  ~" is no rma l  at  z0. 

Case 2.3. R(z)-zo has no finite zero. Thus  R has  the  form 

(3.16) 1 
R(z) = Zo § P(z)' 
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where P(z) is a polynomial with deg P > 3 .  
Now for any fE~" and zEDho(zo), R( f ( z ) ) r  It follows that  f (zo)r and 

( z - z o ) P ( f ( z ) ) -  1#0. Hence 

1 
(3.17) g:(z)  = ( z - z o ) P ( f ( z ) ) - I  

is an analytic function in Dao(Zo). Since f(zo)~=oc, we have 

(3.18) gi(zo) = -1. 

Since 5 r is normal in D~0 (z0), for any {fn}~=l C by, there exists a subsequence 
of {f,~}~=l (which we again denote by {f~}~=~) which converges locally uniformly 
with respect to the spherical metric either to c)c or to a function g: meromorphic in 

D~ o (~o). 
If f~--~cx~ in D~o(zo), then (z-zo)P(f,~)--+cx~ in D~o(ZO). Hence by (3.17), 

g/~(z)-+O in D~o(zo). Since g e.~ is analytic, the maximum principle shows that  
gy~ ( z ) --+ 0 in Dh~ (zo). Hence gy~ (zo) --+ 0, which contradicts gy. (zo) = - 1. 

Hence f n - - ~  in D~o (Zo). Obviously, we have 

(3.19) 

in D~o (zo). Thus 

(3.2o) 

(Z-zo)P(f,~(z)) ~ (z -zo)P(~(z))  

1 
g:n (z) ~ ( z - z o ) P ( ~ ( z ) ) -  1 = G(z)  

in D'~o(zo ). Since gy,~(z) is analytic, either G(z)=-~ or G is analytic in D ~ 5o(ZO)- 
If G~cx~, then (Z - zo )P(~(z ) ) - l=O in D ~ (zo). Hence zo is a simple pole of 50 

P(~) .  But this is impossible, since deg/9>1. 
Hence G is analytic in D~o (zo). Thus, by the maximum principle, we have 

(3.21) 9:o (z) -~ c(z)  

in Dao(ZO). Hence G is analytic in Dho(zo), and so zb is meromorphic in Dho(zo). 
By (3.17) and (321), 

(3.22) (~- zo)e(y,~(~) ) --+ ( z -  ~o)P(~(z)) 

in Dho (zo). Since f~ (Zo) # oc, we have ~p (zo) # co, for otherwise, by (3.22), we should 
have 0=~c. Thus ~(z) is analytic on Dh~(Zo), (55<50). Hence by (3.22), for suffi- 
ciently large n, f~ is analytic in D5~ (zo). Thus, by the maximum principle, f~--+~b 
in Dhs (zo). Hence ~- is normal at Zo. 

Thus ~" is normal in D. The proof of Theorem 1 is complete. 
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4. P r o o f  o f  T h e o r e m  2 

We may assume that  D = A ,  the unit disc. Suppose that ~- is not normal 
on A. Then by Lemma 1, we can find fnEb r ,  znCA, and •n-+0 § such that gn(~)= 
Q: 1 [fn (Zn + 0n~) -- C] converges locally uniformly with respect to the spherical metric 
to a nonconstant meromorphic function g on C, which satisfies g#(~)_<g#(0)= 

Idl+2. 
We claim 
(i) g(~)=0 ==> g'(~)=d; 
(ii) g'#b; 
(iii) g#cx~ on C. 
Suppose that  g(~o)--0. Then by Hurwitz's theorem, there exist ~n-+~0, such 

that  (for n sufficiently large) 

gn(~n) = ~On 1 [f.(z~ + O.~.)-c] = O. 

Thus fn(Zn+On~n)=C. Since fn(~)=c ~ f:(~)=d, we have 

Hence g'(@)=limn__,~g'~(~,~)=d. Thus g(;)=O ~ g'(()- -d .  This proves (i). 
Next we prove (ii). Suppose that g'((o)=b. Then g((0)#~c.  Further, g '(~)~b; 

for otherwise, g ( l ) = b ( ~ - l l ) ,  which is inconsistent with (i). By Hurwitz's theorem, 
there exist ~--+(0, such that (for n sufficiently large) f~(z,~+gnin)=g~,(~n)=b. 
It follows that fn(Zn+~n~n)=a, SO that gn(~n)=[f,(Zn+Qn~n)-c]/On=(a-c)/Qn. 
Thus g(~0)=l imn_~gn((~)=~c ,  a contradiction. It follows that  g'r which is (ii). 

Now we prove (iii). Suppose that  g(@)=~c.  Since g~c,  there exists a closed 
disc K={(:]~-~0l_<5} on which 1/g and 1/gn are holomorphic (for n sufficiently 
large) and 1/gn--+l/g uniformly. Hence. 1/gn(()-O,,/(a-c)-+l/g(() uniformly 
on K.  Let the multiplicity of the zero of 1/g at ~o be m. Thus (1/g)(m)((0)#0. 
Since 1/g is nonconstant, it follows from Hurwitz's theorem that there exists a 
positive number a l (<5)  such that for every sufficiently large n, the equation 

(4.1) 1 On = 0  
gn(~) a - c  

has exactly m solutions with due count of multiplicity in D6~ (@). Denote these 

solutions by {~J~}j~--1; then l im~_~  ~n=~0 for l<_j<m. Now f~(Zn+Qn~j~)--C= 
a--c, i.e., fn(Zn+Qn~jn)=a. Thus g~((j,~)=f~(zn+Q,~(j,~)=b. It follows that 

( n l ~ ) ' r  g~(~jn)-g~(~Jn) bo~ (4.2) (a_c)2 # 0 ,  j = 1 , 2  .... ,m. 
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Thus 

(4.3) ~jn#(kn,  l < _ j < k < m .  

Hence 

(4.4) ( g _ _ ~ )  q bo~ ,1 ' ( a - c F  

has at least m distinct zeros in D~1(r ) which tend to ~0 as n--~c.  By Hurwitz's 
theorem, (0 is a zero of ( l /g) '  with multiplicity at least m: and thus ( l /g)  (m) (C0)=0, 
a contradiction. This proves (iii). 

It follows that  g is an entire function and is therefore of exponential type. By 
(ii), we have 

(4.5) g'(~) =b+e m;+s, 

so that  

eA<+B 
(4.6) g(~) = b ( + C +  A ' 

as long as A=fi0, where A, B and C are constants. 
We consider two cases. 

Case 1. Ar Let g(@)=0. Then by (4.6), 

cA@+B 
b~0 + C +  - -  = O. 

A 

so by (4.5) and (i), we have 

Hence 

b+e n<~ B = d. 

= r - ~  

Thus g(~)=0 has the unique solution ~=~0; but it is evident from (4.6) that  g(~)=0 
has infinitely many solutions. 

Case 2. A=0. Then by (4.5) and (i), g'(~)=-d, so g(~)=d(ff-~l) .  Thus we 
have 

g# (O) -  [g'(O)l _<]g'(O)l=ldl, 
l+lg(O)l 2 

so that  g# (0) <[d[ + 2, a contradiction. 
Hence ~- is normal in D. The theorem is proved. 
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