Ark. Mat., 42 (2004), 353-362
(© 2004 by Institut Mittag-Leffler. All rights reserved

An explicit inversion formula
for the exponential Radon
transform using data from 180°

Hans Rullgard

Abstract. We derive a direct inversion formula for the exponential Radon transform. Our
formula requires only the values of the transform over an 180° range of angles. It is an explicit
formula, except that it involves a holomorphic function for which an explicit expression has not
been found. In practice, this function can be approximated by an easily computed polynomial of
rather low degree.

1. Introduction

The set of all oriented lines in the plane can be identified with the space ' xR
by associating the pair (0,s)€S' xR with the line L(6,s)={zcR?;z-0=s}. A
parameterization of this line is then given by the mapping t— s6+4t0+, where - is
obtained by rotating 8 counterclockwise through a right angle.

Let f be a smooth, compactly supported function in the plane R?. The Radon
transform of f is the function Rf on S! xR defined so that Rf(#, s) is the integral
of f along the line L(#,s). If u is a real number, the exponential Radon transform
R, f is defined by the weighted integral

(1) R,f(0,s) :/jo f(s04-t61)er dt.

Note that the ordinary Radon transform is obtained as a special case of the expo-
nential Radon transform when p=0.

Both the Radon transform and the exponential Radon transform, as well as
the still more general attenuated Radon transform, arise in applications to medical
imaging, see [2]. It is then of interest to invert the transform, that is to determine the
function f from measurements of its transform. For the ordinary Radon transform,
an explicit inversion formula was found by J. Radon in 1917, [6], and a generalization
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to the exponential Radon transform was derived by O. Tretiak and C. Metz in
1980, [7]. A further generalization to the attenuated Radon transform was recently
discovered by R. Novikov, see [5] and [3]. An iterative algorithm for inversion of
the exponential Radon transform, which only requires R, f(#, s) to be known for 6
on half of the unit circle has been published by F. Noo and J. M. Wagner, [4].

The goal of this paper is to find an explicit inversion formula, solving the same
problem as the algorithm of Noo and Wagner. More precisely, we consider the
following problem.

Problem. Let DCR be a compact set, let p be a real number, and let S1=
{#€S1;6, >0} be the right half of the unit circle. Find an explicit formula for
computing f, given the values of R, f on St xR, where f is any smooth function
with supp fCD.

We will present an essentially explicit formula meeting the requirements of this
problem. For the purpose of numerical computations it is not clear that this formula
offers any advantages over the algorithm given in [4]. We hope that nevertheless an
explicit inversion formula might be of some interest.

2. Statement of results

The adjoint of the exponential Radon transform is known as the dual Radon
transform and is denoted Rﬁ. It takes functions on S xR to functions on R? and
is given by the formula

(2) Rig(w):/glg(ﬁ,xﬂ)e“xﬁ do,

where df denotes arc length measure on the unit circle. Computation of Rflg is
also known as backprojection. The first step in our inversion formula is to compute
Rﬂ,ﬂg, where g=0R,, f/ds on S xR and 0 on the other half of S* xR.

Theorem 1. If feC3(R?), then

cosh pt

dt,

(3) / %(a,x.e))e—wi d9:2/ fartt, 2)
Jst  OS oo

where the singularity at t=0 in the integral on the right-hand side is treated as a
principal value.

Let ch,, denote the distribution

~ coshput

chy.(t) "
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with a principal value at the origin. (Later, we will also use ch, to denote the
meromorphic function defined by the same expression.) The next step is to find a
compactly supported distribution v such that the convolution wxch, restricted to a
given compact set is a point mass oy at the origin. This is transformed into a problem
about functions of one complex variable by means of the following definitions.

Let ¢ be a function, holomorphic in the whole complex plane except on some
subset of the real line. Define B,y and B_¢ to be the boundary values of ¢ on the
real line from above and from below

(4) Bo(t) = lim p(ttie)

provided that these limits exist as distributions, and let Byny=B,p+B_p and
Bap=B.¢—B_¢.

Furthermore, if ¢ and v are holomorphic outside some compact set in the
complex plane, define an entire function [p, ] by the formula

1
27

(5) o ](2) = /F SOz () de,

where I is a closed curve, depending on z, so large that the integrand is holomorphic

in the unbounded component of C~.T.

Theorem 2. Let r<R be positive numbers, and let F' be a function holomor-
phic in C~[-R, R]. If

1

(6) BEF(t):—%%(t) for |t|<r
and
(7 [ch,, F1=0,

then u=BaF satisfies 2(uxch,)(t)=0dg(t) for |t|<r.

Finally, we show that it is possible to find functions F' satisfying the hypothesis
of Theorem 2. See Section 4 for some remarks on the computation of F.

Theorem 3. Let w(o) be a positive function on the interval [0,1], and let
G(z) be defined for ze C~[—R, R] by

(8) / e ww) = da,
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where for any positive teal number ¢, we have chosen the branch of 1/vc—7?
which is holomorphic outside the interval [—\/c,+/c] and satisfies z/Ve—22 =i,
as z—00. For generic choice of r and R there exist a number a and an odd, entire
function h such that

9) F(z)= <g+h(z))G(z)

satisfies the hypothesis (6) and (7) in Theorem 2.

Remark. 1t is likely that the conclusion of the theorem holds for all », R and
w, but we do not have a proof.

Combining these results, we obtain an inversion formula for the exponential
Radon transform.

Corollary 1. Let DCR? be a compact set, and let r>sup{|z1 —y;|;x,y€D}.
Choose a number R>r and a positive function w on the interval [0,1], let I be the
function constructed in Theorem 3 which satisfies the hypothesis of Theorem 2, and
let u=BAF. If f is any function of class C? with supp fCD, then

" OR.f — (61 (1 +£) +022)
(1) f@=[ ut) [ 0,000+ 8wa)e H OO ag y
R Si &

for all zeD.

3. Proofs

Proof of Theorem 1. Let 0y denote the directional derivative in direction 6.
Then it follows from the definition of the exponential Radon transform, that

OB, f

5 (08)= / O f (80410~ )ek" dt

and hence

/ ngs‘—f(ﬁ,wﬂ)e‘””“ dﬁ:/ / O f((z-0)0+t01)ert—10" gt dg
S}r S_l*_ —00

= / / Do (470 )e ™ dr df
St J—o0

- / Op f (z+705)eh™ do dr,

_ 1
oo JSL



An explicit inversion formula for the exponential Radon transform using data from 180° 357

where we have made the change of variables 7=t —x-0+. For fixed = and 7, 0 is the
tangent vector to the semicircle {z+761;60€S51}, so that

Oy f (x+76")do = flar+7,22)— fx1—7, 3;2).

1 T
S+

Combining these computations, it follows that

/ Ot (9,1’-9)67’”“9L Cw—/oo Wontr,ma) e, x2)€’” dr
S

le 0s o T
. el +emHT
= lim ——f(z1+7,z2)dr. O
e=0|7>e T

Theorem 2 is a direct consequence of the following identity.

Lemma 1. If ¢ and ¢ are holomorphic outside a compact subsel of the real
line, then

1

(11) [‘Pa¢]|R:T(BE‘P*BATb*BAQO*BEw)
T

Proof. Let zeR and suppose that ¢(¢) and ¥(z—() are holomorphic for ¢
outside the interval [a,b]. Then

1 . , @ : .
[%w(z):hm—( | ett=ieyite—qe—iep ae [ so(tw)w(z—(tﬂs»dt)

e—0 271
b

:2%1' (B-¢@(t)Biip(z—t) = Brp(t) B (z~t)) dt
b

:ﬁ (Bro(t)Batp(z—t)—Bap(t) Bt (z—t)) dt

Proof of Theorem 2. To prove the theorem, take p=ch, and ¥=F. Then
Bsy=2ch, and Bayp=—2midy. From the assumption that [ch,, F]=0 it follows
that

2ch,*u= By ch, * BAF = Ba ch,* By F' = —27idg* By F.

The conclusion follows from the assumption on Bs F. [
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Proof of Theorem 3. We must show that there exist a number a and an entire
function h such that

a
F(z)= (; +h(z)) G(2)
satisfies (6) and (7). Note that for ¢ and 1 holomorphic outside the real line,
(12) Bs(p¢) = 3 (Bu@Bst¢+ BapBat))

provided that the products on the right make sense. Since ByG=Bah=0in (—r,r),
it follows that in the interval (—r, r),

1
ByF = =Ba (E>BAG = —miaBAG(0)dg
2 z

= —2ria ( /0 1 7‘24—12)](%&2)7”2)04 da> 5o

Hence, the condition (6) will be satisfied precisely if

(13)

1

T e el
! /omd

Tt remains to determine h so that (7) is satisfied. To prove the existence of h it is
useful to reformulate the condition by means of the following lemma.

(14) a

Lemma 2. Let h and ¢ be entire holomorphic functions, and let ¢ be holomor-
phic outside a compact set, with a zero of order k>0 at infinity. Then [27, hy|=1
if and only if h=[z""1,1 /| + P for some polynomial P of degree at most k—1.

Proof. Note first that for any ¢ holomorphic outside a compact set, [z 71, ] is
the unique entire function with the property that —[z71, p]=0(|z| 1), as z—o00.
From this it follows that

[z bl =1 <= hp—9p = O(jz| ) = h= /o = O(|z|" ") <= h— [z, 0 /]

is a polynomial of degree at most k—1. O

Rewrite the condition (7) as

(15) E hG} =— [——mh(‘”)‘l , hG} - [ch,“ aGZ(z)} :

z
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Since G has a zero of order 1 at oo, it follows from Lemma 2 that this condition
will be satisfied if

R |

Write the right-hand side of (16) as —®(h)—H, where H is an entire function
and @ is a linear operator on the space of entire functions. Let K be a compact
set containing the interval [—R, R] in its interior, and let A{K) be the Banach
space of functions continuous in K and holomorphic in the interior of K. Since
(cosh(uz)—1)/z is an entire function, the contour of integration in the definition of

[cosh(uz)-l)hG] 1 /Fcosh(uC)—l

: — (=06

- 2mi
can be chosen so that the argument of i always is in the interior of K. From this
it is clear that ® can be extended to a bounded operator from A(K) to A(K’) for
any compact set K'CC. If K is contained in the interior of K’, the restriction
A(K")—= A(K) is compact, and it follows that @ is a compact operator on A(K).
So unless —1 happens to be an eigenvalue of ®, the equation h+®(h)=—H has a
unique solution he A(K). Since both H and ®(h) are entire functions, it follows
that & is also entire. Since ® takes odd functions to odd functions, even functions
to even functions and H is odd, it follows that A is odd.

Finally, note that ® depends analytically on r and R, and the norm of ®
converges to 0, as  and R approach 0. Hence, —1 is not an eigenvalue of ® for
generic choices of r and R. In fact, numerical experiments seem to suggest that the
eigenvalues of ® are always positive. [

4. Numerical tests

To use the inversion formula on numerical data, it is necessary to choose a
weight w, compute approximations for the corresponding a and h to find a function
F=(a/2+h)G satisfying the hypothesis of Theorem 2, and then compute a list of
values of u=BaAF.

Choice of weight. Choosing w to be a piecewise linear function makes the com-
putation of G straightforward. In order to make G fairly smooth, it is advisable to
make w(0)=w(1)=0.

Comgputation of a and h. The constant ¢ is found directly from (14). The
function £ is computed directly from the equation (7) rather than (16). More
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precisely, h is approximated by an odd polynomial. Choose a positive integer n,
and let ch, and G be the Laurent series expansions of ch, and G up to terms of
some finite degree, say 4n. Use the relations

) k :
(-1)]*1( ) ,>zﬂ+’f+1, if j<0and j+k+1>0,
—1=7
J k) j X
(17) [Z y 2 } (vl)k( 1] k) Zj+k+1, if k<0 and ]+k+1 207
0, otherwise,
and the bilinearity of [-,-] to compute an odd polynomial h,, of degree 2n-+1 such

that the Taylor series of
o~ a o~
[y, (200 )]
z
vanishes up to terms of degree 2n. Note that this expression is an even function,

so we have n+1 linear equations in the n+1 unknown coeflicients of h,,. Then it is
easy to show that if a solution & of (16) exists, h,, converges to h, as n—oco.

Computation of u. The distribution u is readily computed by the formula

' w(a)

da.

(18)  u(t)=2(5+ha()) /

max{0,(12—r2)/(R2—r2)} /T2 +(R2—12)a—{?

Here « is treated as a function rather than a distribution. When computing the
integral in (10) numerically, it is necessary to deal with the singularity of v at
the origin. One simple-minded approach is to use the trapezoid rule on a set of
nodes symmetric with respect to the origin to approximate the principal value
integral. More accurate results can be obtained by using the methods described in
[2, Chapter IIT].

A reconstruction was made with the values r=1, R=1.5 and ten nonzero terms
in the polynomial h,, see Figures 1 and 2. The test object consists of circular discs,
and the Radon transform was sampled at 200 values of  equally spaced over S,
and 101 values of s equally spaced between —0.5 and 0.5. The width and height of
the image are 1 and the attenuation p=3.
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Figure 1. Exact image and reconstruction obtained using the inversion formula.

Figure 2. Cross section of exact image (dotted) and reconstruction (solid) along the
horizontal (left) and vertical (right) axes through the center of the image.
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