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On completely invariant Fatou components

Chun-Lei Cao and Yue-Fei Wang(')

Abstract. Completely invariant components of the Fatou sets of meromorphic maps are
discussed. Positive answers are given to Baker’s and Bergweiler’s problems that such components
are the only Fatou components for certain classes of meromorphic maps.

1. Introduction

Let f be a transcendental meromorphic map defined in the complex plane C.
The Fatou set F(f) of f is the largest subset of C where the iterates f7 of f are well
defined and form a normal family. The complement of F(f) is called the Julia set of
f and denoted by J(f). It is clear that F(f) is open and completely invariant under
f, and J(f) is closed and also completely invariant. If U is a component of F(f),
then f*(U) is contained in some component of F(f) which we denote by U,. If
U,,NU,, = for all n#m, then U is called wandering. Otherwise U is called periodic
or preperiodic. In addition, if f~1(U)CU and f(U)CU for a component U of F(f),
then U is called a completely invariant component of F(f). More details of these
can be found in [11], [12] and [18].

We define FV(f) to be the set of Fatou exceptional values of f, that is, the
points whose inverse orbit

O™ (z)={w: fM(w) =z for some n € N}

is finite. The set FV(f) contains at most two points. Transcendental meromorphic
maps can be divided into the following three classes:

(i) E={f:f is entire },

(if) P={f:f is meromorphic, has exactly one pole, and co€FV(f)};

(iif) M={f:f is meromorphic, has at least one pole, and co¢FV(f)}.

(1) Both authors are supported by NSFC and the 973 Project.



254 Chun-Lei Cao and Yue-Fei Wang

The iteration of maps in E was studied by Fatou [14], Baker [1], [2], [3], [4],
[5], 16], and other authors. If f is a map in P then we may assume without loss of
generality that it has a pole at the point 0, and it then follows that f must be an
analytic map of the punctured plane C*=C\{0} onto itself. The iteration of such
maps was studied first by Radstrom [20] and then by others [5], [16] and [17]. In a
series of papers [7], [8], [9] and [10], Baker, Kotus and Lii studied the iteration of
maps in M.

For a rational function f with degree more than one, it is known that F{f)
can have at most two completely invariant components and if F(f) has two such
components, then these are the only components of F(f). In [2], Baker showed that
if f€E, then there is at most one completely invariant component of F(f). He also
asked whether the existence of a completely invariant component of F(f) precludes
the existence of other components or not (see [3]). Eremenko and Lyubich [13,
Theorem 6] showed that this is true if f€SNE, where

S={f:f is meromorphic and has finitely many critical and asymptotic values}.

Less is known about completely invariant Fatou components of meromorphic maps
with at least one pole. Bergweiler [12, Questions 13 and 14] put forward the fol-
lowing questions for meromorphic maps: Let f be a meromorphic map. Can F(f)
have more than two completely invariant components? If F'(f) has two completely
invariant components Uy and Us, does F(f) contain only Uy and Us? Baker, Kotus
and Lii [9, Theorem 4.5] showed that if f€S, then F(f) has at most two completely
invariant components.

Our first result shows that the completely invariant components are the only
Fatou components for the class S.

Theorem 1. Let | be a meromorphic map in S. If F(f) contains two com-
pletely invariant components Vi and Vy, then F(f)=V1UVs.

Remarks. 1. We note from (8] that f(z)=tan(z) (€8S) has exactly two com-
pletely invariant domains, the upper and the lower half-plane, separated by J(f)=
R.

2. Our proof of the theorem is different from that of Eremenko and Lyubich
in [13].

We also consider another class F, where

F={f:f(z)=z+r(z)exp(p(z)), where r is rational and p is a polynomial}.
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Theorem 2. Let f be a map in FOE. If F(f) has a completely invariant
component U, then F(f)=U.

If f is an analytic self-map of C*, we see from [5] that there are four types of
maps f:

(a) f(z)=kz", k#0, neZ, n#0,4+1 (we are excluding Mé&bius transforma-
tions);

(b) f(z)=z"exp(g(z)), g non-constant entire, n€IN;

(¢) f(z)=z""exp(g(2)), g non-constant entire, n€N (we note that without
loss of generality, f€P is just this type);

(d) f(z)=z"exp(g(z)+h(1/2)), g, h non-constant entire maps, meZ.
We call f a transcendental analytic self-map of C* if f has the form (b), (¢) or
(d). In all cases the set J(f) is closed, non-empty and even perfect in C*, with the
complete invariance property f(J(f))=f"1J(f))=J(f), thus f(F(f))=F(f). One
may ask how about completely invariant domains of maps in P, or more generally,
of analytic self-maps of C*. Considering this problem we have the following results.

Theorem 3. Let feP. If F(f) has a completely invariant component, then

(i) all components of F'(f) are simply connected;

(i} 4n every other component of F'(f), f 1s either a univalent map or a two-fold
map.

Theorem 4. Let f be a transcendental analytic self-map of C*. Then F(f)
has at most one completely invariant component. In particular, this is the case for
fepP.

Corollary 1. If f is a transcendental analytic self-map of C*, then the number
of the components of the Fatou set is either 0,1 or oco. In particular, this is the
case for fEP.

In addition, using the same method as in the proof of Theorems 3 and 4, we
can obtain a result about Julia sets as Jordan arcs. A Jordan arc v in C is defined
to be the image of the real interval [0, 1] under a homeomorphism . If the interval
[0,1] is replaced by the unit circle then v is said to be a Jordan curve. Finally, if f
is a meromorphic map which is not rational of degree less than two, « is said to be
a free Jordan arc in J(f) if there exists a homeomorphism 1 of the open unit disc
onto a domain D in C such that J(f)ND is the image of (—1,1) under ¢ and « is
the image of some real interval [a,b] where —1<a<b<1. We are able to prove the
following result.

Theorem 5. Let [ be a transcendental meromorphic map with at most finitely
many poles. If J(f) contains a free Jordan arc, then J(f) must be a Jordan arc
passing through oo and both the endpoints of J(f) are finite.
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2. Completely invariant domains for analytic self-maps of C*

We first prove Theorems 3, 4 and their corollary. We shall need the following
lemmas.

Lemma 2.1. ([5]) If f€P, then F(f) has at most one multiply connected
component. Furthermore, if the multiply connected component exists, then it is
doubly connected and it separates the pole of f and co.

Lemma 2.2. Let f be a transcendental meromorphic function. If U is a com-
pletely invariant component of F(f), then

(1) U is unbounded;

(it) OU=J(f) (we denote the boundary of a domain D by 0D);

(iil) U is either simply connected or infinitely connected,;

(iv) all other components of F(f) are simply connected,

(v) U is simply connected if and only if J(f) is connected.

Remark. In this lemma, (i), (ii) can be found in [9], Lemma 4.2 and its proof;
(iil) is Lemma 4.1 of [9]; (iv), (v) in Beardon’s book [11, pp. 82-83] are shown to be
true for the case when f is a rational function, however, the proofs of the rational
case apply to the general meromorphic function without further difficulties. For
completeness, we give the proofs of (i), (ii), (iv) and (v) here.

Proofs of Lemma 2.2(i), (i), (iv) and (v). Since oo is an essential singularity of
f, it follows from the big Picard theorem that f(z)=a has infinitely many solutions
in any neighborhood of oo for all a&€lU except for at most two points. Since U is
completely invariant, all these solutions belong to U. Thus U is unbounded and
this is (i).

To prove (ii), we need to prove only that J(f)COU. Let V be a domain in
C such that VNoU=0. Then either VCU or VCC\U. In the first case we have
V CF(f); in the second case, we have f™(V)NU=0 (m=0,1,...). Thus {f™}>_,
is normal in V, and so, VCF(f). Both cases imply J(f)CoU.

To prove (iv), observe that from (i), J(f)UU is the closure of U and so is
connected ([11, Proposition 5.1.1]). By [11, Proposition 5.1.5], the components of
its complement are simply connected and as these components are just the com-
ponents of F(f) other than U, (iv) follows. Finally, (v) is a direct consequence of
Lemma 2.2(ii) and [11, Proposition 5.1.4]. [

By Lemma 2.2(iv), we can immediately obtain the following result.

Corollary 2. Let f be a meromorphic function. If F(f) has two or more
completely invariant components, then each component of F(f) is simply connected.
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Proof of Theorem 3. (i) The result follows immediately from Lemma 2.1 and
Lemma 2.2(iii) and (iv).

(ii) Let U be a completely invariant component. Then by Lemma 2.2(i) and
Theorem 3(i), U is unbounded and all components are simply connected. Suppose
that there is a component V#U of F(f) in which f is neither a univalent map nor
a two-fold map. Let K be a component of F(f) such that f(V)CK. Then K#U.

Take a value a in K such that f(z)=a has infinitely many simple roots ( f'(z)=0
at only countably many z so we have to avoid only countably many choices of a), and
take three distinct points p,q,r€V with f/(p)#£0, f'(¢)}7#0 and f'(r)5£0 such that
f(p)=f(q)=f(r)=a. Thus there are three different branches z=P(w), z=Q(w) and
2=R(w) of the inverse f ! of w=f(2), which are regular at w=a€K and satisfy
p=P(a), g=Q(a) and r=R(a).

By Gross’ star theorem (see e.g. [19]), we may continue P(w), Q(w) and R(w)
analytically to oo along almost any ray starting at a, in particular along some ray
L which meets U. Denote by v the segment of L from a to a certain point beU.
Then as w moves along ~y the functions P(w), Q(w) and R(w) trace out curves
P(v), Q(v) and R(v), which are disjoint and join peV to p'=P(b)eU, ¢V to
¢=Q(b)eU and reV to ' =R(b) €U, respectively.

Join p to g by a simple arc «CV, g to r by SCV and r to p by §CV. Also join
p’ to ¢’ by a simple arc o/ CU, ¢ to v’ by 8/CU and ' to p’ by 6'CU. Let j be
the last intersection of o with P(v) and g be the first intersection with Q(y). Let
& be the subarc of o which joins p to g. Similarly define 7 as the last intersection
of o with P(v), ¢ as the first intersection with Q(v) and & as the subarc p'q
of ¢/. Denote by 71 the subarc pp’ of P(v), by s the subarc g¢@' of Q(v). Then
Wld’zfl&_l is a Jordan curve Cy. In the same way we can obtain Jordan arcs Cy=
T 35 LB CQ(YUB UR(YIUB and Cs=m38"5¢5 101 CR(7)US' UP(y)Ud, where
7o, B, 32, B,73,06', 23 and & are subarcs of Q(v), 5, R(7), 8, R(v),8, P(y) and 4,
respectively, as in the construction of C7. Denote by D; the interior of C; (i=1, 2, 3).
Since none of P(v), Q{(v) and R{y) contains a pole of f and f has only one pole,
we can see that there exists at least one number je{1,2,3} such that D; contains
no pole of f. Without loss of generality we assume that D; contains no pole of f.
Then Dy is mapped by f into a bounded region f(D;) whose boundary is contained
in f(C1)C Fla)Uf(a’) 0.

Now f(a) (CK) and f(a') (CUY) are closed, bounded and disjoint curves pass-
ing through @ and b, respectively. Denote by M the unbounded component of their
complement. Since U and K are simply connected, M contains J(f). Thus M meets
v, since J(f) does. Now f(m1) is a segment of v which joins f(«) to f(o’). If ¢ is the
last point of intersection of v with f(a) and t’ the first intersection with f(a’}), then
the segment £t of v is a cross-cut of M whose ends belong to different components
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of the boundary of M. Thus ¢t does not disconnect M. Since tt’ belongs to f(m1)
every point of ¢t is a boundary value of f(D;). Thus f(D;) must contain the whole
of M\tt’, i.e. an unbounded set. This contradicts the boundedness of D; and the
result is proved. O

The following result is a generalization of Gross’ star theorem and can be found
in Stallard [22, Lemma 2.11].

Lemma 2.3. If R is a branch, analytic at zp, of the inverse of a function g
that is meromorphic in C or in C\{0} then R can be continued analytically along
almost every ray from zy to oo.

Lemma 2.4. ([11, p. 108, Proposition 4.6]) Let f be a continuous map of
topological space X onto ilself, and suppose that X has only a finite number of
components. Then for some integer m, each component is completely invariant
under f™.

Lemma 2.5. Let f be a transcendental analytic self-map of C* not in class
(b). If U is a completely invariant component of F(f), then

(i) U is unbounded;

(ii} for any neighborhood D of zero, DNU £, hence 0€dU;

(iii) OU=J(f) in C;

(iv) all other components of F(f) are simply connected.

Remark. In Lemma 2.2 we have shown that (i), (iii) and (iv) in Lemma 2.5 are
true when f is a meromorphic map, however, since 0 and oo are essential singularities
of f2 for a map f of the form (c) or (d), the proofs of the meromorphic case apply
to the transcendental analytic self-map of C* in the classes (¢) and (d) without
further difficulties. We omit the proof.

By Lemma 2.5(iv), we can immediately obtain the following corollary.

Corollary 3. Let f be a transcendental analytic self-map of C* not in class
(b). If F(f) has two or more completely invariant components, then all components
of F(f) are simply connected.

Lemma 2.6. ([2]) If f is a transcendental entire map, then F(f) has at most
one completely invariant component.

Proof of Theorem 4. We distinguish between two cases.

(I). Suppose that f has the form (b).

In this case 0 is a removable singularity for f. Let f(0)=0. Then f is extended
to the complex plane as a transcendental entire map, denoted by fi. It follows
from Lemma 2.6 that the Fatou set of f; has at most one completely invariant
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component. Since the normality is a local property, F(f) and F(f1) are the same
except possibly at 0, and J{f) and J(f1) are also the same except possibly at 0.
Since f(z)=f1(2) for all z#£0, we see that F(f) also has at most one completely
invariant component.

(IT). Let f be a map in the class (¢) or (d). Suppose on the contrary that
F(f) has two mutually disjoint completely invariant components U and V. Then
by Lemma 2.5 and Corollary 3, U and V are simply connected and unbounded.

Take a value a in V such that f(z)=a has infinitely many simple roots (f’'(z)=0
at only countably many z so we have to avoid only countably many choices of @), and
take three distinct points p,q,r€V with f/(p)#£0, f'(¢)#0 and f’(r)#0 such that
f(p)=f(q)=f(r)=a. Thus there are three different branches z=P(w), z=Q(w) and
2z=R(w) of the inverse f ! of w=f(z), which are regular at w=a€V and satisfy
p="P(a), ¢=Q(a) and r=R(a).

By Lemma 2.3, we may continue P(w), Q(w) and R(w) analytically to oo along
almost any ray starting at a, in particular along some ray L which meets U. Denote
by 7 the segment of L from a to a certain point beU. Then as w moves along v the
functions P(w), Q(w) and R(w) trace out curves P(v), Q(7) and R(7y), which are
disjoint and join peV to p'=P(b)elU, geV to ¢=Q(b)€U and r&V to r'=R(b)€U,
respectively. Following the same deduction as in the proof of Theorem 3(ii) we can
obtain a contradiction. Thus f has at most one completely invariant component
and Theorem 4 is proved. [J]

Proof of Corollary 1. Suppose that F(f) has only finitely many components
Ui, ...,Uy. For the transcendental analytic map f of C* to itself, f(F(f))=F(f),
then by Lemma 2.4, each U; is completely invariant under some iterate f¢. But f¢
is a transcendental analytic map of C* to itself, and so it follows from Theorem 4
that f¢ has at most one completely invariant component. So we deduce that k=1
and the proof is complete. [J

3. Completely invariant domains for f€S
Next we prove Theorem 1.

Lemma 3.1. ([9]) Suppose that [ is a transcendental meromorphic map, f€S
and that F(f) has a simply connected completely invariant component Ug. Then oo
is an accessible point of OUy.

Proof of Theorem 1. Since by Lemma 2.6 and Theorem 4, F(f) has at most
one completely invariant component when f is transcendental entire or f€P, and
the result is known for rational functions (see, for example, [11, Theorem 9.4.3]),



260 Chun-Lei Cao and Yue-Fei Wang

we only need to consider the case f€M. It follows from Lemma 2.2 and Corollary 2
that V1 =0V, =J(f) and all components of F(f) are simply connected.

Suppose that F(f) has another component U, U#V), U#V;,. Then U is simply
connected and QU CJ(f)=0"(oo). Let 21,20€0U, z17#29. Then z1,20€J(f)=
0V1 =0V, and we can choose two neighborhoods Dy and Ds, z1€D1, 22€ Do, such
that DiNDs=0. Then there are four points a1, az€D; and by, by€ Do such that
a1,b1€Vy and aq, b€V, We join a7 to by in Vi by a Jordan arc 97, and as to by in
V2 by a Jordan arc d2. We also join a; to 2y, as to z1 in D1, by to 29, by to 29 in Dy
by Jordan arcs o1, 01, o2 and 0s, respectively, such that A= Ud; UoaUb2Ud2 U,
forms a Jordan curve in C. The curve A separates G\A into two components NV;
and Ns. Let N1 be the bounded component in C. Take any points ¢ on 41, g#aq,
q#b1, and r on 2, r£as, r#bo. Join ¢ and v in N7 by a cross-cut . Then n
goes from Vi to Vi, and hence must meet J(f}. Let zo€nnJ(f). Then Ny is a
neighborhood of zp and contains a point p€O~ (o). Thus p is a pole of f¥ for some
positive integer k. By Lemma 3.1 there is a curve v in Vj such that v—o0. Thus
there is an image v'= f () which tends to p and lies in V3, i.e. p is accessible in
V1 along +'. We can therefore find a cross-cut I'; of V7 which has two ends at p and
0o, and meets A only at ¢, for 4y is in the domain V; and g€4d;.

Similarly we can find a cross-cut I'y of V5 which has two ends at p and oo,
and meets A only at r. Then I'=T';UI'; forms a Jordan curve in é, I' separates
(AJ\F into two components E; and FEs, and A\I' separates into two Jordan arcs
i1 and po which both have deleted ends ¢ and r. Suppose z€pi. If zo€puq,
then as i1 =(01Npe1 YU UOU(S2Npq) or g = (61 N1 )UaaUBaU(82N gy ) and 21, 22 €
J(f), we have 21,22 €01U8; C D1 or 21, 20€09U02C Dy, i.e. D1NDy#0D, which is a
contradiction. Therefore, if 23 €p1, then zo€us. Since I' meets A only at ¢ and
r, we have p;NI'=0 (¢=1,2). It follows from the connectivity of y1 and po that
i CEy or g, CEy (i=1,2). If py and po are in the same component, say Fy, then
Ny CFE, as Nj is bounded in C and E; and E; are both unbounded in C. Thus
p€E1, a contradiction. Hence y1 and uy are in the different components Ey and Es.
Since z1 €p1 and 29 € s, the points z; and zy are in the different components F4
and F,. Therefore by z,€0U (i=1,2), U contains both points of F; and Es, which
contradicts the connectivity of U since I'NU=0. [

4. Completely invariant domains of feFNE

In this section, we will prove Theorem 2. To this end, we need the following
lemmas.

Lemma 4.1. ([21]) If f€F, then f does not have wandering domains.
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Lemma 4.2. ([21, Lemma 4.3]) For a specified K>1, and o function f in the
class F, let

Gr(f)={fs= oféd 1 ¢ is K-quasiconformal firing 0, 1, co, fs is meromorphic}.

Then the family Gk (f) can be expressed uniquely in terms of a finite set of complex
parameters Xy, ..., Xn(k,5)-

Lemma 4.3. If f€F, then every periodic cycle of simply connected Boker
domains of f contains a singularity of f~*.

Proof. Let U be a simply connected Baker domain of f with period p and sup-
pose that U, Uy, Ua, ..., U,_1 do not contain singularities of f~*, where U, (n€N)
is a component of F(f) containing f™(U). It follows that U, is simply connected
and that f|y, is univalent for all n. As observed by Herman [15, p. 609], this implies
that the space of quasiconformal deformations of f is infinite dimensional. But by
Lemma 4.2, G (f), the quasiconformal deformation family of f, depends only on
finitely many parameters, which is a contradiction. [

The following result is due to Eremenko and Lyubich [13, Lemma 11].

Lemma 4.4. Let | be a transcendental entire function. If F(f} has a com-
pletely invariant component U, then all the critical values and logarithmic singular-
ities of f~1 are contained in U.

We denote the set of all singularities of f~! by sing f~* and define

P(f)y= f(sing f ).

n=0

Lemma 4.5. ([12, Theorem 7)) Let f be a meromorphic map, and let G=
{Uo,U1,...,Up_1} be a periodic cycle of components of F(f).

(i) If G is a cycle of immediate attractive basins or Leau domains, then we
have U;Nsing f~1#0 for some j€{0,1,...,p—1}.

(i) If G is a cycle of Siegel discs or Herman rings, then U; CP(f) for all
7€{0,1,...,p—1}.

Proof of Theorem 2. At first, since f€E and by Lemma 2.2(i), U is unbounded.
We see from [4, Theorem 3.1] that all components of F(f) are simply connected.
By Lemma 4.1, f has no wandering domains. Thus every component of F(f) is
(pre)periodic. Now suppose that D is a periodic component of F(f) with D#U.
Since f€F, it follows from Stallard [21, pp. 218-219] that there are no transcenden-
tal singularities of f~!. Thus by Lemma 4.4, all singularities of f~! are contained



262 Chun-Lei Cao and Yue-Fei Wang

in U. It follows from Lemmas 4.3 and 4.5 that D can only be a Siegel disc. On the
other hand, since f is transcendental entire and f~*(U)CU, we see that f|y cannot
be a univalent map, then U is neither a Siegel disc nor a Herman ring. Thus the set
Unso f™(sing f~1) has only one limit point (possibly cc). Consequently D cannot
be a Siegel disc in view of Lemma 4.5(ii). Thus U is the only periodic component
of F(f).

If F(f) has a preperiodic component V, then there exists a positive integer n
such that f*(V) is periodic. Thus f*(V)CU. However, U is completely invariant,
hence V=U.

We have proved that F(f) has only one component U so that F(f)=U. O

5. Julia sets as Jordan arcs
Finally, we prove Theorem 5. We begin with some lemmas.

Lemma 5.1. ([22, Theorem Al) Let f be a meromorphic map which is not
rational of degree less than two. If J(f) contains a free Jordan arc, then J(f) is a
Jordan arc or a Jordan curve.

Lemma 5.2. ([22, Lemma 3.1)) If f is @ map in class E or P then J(f)
cannot contain a free Jordan arc.

Lemma 5.3. ([22, Lemma 4.1]) Suppose that f is a map in class M and that
J(f) is a Jordan arc with precisely one finite endpoint a. Put P(z)=z?+a. For
some z; such that fP(z))=a#a,c0, take a fized branch of P~ Y w)=(w—a)'/? at
w=c. Then F=P~'fP continues analytically to a function in class M and J(F)
is a Jordan curve.

Proof of Theorem 5. Since f is transcendental meromorphic, J{f) must be
unbounded. It follows from Lemma 5.1 that J(f) must be one of the following
cases:

(I) a Jordan curve containing oo;

(IT) a Jordan arc with precisely one finite endpoint «;

(TIT) a Jordan arc passing through oo and with both endpoints finite;

Thus we need only prove that Cases I and II are impossible.

In Case 1, since J( f) must pass through co, F'(f) has precisely two components,
Uy and Us, both of which are simply connected. We have either

(IA) f(Ul)CUl and f(UQ)CUQ, or

(IB) f(U)CUy and f(Uy)CUs.

In Case IA, we also have f~1(U;)CU; and f=}(Us)CUs, that is, U; and Uy
are completely invariant components of F((f). Suppose f(z) has n poles (when f(z)
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is entire, we let n=0). Since f is transcendental meromorphic, we can take a point
a €Uy which is neither a Picard exceptional value nor a critical value of f(z). Since
U1 is completely invariant and f~(a) is an infinite set, f~!(a) CUy, and we can take
n+2 branches g, (2) (k=1,...,n+2) of the inverse function of f(z) which are regular
at a and satisfy g;(a)#g;(a), f'(g:(a))#£0 (i,7=1,...,n+2,i#7). By Gross’ star
theorem one can continue gi(2) (k=1,...,n+2) analytically to infinity along almost
all rays emanating from a. We can therefore pick such a ray L which meets Us.
Denote by « the segment of L joining ¢ to a certain point b in Us and directed
from a to b. Then as z moves along v the functions gr(z) (k=1,...,n+2) trace out
curves gi(v) (k=1,...,7-+2), which are disjoint, for none of gx(z) (k=1,...,n+2)
has a singularity on . Thus all gx(y) (k=1,...,n+2) intersect the boundaries of U
and Us. If gi(7y) is oriented from g (a) to gx(b), let ¢ denote its first intersection
with 0U1=J(f) (k=1,2,...,n+2). Then there exist at least n+1 mutually disjoint
open subarcs of J(f), each of which has one deleted endpoint at ¢; and the other at
t; (i#j), since J(f) is a Jordan curve. Now that f(z) has n poles and they are all
on J(f), we can see that among these arcs, there is an arc that contains no poles
of f. We denote it by 5 and its deleted endpoints by ¢ and t'. Without loss of
generality we can suppose that t€g1(v) and ¢'€g>(v). Thus g1(v) joins u1=g1(a)
in Uy to ug=g1(b) in Uz and similarly g2(7y) joins v1 =gs{a) in U to va=gz(b) in Us.
Now we join u; to v; by a simple arc 8; CU; and join us to vo by a simple arc
B2 CUs. For i=1,2, if §; is oriented from u; to v;, let uw) denote its last intersection
with g1(v) and o] its first intersection with go(y). Let 3] denote the subarc of 3,
whose endpoints are u, and v}, oriented from u/ to v and let  and s denote the
arcs wjuh and vivh of g1(y) and go(7), respectively, oriented from ] to u) and from
v} to vh. Then wB3%~1(B3])~" is a simple closed curve. Denote this curve by T', and
the interior of I' by D. Now that D contains no poles of f according to our choices
of g1(z) and g2(z). Hence f(z) is analytic in D and hence f(D) is a bounded region.
Moreover the boundary of f(D) is contained in f(I') and hence in yU f(51)Uf(52).

For i=1,2, the curve f(f;) is closed, bounded and lies in U;. Since U; and Uy
are unbounded and simply connected, it follows that f(£;) and f(82) are mutually
disjoint and exterior to one another. Consider the unbounded component H of
the complement of f(51)Uf(B2). The component H meets v and in fact if r is
the last point of intersection of v with f(5) and s the first point of intersection
of v with f(82), then the segment rs of ~ is a cross-cut of H whose endpoints
belong to different components of the boundary of H. It follows that rs does not
disconnect 1. Now in fact a point w of rs (#r, s) is the image f(z) of an interior
point z in the arc 7 of I'. In the neighborhood of z and inside I" the function f(z)
take an open set of values near w, some of which lie off v and in H\rs. Then
since the boundary of f(D) is contained in yU f(31)Uf(B2), we see that f(D) must
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contain the whole of H\rs. But this contradicts the boundedness of f(D).

In Case IB, we have f~}(U;)CUs, and f~1(Uz)CU;. As in Case IA, we can
take a point a€U; which is neither a Picard exceptional value nor a critical value
of f(2). Since f~*(U1)CUa, we have f~1(a)CU,. Following the same deduction as
in Case TA, just substituting Uy by Us, and Us by Uy, we also obtain a contradiction.
Hence J(f) cannot be a Jordan curve as described in Case 1.

In Case II, J(f) is a Jordan arc with one end at oo and one finite endpoint a.
Let P(z)=2%+4a. For some zg such that fP(z)=a#a,00, take a fixed branch
of P~Y{(w)=(w—a)'/? at w=a. We consider the function h=P~*fP. Since by
Lemma 5.2, feM, it follows from Lemma 5.3 that i continues analytically to a
function in class M and J(A) is a Jordan curve. We also see that h has only finitely
many poles. Thus J(h) is a curve as described in Case I, which is impossible.

Therefore J(f) must be in Case III, i.e. J(f) is a Jordan arc passing through
oo and both endpoints of J{f) are finite. O
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