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Asymptotic behavior of the eigenvalues of the 
one-dimensional weighted p-Laplace operator 

Julian Fernandez Bonder and Juan Pablo Pinasco(1) 

A b s t r a c t .  In th is  paper  we s t u d y  the  spec t ra l  coun t ing  func t ion  for the  weighted  p- lap lac ian  

in one d imension .  Firs t ,  we prove t h a t  all t he  eigenvalues can  be ob ta ined  by a m i n i m a x  charac-  

ter iza t ion  and  t h e n  we show the  exis tence of a Weyl - type  leading te rm.  Final ly  we find e s t ima t e s  

for the  r ema inde r  te rm.  

1. I n t r o d u c t i o n  

In this paper  we study the eigenvalue problem 

(H) -(~p(~'))' = a~(~)~(~), 

in a bounded open set f ~ c R ,  with Dirichlet or Neumann boundary conditions. 
Here, the weight ~" is a real-valued, bounded, positive continuous function, ~ is a 
real parameter ,  l < p <  +oc  and 

for s r  and 0 if s=0 .  

From [7], Theorem 1.1, p. 233, we know that  the spectrum consists of a count- 
able sequence of nonnegative eigenvalues A1 <A2_<..._<Ak_<... (repeated according 
to multiplicity) tending to +oc.  See also [16], where a similar result is obtained for 
the radial p-laplacian and for the one-dimensional p-laplacian with mixed bound- 
ary conditions. With the same ideas as in [3], Theorem 4.1, it is easy to prove that  
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the sequence {/~k}keN coincides with the eigenvalues obtained by the Ljus te rn i~  
Schnirelmann theory. We recall that  the variational characterization of the eigen- 
values is 

(1.2) 

where 

A~= inf s u p f  lu'l pdz, 
F E C ~  "uEF J t2 

Cp = {C c M a : C compact, C = - C  and 7(C) _> k}, 

M~'= {uE Wo'P(ft) (resp. Wl'P(ft)): ~ r(x),u,r' &c= l } 

and 7(C) is the Krasnosel'skii genus (see [15] for the definition and properties of 7). 
So our first result is the following theorem. 

T h e o r e m  1.1. Every eigenval~ue of problem (1.1) is given by (1.2). 

We define the spectral counting function N(A, ft) as the number of eigenvalues 
of problem (1.1) less than a given A: 

x ( a ,  a)  = # { k :  ak _< a}. 

We will write ND(A, gt) (resp. NN(A, f~)) whenever we need to stress the dependence 
on the Dirichlet (resp. Neumann) boundary conditions. 

The problem of estimating the spectral counting function has a long history, 
special in the linear case (p=2). See for instance [5], [9], [10], [12] and tile references 
therein. 

However, up to our knowledge, for p•2 there is a lack of information about 
the behavior of N(A, f~). The only known result is due to [8]. In that  paper, the 
authors show that the eigenvalues of the p-laplacian in R n (with r =  1) obtained by 
the minimax theory satisfy 

(1.3) cl(a)kp/'r~ <_ xk _< c2(~)k/~. 

It is easy to see that  this eigenvalue inequality is equivalent to 

cI(~)A '~/~ <_ N(A, ~) <_ C2(~)X '~/~ 

for certain positive constants when A-~oo, see Lemma 3.2 below. 
Our next result is concerned with the asymptotic behavior of the eigenvalues 

of (1.1) and begins our analysis of the function N(A, t2). 



Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace 269 

We obtain the asymptotic expansion 

( 1 . 4 )  

where zc; is defined as 

(L5) 

A1/P j ~ r  1/p dx, as A-+o c, 

~0 
1 ds 

~P=2(p--1)I/P, (1-sP) lip" 

The proof is based on variational arguments, including a suitable extension of the 
'Dirichlet-Neunmnn bracketing' method, see [2]. We prove the following theorem. 

Let r(x) be a real-valued, positive and bounded continuous func- T h e o r e m  1.2.  

tion in fL Then, 

A1/; f 
( 1 . 6 )  = - -  ! rl/p dx+o(A1/P). 

7rp J~ 

Observe that  by Theorem 1.2, the asymptotic behavior of the eigenvalues (1.3) 
is improved. In fact, what (1.6) implies is that 

A~: ~ ck p. 

Once we found the first order asymptotics of N(A, 9) ,  it is natural to t ry  to 
improve these estimates and look for a second order term. 

Following the ideas of [5], we analyze the remainder term R(A, f~)=N(A, f~) -  
7r; 1 f~(kr') 1/; dx. We show that 

(1.7) R(A, f~) = O(Ah/P), 

where dE (0, 1] depends on the regularity of the boundary 0f~ and on the smoothness 
of the weight r measured in a subtle way. To this end, let us introduce the following 
definitions. 

Given any ~! > 0 sufficiently small, we consider a tessellation of R by a countable 
family of disjoint open intervals {Ir162 of length ~]. 

Definition 1.3. Let 12 be a bounded open set in R. Given 3>0 ,  we say that  
the boundary 0f~ satisfies the 3-condition, if there exist positive constants e0 and 
r]0 < 1 such that  for all ~!_< r]0, 

(1.8) # ( J \ I )  <_ Co~3 ' 
#I  
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where 

(].9) 
(1.]o) 

•  = { ( e  z :  z~ c a} ,  

J = J(f2) = {s E z :  I ~ n ~  r ~}. 

It is easy to see that  if the set is Jordan contented (i.e., it is well approximated 
from within and without by a finite union of intervals), then it verifies the /3- 
condition fo r /3=  1. The coefficient/3 allows us to measure the smoothness of 0fL 

Definition 1.4. Given T>0,  we say that  the function r satisfies the V-condition, 
if there exist positive constants Cs and r11<1 such that  for all (~ I ( f2 )  and all 7?<~h, 

(1.11) ~ Ir-r~-I 1/p dx _< Cl~] ~, 

where r r  -~ fit rl/p dx)p is the mean value of r 1/v in Ir 

Remarks 1.5. 1. The coefficient T enables us to measure the smoothness of r. 
the larger T, the smoother r. 

2. When r is HSlder continuous of order 0 > 0 and is bounded away fl'om zero 
on 12, then it satisfies the V-condition for 0 < 7 -< 1 + 0/p. 

If r is only continuous and positive on ~, then it satisfies the T-condition for 

0 < 7 < 1 .  

Now we are ready to state the theorem. 

T h e o r e m  1.6. Let f~ be a bounded open set in R with boundary Of~ satisfying 
the ~3-condition for some /3>0, and let r be a bounded, positive and continuous 
function satisfying the T-condition for some 7 > 1 .  Set u=min{/3, y - 1 } .  Then, for 
all 5 E [ 1 / ( , + 1 ) ,  1], we have 

(1.12) N(A, a )  - 1 / ~  (Ar)~/~ dz = O(Aa/~). 
~rp 

Finally, we end this article with some examples, where we compute the remain- 
der te rm explicitly. 

The paper  is organized as follows. In Section 2, we introduce the genus in a 
version due to Krasnosel'skii, and prove the variational characterization of all the 
eigenvalues, together with some auxiliary lemmas. In Section 3, we prove the as- 
ymptot ic  expansion (1.4). We analyze the remainder estimate in Section 4. Finally, 
in Section 5, we explicitly compute a nontrivial second te rm for r - 1  and analyze 
the asymptot ic  behavior of the eigenvalues. 
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2. Var ia t iona l  c h a r a c t e r i z a t i o n  o f  t h e  e igenvatues  

In this section we first show that  every eigenvalue of (1.1) is given by a vari~- 

tional characterization and then we prove the Dir ichlet-Neumann bracketing meth- 
od that  will be the main tool in the remaining of the paper. 

So let us begin with the proof of Theorem 1.1. 

Proof of Theorem 1.1. The proof follows the lines of Theorem 4.1 of [3]. 
By [7] the spectrum is countable and we can assume that  it is given by the 

eigenvalues #i <#2_  < .... Given an eigenpair (u~, #k) of (1.1), we claim that  uk has 
k nodal domains. It is clear that  the number of nodal domains is _<k (see, e.g., [1]). 
Now the claim follows by induction, since the first eigenfhnction has exactly one 
nodal domain, and by [16], Theorem 4.1(b), if uk has k nodal domains, then uk+l 
has at least k + l  nodal domains. 

Now, if (Uk,#k) is an eigenpair of (1.1), we can consider w{(z)=uk(z) if :c" 
belong to the i th nodal domain, and w i ( z ) = 0  elsewhere. Let St be the sphere in 
W~'P(Y~) of radius t. Then, the set Ck=span{w~, . . . ,  wk.}~St has genus k and is 
an admissible set in the characterization (1.2) of the kth variational eigenvalue lk ,  
from which it follows that  t k < # k  and then A~=#k. [] 

The rest of this section is devoted to the proof of the so called DirichIet 
Neumann bracketing method. We want to remark that  these results hold for arbi- 
t rary  dimensions n_> 1 if one only considers the variational eigenvalues. 

U L3 ~ i n t - -u  T h e o r e m  2.1. Let U 1 , U 2 c I {  ~ be disjoint open sets such that ~ 2 - 
and Iu\(glug2)l,~=o, then 

ND( ),, U~ UU~) < ND( ),, U) < NN( ),, U) < NN( :~, U~ UU2). 

Here [AI., stands for the n-dimensional Lebesgue measure of the set A. 

Proof. This is an easy consequence of the Ibllowing inclusions 

(2.1) WI'P(U1 u~f,2) : ~VI'p(u1)(~WI'P(U2) C WI'P(U) 
and 

(2.2) WI'P(U) C WI'P(U1)@WI'P(U2) = WI'P(UI UU2), 
and the variational formulation (1.2). In fact, nsing that  

MU(x) {uEX:./ur(X)lu]~'dx 1}C2]JU(Y)={ueY: /ur (x )]u[Pdx=l  }, 

and cU(X)cC~](Y), where X=IiV~'P(U1UU2) or X=W<P(U) a,nd Y:I/V~'P(U) or 
Y=WI'P(UIUU2), we obtain the desired inequ&lity. [] 

The Dirichlet-Neumann bracketing method is a powerf\fl too] when combined 

with the following result. 
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P r o p o s i t i o n  2.2. Let ft=Uj ~2, where {Stj}j is a pairwise disjoint family of 
bounded open sets in R ~. Then 

(2.a) x(s, a) = ~ x(x, aj). 
J 

Pro@ Let A be an eigenvalue of problem (1.1) in ft, and let u be the associated 
eigenfunction. For all v~Wd'P(ft) we have 

(2A) .~ IVnlP-2vnv~ dx-~,/~ I~IP-~ d x  = O. 

Choosing v with compact support in ftj, we conclude that  ula 5 is an eigenfunction 
of problem (1.1) in ftj  with eigenvalue A. 

For the other inclusion, it is sufficient to extend an eigenfunction u in ftj by 
zero outside, which gives an eigenfunction in ft. [] 

3. The function N(A)  

h this section we prove the asymptotic expansion given by Theorem 1.2. 

First let us recall the iollowing lemma, which was proved in [14]. 

L e m m a  3.1. Let {A~}~eN be the eigenvalues of (1.1) in (O,T), with Dirichlet 
boundary condition and r= l. Then 

~P 
(3.1) Ak = ~ k  p 

Let {#k}keN be the eigenvalues of (1.1) in (0, T), with Neumann boundary 
condition and r= l. Then, 

~P 
(3.2) #k= i~p (k--1)P. 

With the aid of LemIna 3.1 we can prove the following result. 

L e m m a  3.2. Let {/~k}kcN be the eigenvalues of (1.1) in (O,T) and suppose 
that m < r ( x ) ~ M .  Then 

7rP 

(3.3) M TP - m TP 



and 

(3.4) 
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TM1/p rml / ' )  a l / p _  1 < N(A, (0, T)) < - - A  1/p. 
% % 

Proof. Equation (3.3) is an easy consequence of the sturmian comparison prin- 
ciple in [16], p. 182, Theorem 4.1(b) and the subsequent corollary, and the explicit 
formula for the eigenvalues with constant weight. Now, 

(3.5) # k:TT m_<a _ < # { k : X k _ < a } < #  . 

The left-hand side is greater than 

T?Tzl/P ~l/p __ ], 
7Cp 

which gives the lower bound. In the same way, we obtain 

[TM1/PA1/p ] T M  1/p 
N(A, (O,T)) < < X L/;. [] 

k 7rp j zcp 

Now we prove a proposition that is the key ingredient in the proof of Theo- 
rem 1.2. 

P r o p o s i t i o n  3.3. Let r(z) be a real-valued, positive continuous function in 
[0, T]. Then 

Xl/p .~T 
_ _  rl/P dx-ko(A1/P). (3.6) N(A, (0 ,T)) - -  zcp 

Proof. Let [0, T]=UI<j< J Ij, IjNIk=O with ]Ij I=T/J=r]. We define 

ray = i n f  r(x) and My = sup r ( x ) .  
xEIj x~ij 

We can choose 'q>0 such that 

J T J T 

j~=I?]?Tt~/P:~ 0 rl/Pd2g-s a l i a  ETjM)/P~- fo  rl/pdzAr-s 
j = l  

with cl, c2 >0  arbitrarily small. 
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From Theorem 2.1 and Proposit ion 2.2, we obtain 

J d 

N.(:~, zj) < N(a, (0, T)) < ~ N~(a, ~). 
j = l  

Hence, using that  

7Cp 

we have 

j=l  

- -  - 1 and 
7Cp 

r l i p  d X - C l  - J < N(A, (0, T)) <_ - -  r l i p  d x q - c 2  . 
7rp 7Cp 

Letting X--~oc, we have 

and the proof is complete. [] 

N(a, (0, T)) - + ] ,  
M/'~Tr P f ?  rl/~ dz 

Finally, we arrive at the proof of Theorem 1.2. 

Proof of Theorem 1.2. It  is an easy consequence of Propositions 2.2 and 3.3. 
g2 oo Let =U3=1 IS, then 

(3 .7)  N(A,  e )  = Z ]V(/~, [ j )  ~ Z - -  r lip dx - r lip dx. [] 
j = l  J ] 7rp J 7Cp 

4. R e m a i n d e r  e s t i m a t e s  

As we mentioned in the introduction, we now look for an improvement in the 
asymptot ic  expansion of N(A, ~).  This is the content of Theorem 1.6. 

Proof of Theorem 1.6. For the convenience of the reader, the proof is divided 
into several steps. 

Moreover, we will stress tile dependence of tile spectral counting function with 
respect, to the weight function by writing N(A, f~, r). 
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Step 1. Let r/>0 be fixed. We define 

(4.1) F(k)=-~p~(Ar)l/Pdx and 

where r ;=(]/r  -1 fz~ rl/p dx) ~" 
From Theorem 2.1 we obtain 

(4.2) 

~(~, r = ~ (~r 

and 

r162 

(4.3) 
CEZ CeJ\I 

We are reduced to find bounds for the left-hand side of (4.2) and for the right- 
hand side of (4.3). 

Step 2. We can rewrite the left-hand side of (4.2) as 

(4.4) 
Ce~ r r162 

+ ~ (N. (X, I4, , ' )-  X~ (),, Ir ,-r 
r162 

Let us note that  both ~r Ir rc)-g)(A, ()) and Er ~(A, ( ) - p ( A )  
are negative. Now, by Lemma 3.2, 

(4.5) 

as 

(4.6) 

IND (A, Ir rg) -~(A,  ()1 <- #([)M < If~. 
r r/ 

We can bound 

C /~ I / P # ( J \ I ) T] ]~ r ~ c /~ l / P T] ft. 

Here we have used that  r<M, and that  Oft satisfies the fl-condition. 
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Finally, the last sum in (4.4) can be handled using the monotonicity of the 

eigenvalues with respect to the weight (see [16]). Using that  r_< r ( +  [ r - r ( ] ,  a simple 
computation shows that  

No(A, I~, ~') <_ No (A, I o ~)+No(A, I~, Ir-~'~ [), 
which gives 

E(ND(X, [(, T)--~D(X, [(, T()) ~ E ~O(~' f(' If --r(I) ~ CX1/P#(I)71~ 
(eI (eI 

and using the same arguments as above and the fact that  r satisfies the 7-condition, 
we obtain 

(4.7) E(No( / \ ,  I(, 7")-No(l\ , I(, re) ) <_ cal/P71 "T-1. 
(eI 

Collecting (4.5), (4.6) and (4.7) we have the lower bound 

(4.8) c~1/p(719 +~_1)+ c. 

Step 3. In a similar way, we can find an upper bound for the right-hand side 

(4.9) E NN(A'Ir E NN(A,I(NfLr) 
(cz (E J\I 

of (4.3). We only need to estimate the last sum, but 

NN(;~,I;r~U,,') <_caller ~,~/P&<C(M71a) 1/~ 
,] Ir 

and again, using the fl-condition, we have 

(4.10) ~ NN(~, I~n~, ~') < C;~/% ~. 
C~J\I 

Hence, we obtain the upper bound 

(4.1]) c.~l/p(,fljl_,'T 1 ) + s  
71 

for (4.3). 

Step 4. From (4.S) and (4.11) we obtain 

(4.12) ~V(~, ~ ) -  L ~I (/~T)I/P dx ~ C/~I/P(~']}3 J[-I] "T-l) Jr-C. 
7rp 

We now choose 71=A -~, with 0 < a < 5 .  It is clear that  the last term in (4.12) is 
bounded by CA 5. Also, it is easy to see that,  if a>~-l(p 1 6), then A1/P71fl<A 5. 
Likewise, choosing a>_(7-1)-1(p-1-5), we have /\1/p71"y--1~.\5. When fl=0,  or 
"/=1, we must choose a=l/p. 

This completes the proof. [] 
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5. Concluding remarks 

We end this paper  showing a family of examples with a power-like second term, 
and an example with an irregular second term. Finally, we discuss the asymptot ic  
behavior of the eigenvalues. 

In the examples below, the parameter  d provides some geometricM information 
about  Oft. In both cases, d is the interior Minkowski (or box) dimension of the 
boundary, we refer the reader to [41 and the references therein for the definition and 
properties of the Minkowski dimension. 

Examples with explicit second term. Let f t = U j ~ N  Ij, where IIjl=j -1/d and 
0 < d < l .  We have the following asymptot ic  expansion for the spectral counting 
function when r = 1: 

(5.1) N(A, a)  = I~l~l/p+C(d)ad/p+O(),"/'(2+~)). 
7Cp 

The proof can be obtained with number theoretic methods. We have 

N(A, Ft)= A 1/p = #  (m,n)  E N 2 : r n n  1/a< . 
j = l  t p j 71-p 

In fact, for each j we can draw the vertical segment of length j-1/aAl/V/rcp in 

the plane, and the series is the number  of lattice points below the function y(x)= 
A1/'rcp lx-~/a. See [13] for a detailed proof. 

When p=2 and ]Ijl~j -1/a, it is shown in [llJ that  

N ( A, a) = I~I A1/p +C(d)Ae/P +o( Ad/P), 
7Fp 

without the lattice point theory, the same result is valid for p r  However, let us 
note tha t  the error in equation (5.1) is better,  which enables us to obtain more 
precise estimates whenever we know more about  the asymptot ic  behavior of 113 I. 
On the other hand, the result in [11] holds for more general domains than the ones 
considered here. 

Example with irregular second term. Let ft be the complement of the ternary 
Cantor set, and r = l .  We have 

(5.2) N(~,, a )  = lal .X~/v - f ( log ) , )2 ~ ~/p log a +O(1) .  
7"Cp 

Here f(x) is a bounded, periodic function. Our proof closely follows [6], where the 
usual Laplace operator on a self-similar set in R '~ was studied for every n_>2. 
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Let us define cg(x)=x-[x], it is evident that  10(x)l~min{z, 1}. Hence, 

(5.a) re(A, ~ ) _  J~r A1/p = _ ~ 25 o \ ~ ]  <_ cA I/p. 
7Cp j : 0  

I t  remains to prove the periodicity of f .  We write the error te rm as 

oo J / ~l/p "~ 1 ( A1/p 

j= oc i= oo 

Using that  I~(x)l<_ 1, the second series converges and it is bounded by a constant. 
Let us introduce the new variable 

log A 1/p - l o g  rcp 
(5.5) y = , 

log 3 

which gives W=),l /p/rc> and 2s=(A1/P/rcp) d, where 

log 2 
(5.6) d = log~" 

Inserting this into the first te rm in (5.4), we obtain 

(5.7) ~ ~ 2J~ = - -  2J-~0(a~-J). 
J - ~  \3JTrpJ 2k, rrp / j - ~  

Thus, as j - ( y - 1 ) = ( j + l ) - y ,  we deduce that  f(x)  is periodic with period 
equal to one. 

Asymptotics of eigenvalues. From Theorem 1.6 it is easy to prove the asymp- 
totic formula for the eigenvalues 

Ak ~ ck p. 

This follows immediately since k~N(Ak) ,  which gives 

Ak ~ r 1/p dx 

Using the Dir ichlet-Neumann bracketing method,  it is possible to improve the 
constants in equation (1.3). In [8] the authors only consider two cubes Q1 c f t c Q 2 ,  
and they obtain a lower and an upper bound fbr the eigenvalues in cubes which 

depends on the measure of the cubes Q1 and Q2 instead of the measure of ft. 
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A similar a rgument  to the one in [8], changing the functions {sin kcc}~=~N for 

{sinp ]~X}/~N, gives the upper  bound  

( rrp )P/~kp/,~ ' 

"U<-< \1~1) 
where sinp kx  are the eigenfunctions of the one-dimensionM problem with constant  

coefficients, see I3]. 
However, it seems difficult to improve the lower bound  obta ined with the aid 

of the Bernstein 's  lemrna. 
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