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Asymptotic behavior of the eigenvalues of the
one-dimensional weighted p-Laplace operator

Julidn Ferndndez Bonder and Juan Pablo Pinasco(!)

Abstract. In this paper we study the spectral counting function for the weighted p-laplacian
in one dimension. First, we prove that all the eigenvalues can be obtained by a minimax charac-
terization and then we show the existence of a Weyl-type leading term. Finally we find estimates
for the remainder term.

1. Introduction

In this paper we study the eigenvalue problem

(1.1) —(¥p(u))" = Ar(z) ¢y (u),

in a bounded open set QCR, with Dirichlet or Neumann boundary conditions.
Here, the weight r is a real-valued, bounded, positive continuous function, A is a
real parameter, 1<p<+oo and

Up(s)=s["7%s,

for s#0, and 0 if s=0.

From [7], Theorem 1.1, p. 233, we know that the spectrum consists of a count-
able sequence of nonnegative eigenvalues A\ <Az <...<Ap<... (repeated according
to multiplicity) tending to +oco. See also [16], where a similar result is obtained for
the radial p-laplacian and for the one-dimensional p-laplacian with mixed bound-
ary conditions. With the same ideas as in [3], Theorem 4.1, it is easy to prove that
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the sequence {A;}xen coincides with the eigenvalues obtained by the Ljusternik—
Schnirelmann theory. We recall that the variational characterization of the eigen-
values is

(1.2) A= inf sup/ |u'|P dz,
FeClyer Ja

where
C={C c M®:C compact, C=—C and v(C) >k},

M?= {ue Wol’p(Q) (resp. WHP(Q)): /Q r(z)|u|P dx = 1}

and v(C) is the Krasnosel’skii genus (see [15] for the definition and properties of ).
So our first result is the following theorem.

Theorem 1.1. Every eigenvalue of problem (1.1) is given by (1.2).

We define the spectral counting function N(X, Q) as the number of eigenvalues
of problem {1.1) less than a given A:

N, Q) =#{k: A\ <A}

We will write Np(A, Q) (resp. Ny (A, )) whenever we need to stress the dependence
on the Dirichlet (resp. Neumann) boundary conditions.

The problem of estimating the spectral counting function has a long history,
special in the linear case (p=2). See for instance [5], [9], [10], [12] and the references
therein.

However, up to our knowledge, for p#2 there is a lack of information about
the behavior of N(A, Q). The only known result is due to [8]. In that paper, the
authors show that the eigenvalues of the p-laplacian in R™ (with r=1) obtained by
the minimax theory satisfy

(1.3) e (QVKP/™ < A < e (Q)RP™,
It is easy to see that this eigenvalue inequality is equivalent to
CLI)AMP < N(X, Q) < Co (AP

for certain positive constants when A—» o0, see Lemma 3.2 below.
Our next result is concerned with the asymptotic behavior of the eigenvalues
of (1.1) and begins our analysis of the function N(X, ).
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We obtain the asymptotic expansion

ALl/p
(1.4) N(A,Q)N—/rl/pdx, as A — oo,
Tp JQ
where 7, is defined as
1.5 ooy [
(1.5) Tp =2(p—1) Jo (1—s)i/p’

The proof is based on variational arguments, including a suitable extension of the
‘Dirichlet—Neumann bracketing’ method, see [2]. We prove the following theorem.

Theorem 1.2. Letr(x) be a real-valued, positive and bounded continuous func-
tion in Q. Then,
\L/P
(1.6) NOAQ)Y=2— [ #YPde+o(AV/P).
'/Tp 0
Observe that by Theorem 1.2, the asymptotic behavior of the eigenvalues (1.3)
is improved. In fact, what (1.6} implies is that

)\k ~ ckP.

Once we found the first order asymptotics of N(A,), it is natural to try to
improve these estimates and look for a second order term.

Following the ideas of [3], we analyze the remainder term R(\,Q)=N(X,Q)—
7, b [o(Ar)HP dx. We show that

(1.7) R\, Q) =0(\/P),

where 6 €{0, 1] depends on the regularity of the boundary 92 and on the smoothness
of the weight r measured in a subtle way. To this end, let us introduce the following
definitions.

Given any 1>0 sufficiently small, we consider a tessellation of R by a countable
family of disjoint open intervals {I:}cez, of length 7.

Definition 1.3. Let Q be a bounded open set in R. Given 3>0, we say that
the boundary 9 satisfies the 8-condition, if there exist positive constants ¢y and
19 <1 such that for all n<ny,

#(J\)

(1.8) v

< 0077/6’
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where
(1.9) I=1(Q)={(€Z:I CQ},
(1.10) J=J{Q)={CeZ:1.NQ#0}.

It is easy to see that if the set is Jordan contented (i.e., it is well approximated
from within and without by a finite union of intervals), then it verifies the -
condition for §=1. The coefficient £ allows us to measure the smoothness of 9.

Definition 1.4. Given v>0, we say that the function r satisfies the vy-condition,
if there exist positive constants ¢; and 1 <1 such that for all (€ () and all n<ny,

(1.11) |7“—7’d1/pdx§617’]/‘/,
s

where re=(|I:|"* [, r/P dz)P is the mean value of r1/? in ..
¢ ¢ I; ¢

Remarks 1.5. 1. The coefficient v enables us to measure the smoothness of r.
the larger 7, the smoother r.

2. When 7 is Holder continuous of order §>0 and is bounded away from zero
on (2, then it satisflies the y-condition for 0<y<1+46/p.

If r is only continuous and positive on €, then it satisfies the ~-condition for
0<~y<lI.

Now we are ready to state the theorem.

Theorem 1.6. Let Q) be a bounded open set in R with boundary 0Q satisfying
the B-condition for some (>0, and let v be o bounded, positive and continuous
function satisfying the v-condition for some v>1. Set v=min{B,v—1}. Then, for
all 6€[1/(v+1),1], we have

(1.12) N\, Q)_i / (AP de = O(\/P),
7l'p O

Finally, we end this article with some examples, where we compute the remain-
der term explicitly.

The paper is organized as follows. In Section 2, we introduce the genus in a
version due to Krasnosel’skil, and prove the variational characterization of all the
eigenvalues, together with some auxiliary lemmas. In Section 3, we prove the as-
ymptotic expansion (1.4). We analyze the remainder estimate in Section 4. Finally,
in Section 5, we explicitly compute a nontrivial second term for r=1 and analyze
the asymptotic behavior of the eigenvalues.
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2. Variational characterization of the eigenvalues

In this section we first show that every eigenvalue of (1.1) is given by a varia-
tional characterization and then we prove the Dirichlet—Neumann bracketing meth-
od that will be the main tool in the remaining of the paper.

So let us begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof follows the lines of Theorem 4.1 of [3].

By [7] the spectrum is countable and we can assume that it is given by the
eigenvalues p; <ps<.... Given an eigenpair (ug, uz) of (1.1), we claim that uy has
k nodal domains. It is clear that the number of nodal domains is <k (see, e.g., [1]).
Now the claim follows by induction, since the first eigenfunction has exactly one
nodal domain, and by [16], Theorem 4.1(b}, if u; has k nodal domains, then ugy1
has at least k+1 nodal domains.

Now, if (uk,uk) is an eigenpair of (1.1), we can consider w;(z)=u(z) if
belong to the ith nodal domain, and w;(x)=0 elsewhere. Let S; be the sphere in
W1P(Q) of radius t. Then, the set Cp=span{wy,...,w;}NS; has genus k and is
an admissible set in the characterization (1.2) of the kth variational eigenvalue A,
from which it follows that Ax <px and then Ap=pg. O

The rest of this section is devoted to the proof of the so called Dirichlet—
Neumann bracketing method. We want to remark that these results hold for arbi-
trary dimensions n>1 if one only considers the variational eigenvalues.

int

Theorem 2.1. Let Uy, U;CR™ be disjoint open sets such that UyUUs =U
and U\ (U1UU2)], =0, then

ND(/\, Uy UUQ) < ND()\, U) < NN(A, U) < NN()\, U1UU2>.
Here |Al,, stands for the n-dimensional Lebesque measure of the set A.

Proof. This is an easy consequence of the following inclusions

(2.1) Wy P (U UUs) = WP (U @ WP (Uy) € Wy P (U)
and
(2.2) WYP(U) c WHP(U) @ WP (Uy) = W (U, UT,),

and the variational formulation (1.2). In fact, using that
MY(X)= {ue X: / r(z)|ul? de= l} cMY(y)= {uGY :/ r(z)|ulf de = 1},
JU U

and CY(X)CCY(Y), where X =W, " (U,UU,) or X =W'P(U) and Y =W *(U) or
Y=WP(U;Uls), we obtain the desired inequality. [

The Dirichlet-Neumann bracketing method is a powerful tool when combined
with the following result.
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Proposition 2.2. Let Q=[] Y, where {€2; }s is a pairwise disjoint family of
bounded open sets in R™. Then

(2.3) NQALQ) =D N(X Q).

Proof. Let A be an eigenvalue of problem (1.1) in 2, and let u be the associated
eigenfunction. For all ve Wy (Q) we have

(2.4) /|Vu|pA2VuVUd:z:~/\/ |u[P~?uv dx = 0.
Q )

Choosing v with compact support in 2;, we conclude that u|g, is an eigenfunction
of problem (1.1) in Q; with eigenvalue A.

For the other inclusion, it is sufficient to extend an eigenfunction u in €, by
zero outside, which gives an eigenfunction in Q. 0O

3. The function N{A)

In this section we prove the asymptotic expansion given by Theorem 1.2.
First let us recall the following lemma, which was proved in [14].

Lemma 3.1. Let {A;}ren be the eigenvalues of (1.1) in (0,7T), with Dirichlet
boundary condition and r=1. Then

e
— _Pp
(3.1) A= 2.

Let {prtren be the eigenvalues of (1.1) in (0,T), with Neumann boundary
condition and r=1. Then,

T
—P(r_1y
(3.2) e =y (k—1)".
With the aid of Lemma 3.1 we can prove the following result.

Lemma 3.2. Let {Ay}ren be the eigenvalues of (1.1) in (0,T") and suppose
that m<r{zx}<M. Then

1 75 1 #b
3.3 — PPN < — kP
(3:3) AT Sk
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Tml/p ML/P
M e 1< N (0,7)) < Dy,

4
(3.4) - -

Proof. Equation (3.3) is an easy consequence of the sturmian comparison prin-
ciple in [16], p. 182, Theorem 4.1(b) and the subsequent corollary, and the explicit
formula for the eigenvalues with constant weight. Now,

nh kP wPkP

. : < < : < < : < .

(3.5) #{k Tpm_)\}_#{k )\k_/\}#{k: TPM")\}
The left-hand side is greater than

Tm /P
Tp

AN & V4 -
which gives the lower bound. In the same way, we obtain

Al/P O

TMP TM
N (0,7)) < [M—W}

Tp Tp
Now we prove a proposition that is the key ingredient in the proof of Theo-

rem 1.2.
Proposition 3.3. Let r(z) be a real-valued, positive continuous function in

[0,T]. Then

/P
(3.6) N(X(0,T)) =

T
/ P dp4o(NHP).
0

Tp

Proof. Let [0,T=U, <, ; I;, I;nIy=0 with |I;|=T/J=n. We define

mj = inf r(z) and M;=supr(z).
zel; €l

We can choose >0 such that
J T J T
an;/p:/ /P dr—e;  and ZnMjl/p:/ 1P da+e,,
j=1 0 =1 0

with €1, 9 >0 arbitrarily small.
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From Theorem 2.1 and Proposition 2.2, we obtain

J J
D ONp(LL) SN (0,T) <> Nu(A, ).

i=1
Hence, using that

/\l/p AP
No(\ 1) 2 m)/” = —1 and Ny 1) < My/Po—,
p

Tp
we have

AP

r /\l/p T
—</ 7'1/pd;v—€1)—J§N(/\, (0,T))§—</ rl/”dx+€2>.
Tp 0 Tp 0

Letting A— o0, we have

N 0,7
EXCR
X/ogp—» f() Y/ oy

and the proof is complete. [
Finally, we arrive at the proof of Theorem 1.2.

Proof of Theorem 1.2. It is an easy consequence of Propositions 2.2 and 3.3.
Let Q=Uj2, I;, then

o<

37 NXAQ) Z A I) i 1/p/ P Al/p/ Yr gy, O
: = T = T x.
et ; Tp Jo

4. Remainder estimates

As we mentioned in the introduction, we now look for an improvement in the
asymptotic expansion of N(A,2). This is the content of Theorem 1.6.

Proof of Theorem 1.6. For the convenience of the reader, the proof is divided
into several steps.

Moreover, we will stress the dependence of the spectral counting function with
respect to the weight function by writing N (A, Q, 7).
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Step 1. Let n>0 be fixed. We define
1 1/ n 1/
(4.1) P(N)=— [ (Ar)"Pdx and @\, {)=—(\re)"?,
Tp JQ Tp

where 7, =(|I;]™* i, /P dg)p.
From Theorem 2.1 we obtain

(4.2) ZND()\,IC,?’)—SO()\)SND()\,Q,T)_SD()\)
[q=)

and

(43> ND()\?QJ‘)_@()Q SZ NN(Aijvr)"’_ Z NN(>“IC097T)‘(P(/\>'
¢el CeJ\I

We are reduced to find bounds for the left-hand side of (4.2) and for the right-
hand side of (4.3).

Step 2. We can rewrite the lefi-hand side of (4.2) as

DN I =N =Y (Np(A\ I, re) —o(A O+ oA, O —p(N)

Cer el cerl
(4.4)
+Z<ND(>‘>IQT)“ND()VIC?Y{))’
¢el

Let us note that both 37..;(Np(A, Ie,m¢)=9(A, ) and 3. (X, Q) —p(N)
are negative. Now, by Lemma 3.2,

1]

(4.5) > INDOIg,me) =X, Q)| < #HI)M < .

cel

‘We can bound

\/p
Z(p()\,g“)— ’ Z/ l/p—r )dx+ Z / /P dg
cel Tp cerl ceng /IS
as
(4.6) CAYPH(J\D)nM < CXYPpfP

Here we have used that r<M, and that 9% satisfies the S-condition.
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Finally, the last sum in (4.4) can be handled using the monotonicity of the
eigenvalues with respect to the weight (see [16]). Using that r <r+|r—r¢|, a simple
computation shows that

ND(A7 ICv T) < ND()\z I{a TC)+ND(/\7 I{? |T_TCD9
which gives
Z(ND(A7 ICvr) *ND(A7 ICaTC» < Z Np(A, I¢, \T_TCD < CAl/p#(nyY
cel cer
and using the same arguments as above and the fact that r satisfies the y-condition,
we obtain

(4.7)

EE:(AUU(Av]Car)_'pJD(A,]C,TC))‘f;(jAl/an—l.
¢el
Collecting (4.5), (4.6) and (4.7) we have the lower bound

(4.8) N (f =ty £
n
Step 3. In a similar way, we can find an upper bound for the right-hand side
(49) ZNN(A)IOT)_@()‘)—'_ Z NN()‘alﬁﬂer)
¢el ¢ed\I

of (4.3). We only need to estimate the last sum, but

Nn(A\ 1e0Q,7) < CAl/P/ PP de < C(MpA)Y/?P
IcﬁQ

and again, using the §-condition, we have

(4.10) > Ny(\LenQ,r) <Oy,
CeJ\I
Hence, we obtain the upper bound
(4.11) CNVP(f 1)+ £
n
for (4.3).

Step 4. From (4.8) and (4.11) we obtain

(4.12)

N()\,Q)——l—/ﬂ()\r)l/p dx

Tp

SO)\l/p(n’B—F?f{_l)-i-%.

We now choose n=A"%, with 0<a<4. It is clear that the last term in (4.12) is
bounded by CX°. Also, it is easy to see that, if a>8~'(p~ 1 —4), then X\1/Ppf <\?.
Likewise, choosing a>(y—1)"1(p~'=§), we have \/P7=1<A%. When =0, or
v=1, we must choose a=1/p.

This completes the proof. [
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5. Concluding remarks

We end this paper showing a family of examples with a power-like second term,
and an example with an irregular second term. Finally, we discuss the asymptotic
behavior of the eigenvalues.

In the examples below, the parameter d provides some geometrical information
about 9Q. In both cases, d is the interior Minkowski (or box) dimension of the
boundary, we refer the reader to [4] and the references therein for the definition and
properties of the Minkowski dimension.

Ezamples with explicit second term. Let Q=J;.n I;, where |I;|=5"% and
0<d<1. We have the following asymptotic expansion for the spectral counting
function when r=1:

(51) ]\7(>\7 Q) = |Q_|)\1/P+C(d>Ad/P+O(Ad/p(2+d))

Tp
The proof can be obtained with number theoretic methods. We have

i /
N(/\,Q):Z[ ! /\1/7”] :#{(m,n)ENQ:mnl/dg ﬂ}

174
3/7Tp Tp

j=1

In fact, for each j we can draw the vertical segment of length j~Y/4A\/?/7x, in
the plane, and the series is the number of lattice points below the function y(z)=
AP, ~1x=1/4 See [13] for a detailed proof.
When p=2 and |I;|~5~¢, it is shown in [11] that
N(AQ) = fixl/uc*(dw/uow/ﬁ),
P

without the lattice point theory, the same result is valid for p#2. However, let us
note that the error in equation (5.1) is better, which enables us to obtain more
precise estimates whenever we know more about the asymptotic behavior of |I;].
On the other hand, the result in [11] holds for more general domains than the ones
considered here.

Ezample with irregular second term. Let Q be the complement of the ternary
Cantor set, and r=1. We have

(5.2) N(AQ) = LQ—'Al/P—f(log A)Ales2/plog3 4 (1),
Tp
Here f(x) is a bounded, periodic function. Our proof closely follows [6], where the

usual Laplace operator on a self-similar set in R™ was studied for every n>2.
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Let us define o{x)=x—[xz], it is evident that |o(z)|<min{z,1}. Hence,

(5.3) N(A,Q)—- )\1/1” Z2J <3J+1 )gc/\l/P.

It remains to prove the periodicity of f. We write the error term as
X/ AUP —L s ap
J _ J
59 > Yol )~ X el )
j=—00 A P

Using that |o(x)|<1, the second series converges and it is bounded by a constant.
Let us introduce the new variable

log AV —log 7,
5.5 —or
(55) log 3

which gives 3¥=A/P/m, and 2¥=(A1/?/m,)?, where

log2

5. = .
(56) log 3

Inserting this into the first term in (5.4), we obtain

1 & . /aUp 1 /A &2 .
. - 29[ 2 ) == 27~V o(3¥7).
(5.7) Ly @(3%) 2(%) S i3 )

j=—0o0 j=—c0

Thus, as j—(y—1)=(j+1)—y, we deduce that f(z) is periodic with period
equal to one.
Asymptotics of eigenvalues. From Theorem 1.6 it is easy to prove the asymp-

totic formula for the eigenvalues
>\k ~ckP.

This follows immediately since k~ N (Ay), which gives

A T Yo
k™ Jori/rde '

Using the Dirichlet—Neumann bracketing method, it is possible to improve the
constants in equation (1.3). In [8] the authors only consider two cubes Q1 CQCQ2,
and they obtain a lower and an upper bound for the eigenvalues in cubes which
depends on the measure of the cubes @7 and Q9 instead of the measure of 2.
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A similar argument to the one in [8], changing the functions {sinkz}zen for

{sin, kx}ren, gives the upper bound

p/n

where sin, kz are the eigenfunctions of the one-dimensional problem with constant
coefficients, see [3].

However, it seems difficult to improve the lower bound obtained with the aid

of the Bernstein’s lemma.
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