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A Dirichlet principle for the 
complex Monge-Amp re operator 

Leif Persson 

A b s t r a c t .  A solut ion to a Dirichlet  p rob lem for t he  complex  M o n g e - A m p ~ r e  opera to r  is 

character ized as a min imize r  of an  energy  funct ional .  A m u t u a l  energy  e s t ima t e  and  a general iza-  

t ion  of HSlder 's  inequal i ty  is proved.  A compar i son  is m a d e  wi th  cor responding  resul ts  in classical 

potential theory. 

1. I n t r o d u c t i o n  

In classical potential  theory, there is a correspondence between positive meas- 
ures and Green potentials on a domain in R n, and the Green potential  is the 

unique solution to a Dirichlet problem for the Laplace operator A on the domain. 
The Dirichlet principle states that  the Green potential  of a measure it can be char- 
acterized in an alternative way, as the unique minimizer of the energy functional 

(1) J , ( u )  f ( u ) ( � 8 9  

The main result of this paper  is an analogous Dirichlet principle in pluripotential 
theory, where we consider positive measures and plurisubharmonic functions on a 
pseudoconvex domain in C n. The Laplace operator,  which is linear, is replaced 
by the complex Monge Ampere operator,  which is nonlinear. More precisely, the 
complex Monge Ampere operator acting on smooth plurisubharmonic functions u 

is a positive measure, given by 

(ddCu) ~ = 4 ~ n ! d e t  OzjO2k "~' 

where A is the Lebesgue measure on R 2n. Furthermore,  the energy functional (1) 

is replaced by 

(2) J,(u) = / (-U) ( n~(dd~u)n- it ) . 
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The measure (ddCu) ~ can be defined for bounded plurisubharmonic functions u, 

see [1]. It  was shown in [3] tha t  for p_>l, (dd ~. )~ is well defined on the sets Cp of 
plurisubharmonic functions u with least harmonic majorant  0 on ft, and such tha t  
the pluricomplex p-energy 

n 

is finite. The main theorem in [3] says that  the corresponding Dirichlet problem 

(ddC )n  cEp, 

has a solution if and only if # has finite pluricomplex p-energy in the sense that  
there is a constant C > 0  such tha t  

f cIp( ) 
for all bounded functions u in $p with f(ddCu)~<oc. We denote the set of such 
measures by Adp. For functions in $1, the energy functional (2) is defined and finite, 
provided #EAJ1.  Our main theorem is the Dirichlet principle (Theorem 3.13) 

(ddcu)n=# if and only if J ~ ( u ) =  min J~(w). 
wEC1 

Furthermore,  we prove an est imate for the mutual pluricomplex p-energy 

(uo, ... , U~)p =/(-uo)PddCul  A...AddCun, 

which is a generalization of the energy estimate in [4], namely (Theorem 3.4) 

(~tO, ..., Un)p ~ Dn,p[p(uo)P/(P+n) Ip(~tl) 1/(p+n) ...-[p(Un) 1/(p+n) , 

where Dn,p is a positive constant, independent of u0, ..., un. 
This energy est imate is obtained from a generalization of the HSlder inequal- 

ity (Theorem 4.1), which we state as a separate theorem, since we think it is of 
independent interest. This inequality is the third and last result of this paper. 

Remark on notation. In pluripotential theory, d denotes the exterior derivative, 
so to avoid confusion, we have omit ted d in the usual notation for integrals. Thus, 

means integration of the function f with respect to the measure #. 
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2. Class ica l  p o t e n t i a l  t h e o r y  

Let us recall some facts from classical potential theory. We refer to [7] for proofs 
and original references. Let ~ be a domain in R '~, let It and v be measures on ~, let 
u=Gu and v=G~ denote the corresponding (subharmonic) Green potentials with 
respect to ~, and let A4 denote the set of positive measures # such that  G~ is 
subharmonic. The following theorem is an immediate consequence of the Riesz 
decomposition theorem ([7, Theorem 2.6]). 

T h e o r e m  2.1. (Dirichlet problem) If ItcJ~4, then u=Gu is the unique solution 
to the Dirichlet problem 

(3) u subharmonic on ~, 

(4) A u = # ,  

(5)  lira s u p  = O. 
z---~O~ 

Definition 2.2. (Energy of a measure) The mutual energy of two measures 
It, ~EA/[ is the integral 

(6) (It,@= / - G t y =  / ( - u ) A v .  

The energy of It is I~=(# , i t ) .  

For the mutual energy we have the following result. 

T h e o r e m  2.3. (Energy estimate, [7, Theorem 4.2]) If it, ~EAd, then 

(it, . )  <_ (it, It)l/2(., .)1/2. 

For signed measures #, v, the mutual energy is defined by Jordan decomposition 
and bilinearity, and the linear space g of Radon measures of finite energy thus 
obtained is a pre-Hilbert space with the mutual energy as inner product. In fact, 
we have the following theorem. 

T h e o r e m  2.4. (Energy principle for Green potentials, [7, Theorem 4.3]) If # 
has finite energy then (It, It)>O, with equality if and only if It-O. 

However, g is not complete ([7, Theorem 5.15]), but the topological subspace 
g + of positive measures in g is a complete metric space (see [7, Section 6.4], for 
details). Thus, by a slight extension of the Riesz representation theorem, we obtain 
the following result. 
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T h e o r e m  2.5. (Measures of finite energy) A positive measure # has finite 

energy if and only if  there is a constant C > 0  such that 

(7) (~, ~,) < C( . ,  ~,)~/~ 

for all u in some dense subset of $+. 

Remark. For example, the set of all compactly supported u such that  G ,  is 
continuous form a dense subset of ~+, cf. [7, Theorem 4.9]. 

Next, we make the following definition. 

Definition 2.6. The energy functional is 

(8) J , ( u )  = / ( - u )  ( 1 A u - , ) .  

Remark. We see by integration by parts that  

f lllVull +u. Ju(u) = 

so if u is the potential of an electric field and # is a charge distribution, Ju is the sum 
of the energy in the electric field and the potential energy of the charge distribution 
in the electric field. 

Moreover we have the Dirichlet principle. 

T h e o r e m  2.7. (Diriehlet principle) I f  # r  then G~ is the unique minimum 

of J~ over the set of Green potentials of measures of finite energy. 

Proof. The energy functional can be expressed in terms of the inner product 

1 (9) J.(G~.) E(#, # ) §  

and the theorem follows from this formula combined with the energy principle (The- 
orem 2.4). [] 

3. P l u r i c o m p l e x  e n e r g y  

The theory of the complex Monge-Amp~re operator was originally developed 
by Bedford and Taylor in [1] and [2], and the subject is comprehensively developed 
in [6], which is a general reference for this section. The theory of pluricomplex 
energy was developed in [3] and we will recall some definitions and results from 
that  paper. We assume for simplicity that  ~ is a strictly pseudoconvex open set 
in C~; this condition can sometimes be weakened. For notational convenience, we 
define a class of test functions. 
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Definition 3.1. (Test functions) Let g0 denote the set of bounded negative 
plurisubharmonic functions u on gt such that  

lim u(z) = 0  and f (ddCu) n < oo. 
z~Oft  J 

The analog of Green potentials is given by the following definition. 

Definition 3.2. (Pluricomplex Green potentials) For p>_l, let Ep denote the 
class of plurisubharmonic functions u on f~ such that  there is a decreasing sequence 
of test functions E0 9uj'Nu, and such tha t  

< sup  

We say that  functions in E1 are pluricomplex Green potentials. 

We define analogies of energy and mutual  energy in Definition 2.2 as follows. 

Definition 3.3. (Pluricomplex energy) For p_>l, we define the mutual pluri- 
complex p-energy of Uo, ..., unEC0 to be 

(10) (uo, ..., u~)p = f (  Uo)PddCul A...Add~un 

and the pluricomplex p-energy of ucE0 to be 

Ip(u) = f (-u)P(dd~u) n (u,...,u)p. (11) 

We say tha t  (u0, ... ,u,/)l  and / l (u )  are the mutual  pluricomplex energy and the 
pluricomplex energy, respectively. 

For pluricomplex Green potentials we have the following mutual  energy esti- 
mate,  which is an analog of Theorem 2.3. This is our first result, and generalizes 
the energy estimate in [4]. 

T h e o r e m  3.4. (Energy estimate) If no, ..., u~ Ego, then 

(12) (Uo, . . . ,  Un)p <__ D n , p I p ( u o ) P / ( P + n ) l p ( U l )  1/(p+n) ... fp(~tn)  1/(p+n) , 

where D~,I =1 and Dn,p=p p~(~'p)/(p-1) for p> l and 

" ' l \n-2 
(13) c~ (n ,p ) - - (p§  ) (p-- i ) .  

Analogous to the classical est imate (7), we make the following definition. 
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Definition 3.5. (Measures of finite pluricomplex energy) Assume that  p > l .  
We say that  a positive measure # has finite pluricomplex p-energy if there exists a 
constant C > 0  such that  

(14) f ( -u )P#  <_ CIp(u) p/(p+n) 

for all uEgo. We denote the set of such measures by Alp. 

To state the Dirichlet problem, we need first to have (dd c. )~ defined on all 
of s so far, it is only defined on locally bounded plurisubharmonic functions, 
see [1, Proposition 2.9]. To this end we have the following theorem. 

T h e o r e m  3.6. (Cegrell, [3]) / f  go~uj  "~UEgp for some p> l, then (ddCuj) n 
is a weakly convergent sequence, and the limit depends only on u, not on the choice 
of the approximating sequence uj converging to u. 

Definition 3.7. The complex Monge-Amp~re measure of UEgp, denoted by 
(dd%) ~, is defined to be the unique measure obtained in Theorem 3.6. 

With the same proof as for Theorem 3.6 we also obtain the following corollary. 

C o r o l l a r y  3.8. I f  gp~Uj x"NUEgp, then (ddCuj) n--+ (dd%) ~ weakly as measures 
on ~. 

Also, we need the following theorem. 

T h e o r e m  3.9. (Cegrell [3]) I f  uEgl ,  then 

lim I t ( u j ) =  I i (u)  
j ~ o c  

for every sequence uj in go which decreases to u. 

The main theorem in [3] is the pluricomplex counterpart  to Theorem 2.1. 

T h e o r e m  3.10. (Dirichlet problem) The Dirichlet problem 

(15) (ddCu) n =# ,  u E Cp, 

has a solution if and only if #EAlp ,  and if a solution exists, it is unique. 

We consider the following analog of Definition 2.6. 

Definition 3.11. (Energy functional) 

(16) J,(u)= f (-u)(--~(dd~u)'~-u). 
Note that  our energy integrals can be extended to gl. 
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P r o p o s i t i o n  3.12. If [~E.]~I, UEgl and ~09Uj"NU , then limj~o~ J~(uj) is 
finite and depends only on u, not on the particular sequence approximating u. 

Proof. This follows immediately from Theorem 3.9, monotone convergence and 
the fact that  #EJtdl .  [] 

Thus J~ is extended to gl- In particular, the energy integral Ii=(n+l)Jo is 
extended to s and the estimate (14) holds for all uEgl .  

Remark. The functional J~ is convex, and, formally, (dd~u)'~=p is the Eu]er 
equation for J , .  This functional was considered by Kalina [5] under the assumption 
that  the minimizer is twice continuously differentiable and that  # is absolutely 
continuous with respect to Lebesgue measure, with a continuous density. 

The main result of this paper is the following Dirichlet principle for the Dirichlet 
problem (15), which is an analog of Theorem 2.7. 

T h e o r e m  3.13. (Dirichlet principle) If #cA, t1 and ucgl,  then 

(dd~u) ~ =# if and only if J,(u) = min Y,(w). 
wEgl  

Proof. First note that  if u, vCgl and (ddCu)n=#, (ddCv)'~=~,, then 

(17) 

J~(v)-J~(u) ~ ~1 Jf(-v)v+~:--" :n-t-z S(-u)#~-i(-v)P 
> 1 i ( _ u ) ,  
- n + l  J n + l  

/, f -~1/(n+1) i i  f "~n/(n-t-1) 

> 0  

by Theorem 3.4 and Young's inequality. This also proves the "only if" part of the 
theorem. 

To prove the "if" part, suppose that  v is a minimizer of J~ over gl. Let 
y=(ddCv) n, then ucA41 by Theorem 3.4. Also, by Theorem 3.10, there exist UE~I 
such that  (ddCu)n=#. Since v is a minimizer, 

(18) J,(v) < J,(u) 

so J,(u)=J,(v) by (17), and we have equalities in (17). It follows from the last 
equality in (17) and the equality part of Young's inequality that  

(19) / ( - v ) y =  / ( - u ) # ,  
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and hence from the second equality in (17) that  

(20) i(-.,.-l(-.,.-Jl-.,.. 
Furthermore, using the multilinearity of dd ~ A ... Add < and integration by parts, we 
get 

0 < l iminf ( d ~ ( v + t w ) - d ~ ( v ) )  = f ( - w ) ( u - # )  
- -  t ~ O +  t J 

for all wEgl .  In particular, we have f ( - u ) ( u - # ) = 0 ,  since if f ( - u ) ( u - # ) > 0  we 
would get a contradiction to Theorem 3.4. Thus, J~(u)=J~(v) ,  so reversing the 
roles of # and u, we get 

/ ( - w ) ( ~ - ~ )  = 0  

for all w~gl ,  so ~=# .  This proves the "if" part. [] 

It remains to prove the energy estimate (Theorem 3.4). This theorem is derived 
from a generalization of H51der's inequality (Theorem 4.1), which is stated and 
proved in the next section. 

4. A generalized HSlder inequality 

The classical HSlder inequality states that  

,d/p~ \1/~, 

(21) i ul'#J~2 d~ ~ ( i  lullPX d~) ( i  I'U~21P2 d~7 , 

where 1 / p l + l / p 2 = l ,  l < p j < o e .  This c a n  be generalized to more than two func- 
tions, of which a special case is 

i u f u 2  ... undp< t~ 1 d## |I'~pI(p+n-I) X ( S  ~2" p+n--1 d# )1/(p--n- 1) 

(22) 
(S 1) x ... x uP +'~-1 d # )  

In this section we are going to prove a generalization of this result to functionals 
F(Ul , . . . ,  u,~) of a more general form. The only properties of F ( u l , . . . ,  un) required 
is that  it commutes in the last n - 1  arguments, and that  a HSlder type inequality 
holds in the first two arguments, with the remaining arguments fixed. 
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T h e o r e m  4.1. A s s u m e  that X is a set, n a natural number  >>2 and that F 

is a nonnegative real-valued funct ion on X ~ such that F is commutat ive  in the last 

n - 1  variables. Also assume that p>_l and that there exists a real constant C>_1 

such that 

(23) 

F(Ul ,  u2, u3, ..., un) _< C F ( U l ,  ~tl, u3, ..., ~tn)P/(P+l)F(u2, ~t2, u3, ..., Un) 1/(p+1). 

(24) 

Then 

F ( U l , . . . , U n )  _~ C c~(n'p) F ( U l , . . . , u l )  p/(p+n 1) 

X xb~(U2, ..., U2) 1/(p--n-I) ... Ig(Un, ..., 'an) 1/(pTn-1), 

od)h~re 

Proof. If n = 2  there is nothing to prove. Fix n > 2  and assume that  (24) is true 
with n replaced by n -  1. The proof is complete by induction if we prove (24) under 
these assumptions. 

Then (ul ,  ..., un 1 ) H  F ( u l ,  ..., u ~ - l ,  un) fulfills the induction assumption for 
a fixed u~, so we have 
(26) 

F ( u l ,  ... ,un)  <_ C `~(~ I ' P ) F ( U l ,  ... ,Ul,Un) p/(p+n 2) 

x F ( u  2 .... ,U2 ,un) l / (p+n  2) . . .F(Un 1 , . . . , U n - l , U n )  I/(pq-n 2). 

(27) 

Then by (23) and commutativity, we get 

F ( u ,  ... , u , v ) =  F ( u ,  v, ~, ... ,u)  

C F ( u ,  u, u, ..., u) p/(pq-1) . f ( v ,  v, u, ..., u) 1/(p+1) 

and 

(28) 
r ( v ,  ~, ~, ... , u ) =  r ( ~ ,  u, ... , u ,~ )  

<_ C~('~-uP) F ( v ,  ..., v, v)P/(P+n-2)F(u,  ..., u, v) ('~-2)/(p+'~ 2) 

by commutativity and the induction assumption (24) with n replaced by n 1. Now 
we substitute (28) in (27) and get 

(29) 
F(U, ..., U, V) ~ C (14-~247 

x F(u,  ..., u) (p+n 2)/(P+'~-I)F(v, ..., v) 1/(p+n-~). 
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Note that a(n,p) in (25) is the solution to the recurrence equation 

a ( n -  1,p) ) p+ 1 
(30) a(n,p)=a(n-l,p)+ 1+ ~ ; P 

with initial value a(2,p)=1. Thus, a(n, p) also satisfies the recurrence inequality 

[" a(n- 1,p) ~ (p+ 1)(p+ n -  2) 
(31) a(n,p)>a(n-l,p)+ 1-~ 

- \ p + l  ) p(p+n-1) 

We substitute (29) in (26) and get (24) with a(n,p) replaced by the right-hand side 
of (31). Then we use (31) to get (24). This completes the proof, [] 

5. An  energy  es t ima te  for t he  complex  M o n g e - A m p d r e  ope ra to r  

In this section, we prove Theorem 3.4, using Theorem 4.1 and integration 
by parts formulas, similar to those used in [4]. We assume that ~ is a strictly 
pseudoconvex domain in C% 

L e m m a  5.1. If uj, j=0 ,  ..., n, are negative, locally bounded plurisubharmonic 
functions on ~, limz-.oa uj(z)=0, j=0 ,  ..., n, and p > l  then 

_ . \ p / ( p + l )  /(-~to)PddC~lAr<pP/(P-X)(/(-uo)PddC?~oAT ) 
(32) •1/(;+1) 

where T=dd~u2 A... AddCun. 

Proof. By an approximation argument proved in [4], integration by parts is 
justified. Thus, 

(33) 

/ (-uo)P ddCul AT = - / dul AdC( (-uo) p) AT 

= p/(--Uo) p-1 dul AdCuo AT 

= p / ( - - U l )  d((-uo)P-1)AdCuoAT 

+p /(-ul)(-uo)P-lddCuo AT 

=- --p / (p--1)(-uo)P-2(-ul) duoAd~uoAT 

§ / (-ul )(-uo)P- l ddCuoAT 
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and hence, by HSlder's inequality, 

355 

i (-uo)Pddr <p  i ( - u l ) ( - u o ) P  lddr 

(3a) / r ~ (p -1 ) /p /r  ~l/p 

I f  we reverse the roles of ~o and ~1 in (34), we get an estimate of f(-u,)~(dd~uo)A 
T. i f  we use this estimate in (a4) to eliminate J ' ( - ~ l )P (dd~uo)AT  and do some 
simplification, we get (32). The proof is complete. [] 

In the case p =  1, we have the following result. 

L e m m a  5.2. I f  uj, j = 0 ,  ..., n, are negative, locally bounded plurisubharmonic 
functions on ~, limz__.o~ ud(z)=O , j = 0 ,  ... ,n, then 

i ( _uo )dd~u l  AT  < _ f . . 1 1 2 . .  .112 (35) 

where T =dd~u2 A ... A dd~ . 

Proof. By an approximation argument proved in [4], integration by parts is 
justified. Integration by parts and Schwarz' inequality yield 

/ ( - u ~  S du~ 

(36) 
<_ (i duoAd%oAT)~12 (S du~Ad%~AT)a/2. 

Now apply integration by parts again to complete the proof. [] 

Proof of Theorem 3.4. Let F(u0,  ..., Un)=f(  uo)PddCulA...Addr Then, by 
Lemma 5.1 or Lemma 5.2, the assmnptions of Theorem 4.1 are fulfilled with 

C = p  p/(p-1) or C = I  

and the energy estimate (12) follows. The proof is complete. 
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