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Fractal dimensions for Jarn  limit 
sets of geometrically finite Kleinian 
groups; the semi-classical approach 

B e r n d  S t r a t m a n n ( 1 )  

A b s t r a c t .  We introduce and study the Jarn~ limit set J a  of a geometrically finite Kleinian 
group with parabolic elements. The set J a  is the dynamical equivalent of the classical set of well 
approximable limit points. By generalizing the method of Jarm'k in the theory of Diophantine 
approximations, we estimate the dimension of Ja with respect to the Patterson measure. In the 
case in which the exponent of convergence of the group does not exceed the maximal rank of 
the parabolic fixed points, and hence in particular for all finitely generated Fuchsian groups, it is 
shown that this leads to a complete description of .-~a in terms of Hausdorff dimension. For the 
remaining case, we derive some estimates for the Hausdorff dimension and the packing dimension 
of ,.7"~. 

1. S t a t e m e n t  a n d  d i s c u s s i o n  o f  r e s u l t s  

Th i s  p a p e r  cont inues  the  'D iophan t i ne  ana lys i s '  (begun  in [13], [14], [17]) of  the  

l imi t  set  L(G) of a non-e lementary ,  geomet r i ca l ly  f inite K le in i an  group  G wi th  pa-  

rabol ic  e lements .  We assume t h a t  G acts  d i scont inous ly  on  the  ( N + l ) - d i m e n s i o n a l  

uni t  ba l l  D N+I which is equ ipped  wi th  t he  hyperbo l i c  me t r i c  d. 

I t  is well  known t h a t  G is of 5-divergence type ([18, Coro l l a ry  20]), i.e. the  series 

E e-sd(O,g(O)) 
gEG 

diverges  a t  i t s  exponen t  of  convergence 5=5(G), which is usua l ly  referred to  as the  

exponent of convergence of G. 
If  # deno tes  the  P a t t e r s o n  measure  on the  l imi t  set  L(G), t hen  the  5-divergence 

t y p e  cond i t ion  is equivalent  to  the  fact  t h a t  t he  geodesic  flow is e rgodic  ([18, Theo-  
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rem 14]). This implies, for it-almost all ~ in L(G), the 'ergodic law' ([18, Corol- 
lary 19]) 

nm 
t--*c~ t 

Here ~t is the unique point on the ray sr from 06D N+l to ~6L(G), whose hyperbolic 
distance from 0 is equal to t; and further, A denotes the ray excursion function, 
which is defined, for ~6L(G) and positive t, by 

A(~t) := d(~t, G(0)). 

It is well known that the Hausdorff dimension of the set of points which obey 
this ergodic law is equal to 5 ([18, Theorem 15]). 

The aim of this paper is to determine fractal dimensions of certain sets of points 
which do not follow the above ergodic law. Throughout the paper let a denote some 
positive number. We consider the a-Jarn{k limit set J~(G) and the strict a-Jarn,7~ 
limit set (7+ (G), which are defined by 

j~(G):={~6L(G):l imsupA(~t)  > a } 
t - ~ o ~  t - 1 +  ' 

J+(G):={~6L(G): I imsupA~ t) [ : j }  
t-.--+ Oo 

Now, J~(G) is a dense subset of the limit set L(G). From this we deduce that 
dims(J~(G)) ,  the box-counting dimension of J~(G), is equal to dimH(L(G)), the 
Hausdorff dimension of L(G), and hence equal to 5 (for dims (L(G))=dimH (L(G))= 

([15, Theorem 3]) and dimB is invariant under taking the closure ([7, Proposi- 
tion 3.4])). However, as we shall see in this paper, questions concerning other fractal 
dimensions of J~(G) and J+(G)  are more subtle. 

A first main result in this paper is the determination of dimv(J~(G)), the 
dimension of J~ (G) with respect to the Patterson measure it (see Section 2 for the 
definition). We derive the following theorem, where km~ denotes the maximal rank 
of the parabolic elements of the underlying group. 

T h e o r e m  A. If G is a geometrically finite Kleinian group with parabolic ele- 
ments, then 

5 
dim~(J+(G)) = dim.(J~(G)) = 5+a(25-km~)" 

For the proof of this theorem we shall construct and analyse probability mea- 
sures which are supported on Cantor-like subsets of J~(G). Our proof generalizes 
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the classical methods which were developed by Jarm'k ([8]) and later by Besico- 
vitch ([2]) for their calculations of the Hausdorff dimension of the set of well approxi- 
mable irrational numbers. 

On the basis of Theorem A, we continue the investigation of J~(G) and J+(G),  
and derive an estimate for the Hansdorff dimension of ,7o(G) and J+(G)  which is 
exact in the case '6<km~,'. More precisely, mainly by using Billingsley's lemma 
(see Section 2) and the global measure formula for the Patterson measure ([17, 
Theorem 2]), we derive the following theorem. 

T h e o r e m  B. I f  G is a geometrically finite Kleinian group with parabolic ele- 
ments such that 6<_kmax, then 

dimH(J~(G)) = dimH(J+(G)) = l + a "  

We remark that this theorem covers in particular all finitely generated Fuchsian 
groups with parabolic elements. This follows, since for groups of this type we have 
that kraal=l, and also that 6 is less than or equal to 1. Hence Theorem B is 
applicable. 

Also, if we let G=PSL2(Z), Theorem B implies the classical number theoretical 
results of Jarm'k and Besicovitch ([8], [2]). 

Now, in the remaining case, i.e. the case '6>kraal', our semi-classical approach 
does not lead to an exact result for the Hausdorff dimension of the a-Jarm'k limit 
set. However, our method still allows the derivation of the following approximations 
for the Hausdorff dimension dimH (J~ (G)) and the packing dimension dimp(Ja (G)). 

P ropos i t ion  C. If  G is a geametrically finite Kleinian group with parabolic 
elements such that 6>km~x, then 

6 6 
l+a(26-kmax)/5 <- dimH(J~(G)) < l + a  -< dimp(J~(G)). 

Also, we remark that the a-Jarm'k limit set may also be expressed equivalently 
in terms of the set of standard horoballs {Hg(p)(rg):p6P , g6Tp} (we refer to Sec- 
tion 2 for the definitions). For this, let ~ denote the set of functions r R + ~ R  + 
such that limx-~0 log r  An elementary calculation in hyperbolic geo- 
metry shows that a necessary and sufficient condition for ~ to be an element of 
J~(G) is that there exists r such that ~ is contained in the shadow at infinity 
~-~g(p) (r +~) of infinitely many 'reduced' standard horoballs gg(p)(r 

Hence, we have that 

dp6.T n 6 N  pE P ge~rp 
rg<_l/n 
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If in this expression for J~(G)  we take the first union only over those functions 
r which are constant, then we derive the more classical set of well approximable 
limit points, which has already been investigated by Meli~n and Pestana for cofinite 
Kleinian groups ([9]). In this paper, we shall consider in particular the set of simple 
well approximable limit points, which is defined by 

wo:=N U U '+~ ?-tg(p)(rg ). 
nEN pEP gETp 

We remark that  the proofs in this paper immediately yield corresponding results 
for the fractal dimensions of the set of well approximable limit points. 

Finally, we give a few applications of the results in this paper to related topics. 

Convex  c oc ompac t  groups  

For a convex cocompact Kleinian group, the limit set and the Pat terson measure 
form a 'b-homogenons system' (see [13, Definition 0.1.1]). By replacing the parabolic 
fixed points in this paper by a finite set A of loxodromic fixed points and then using 
the geometrical techniques which were developed in [13] in combination with the 
semi-classical method of this paper, one derives the Hausdorff dimension of the set 
of limit points which are well approximable with respect to A. 

Parabol ic  rat ional  maps 

Let J(T) denote the Julia set of a parabolic rational map T. There exists 
a global measure formula for the (dimH J(T))-dimensional conformal measure on 
J(T) which is similar to the formula for the Patterson measure ([6, Proposition 5.3]). 
Again, as in the Kleinian group case, one may derive a Dirichlet-type theorem which 
delivers economical coverings of J(T) in terms of the dynamics of T (this Dirichlet- 
type theorem for J(T) will appear in a joint paper with M. Urbafiski ([16])). 

Since these two concepts are the main ingredients of our semi-classical method 
here, it is not difficult to see that  this method also gives rise to the corresponding 
results for the set of points in J(T) which are well approximable with respect to 
the rational indifferent periodic points of the parabolic rational map T. 

Orbifolds 

Let Mc be the cnsped, geometrically finite Riemaxmian manifold corresponding 
to the Kleinian group G, which is of constant negative curvature and not necessarily 
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of finite Riemannian volume. Let S(Mo) be the unit tangent bundle over MG and 
let {r denote the geodesic flow on S(MG). Further, let ~r:S(MG)--*Mo be the 
canonical projection which maps each line element in S(Mo) to its base point 
in MG. Analogous to the ray excursion function, the geodesic excursion function 
Ao is defined, for veS(Mo) and positive t, by A0(v,t):=d(Tr(v), 7r(r 

For positive a0< l ,  let the large deviation sets flao(MG) be given by 

ff~~176176 t 

Using the results in [15, Theorem 3], it is easily seen that Theorem B and Proposi- 
tion C give rise to the following statements. 

(i) Iy S<kmax, then 

dimH (ff~o (Me)) = 5(2-a0)  + 1. 

(fi) If h>km~, then 

5 ( 2 - a 0 ( a 0 - t  5 ( l - a0 )~ -1~  1< 2 5 - - ~ )  )+-dimH(~~176 

Acknowledgement. The author would like to thank the SFB 170 at the Univer- 
sity of Ghttingen for support and hospitality, and also S. Rees for helpful comments 
on the writing of English. 

2. Preliminaries 

I. Conformal geometry and  measure  theory 

As already stated in the introduction, we let G den6te a non-elementary, geo- 
metrically finite Kleinian group with parabolic elements. Further, we let P be a 
complete set of inequivalent parabolic fixed points. For pEP, the stabilizer Gp of 
p in G contains a maximal abelian subgroup of rank k(p), and k(p) is referred to 
as the rank ofp. We choose a particular element poEP such that k(po)=kmax:= 
max{k(p):peP}. 

We assume that a set Tp C G of coset representatives of Gp in G is chosen such 
that if geTp, then [g(0)[< [h(0)[ for all heGg(p):=gGpg -1. Also let Tmax:=Tpo and 

It is known that the cusp regions of the manifold MG = D N+I/G are represented 
in D g+l by a set of pairwise disjoint horoballs. To be precise, to each gETp, we 
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associate an ( N +  1)-ball Hg(p) (rg) C D N+I which is tangential to S N :=OD N+I at 

g(p) and whose Euclidean radius r 9 is comparable to (1-[g(0)[) .  The horoball 
Hg(p)(rg) is a Gg(p)-invariant subset of D g+l and G permutes the set 

{Hg(p)(rg) : g �9 Tp, p �9 P},  

which we refer to as the set of standard horoballs with top representation. 
We shall also require the notion of the shadow at infinity of a horoball Hg(p) (r), 

which is defined by 

7-/g(p) (r) := {[ �9 sN : s~ ngg(p)(r) # 0}. 

We now state two fundamental results concerning the geometry of s tandard horo- 
balls and its relation to the limit set L(G). These results are required in the following 
section. 

If there is no risk of confusion, we shall use the notion << and >> to indicate 
inequality with a positive constant factor, and if x<<y and x>>y, i.e. if x and y are 
comparable, then we shall write x~y .  

L e m m a  1 ( D e c o u p l i n g  l e m m a ) .  ([17, Proposition 2.3]) For p, qEP and 
g�9 there exists h�9 such that 

h(q) �9 Tlg(p)(2r9) and rh ~ rg. 

L e m m a  2 ( D i r i c h l e t - t y p e  t h e o r e m ) .  ([17, Theorem 1]) There exist positive 
constants kD and x such that, for all positive (~<kD, the set 

{7-/g(p)(rg(a)) :peP ,  geTp, rg >_a} 

covers L( G) with bounded multiplicity. 
Here rg(c~):=x r~/V~-5 denotes the c~-Dirichlet radius corresponding to rg. 

We assume that  the reader is familiar with the construction and basic properties 
of the Patterson measure # (we refer to [11], [12] and [10]). 

For the purposes of the present paper it is sufficient to know that  # is a non- 
atomic probability measure which is supported on the limit set L(G) and further, 
that  there exists a uniform estimate for the/z-measure of N-balls in S g which are 
centred around limit points. This latter estimate was derived in [17, Theorem 2], 
where we referred to it as the global measure formula (see also [19, w In order 
to restate this formula here, we require the following notation. 

For ~�9 and positive t, we let b(~t) denote the intersection of S g with the 
(N+ l ) - ba l l  whose boundary is orthogonal to S g and which intersects the ray sr 
orthogonally at ~t- Hence, b(~t) is an N-ball in S N whose radius is comparable 
to e -t .  Further, we define k(~t) to be equal to k(p) if ~tTHg(p)(rg) for some p � 9  
and g � 9  and we let k(~t) be equal to 5 otherwise. 
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L e m m a  3 (Globa l  m e a s u r e  fo rmula ) .  If  ~EL(G) and t is positive, then 

tt(b(~t ) ) • e-t~ e-(~-k(~,))z~(~*). 

I I .  F rae t a l  g e o m e t r y  

We recall a few results from the theory of fractal sets which are required in this 
paper and which cannot necessarily be found easily in the literature. We assume 
that  the reader is familiar with the definition and basic results of Hansdorff measures 
and packing measures (see [7]). 

Let A denote a compact subset of R N. Further, let m be a non-atomic Borel 
probability measure on A. For positive e, a covering {Ui}ieN of A ' c A  is an (m, e)- 
covering of A' if m(Ui)<e for all iEN.  I f /4~(A' )  denotes the set of all (m,e)- 
coverings of A', then, for positive s, the s-dimensional m-Hausdorff measure 7-l~ (A') 
is given by 

n ? ( A ' )  :-- lim inf E m(Ui)8" 
~--.0 {u~}eUp(h') . 

Analogous to the Hausdorff dimension, we may define dimm(h'),  the m-dimen- 
sion of A', by 

dimm(A') := sup{s: 7-/~ (A') = co} = inf{s : ~ y  (A') = 0}. 

A weaker version of the following lemma can be found in [3, Theorem 14.1]. The 
proof in [3] is easily extended to the slightly more general situation here. 

By B(z,r)  we denote the spherical, Euclidean N-ball of radius r which is 
centred at z. 

L e m m a  4 (Bi l l ings ley ' s  l e m m a ) .  Let A be a compact subset of R N. Fur- 
ther, let ml and m2 be two Borel probability measures on A. If  E is a Borel subset 
of A such that, for positive s and for each zEE,  we have 

l iminf logml(B(z,r))  > s, 
r~o logm2(B(z,r)) 

then it follows that 
dimm2 (E) > s dimml (E). 

For estimates concerning the s-dimensional Hausdorff measure 7-/8 and packing 
measure Ps, the following lemma turns out to be useful. For the proofs we refer 
to [19], [4] and [7] (see also [5, Theorem D, E]). 
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L e m m a  5. Let A be a compact subset of R N. Further, let m denote a Borel 
probability measure on A which is positive on open sets. For zEA and positive r, 
we define Dm,s(Z, r ) :=m(B(z ,  r ) ) / r  s. 

Suppose that E is a Borel subset of A. 
(i) If, for all zEE,  we have limsup~_~0O~,s(z,r)>>l, then 7-ls(F)<<m(F) for 

all Borel subsets F of E. 
(ii) If, for all zEE,  we have limsup~_.oDm,s(z,r)<<l , then 7-ls(F)>>m(F) for 

all Borel subsets F of E. 
(iii) If, for all zEE,  we have l iminf~0  D~,s(Z, r)>>l, then 7~s(F)<<m(F) for 

all Borel subsets F of E. 
(iv) If, for all zEE,  we have liminfr_.07)m,s(z,r)<<l, then 7 ) s (F)>m(F)  for 

all Borel subsets F of E. 

3. Frac ta l  d imensions  of  J ~ ( G )  and J + ( G )  

I. Coun t ing  horobaUs in t he  shade  of  a ~r-reduced horobal l  

In this subsection we give a local counting estimate for standard horoballs. 
Roughly speaking, for a given horoball Hg(po)(rg) , we calculate the caxdinality of 
equally sized standard horobal ls  Hh(po)(rh) which are totally contained in the 'a- 

rl+a shade' of Hg(po)(rg), i.e. for which we have that ?-lh(po)(rh)CTlg(po)( g ). We 
show that the number of these horoballs is, as should be expected, comparable to 

We remark that for the purposes of this paper it is sufficient to give these 
estimates for the maximal rank parabolic fixed point P0. Nevertheless, using the 
same arguments, similar estimates could be derived for arbitrary p E P  as well. 

We require the following notation. For positive T, n in N and g in Tma~, we 
order the elements in Tm~x in the following way: 

An(T) := {heTma~ :T "+1 <_rh <Tn}, 

Qn (g, a, T):= {h e An (r):  7-/h(p)(rh) C 7-/g(p)(r~+~)}. 

Now, we derive the following counting estimate. 

P ropos i t i on  1. There exists a positive number ~, positive constants ko, kl, k2 
and a rapidly increasing function ~: N- - .R  + such that the following holds: 

If  g is an element of An(Q) for some n in N greater than ko, then we have, for 
m in N greater than ~(n), 

klQ ~(n-m)+~n(2~-km~) < card(Qm(g, a, Q)) _< k2p~(n-m)+~n(2~-km~); 
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and, in particular, 
card(Qm(g, ~, Q)) > 2. 

Proof. Let g be in Irmax such that r~ is less than min{(4x) -1, kS}. Further, 
for qeP, let Qq denote the set of hcTq such t h a t  ~h(q)(rh) l+a  CT-/g(po)(rg ). If we 
define c(g):=(4x)-lr~ +2~, then we have for the Dirichlet radius rg(9), for 0 less 
than c(g), 

r~(9)<r~ +~ 

The Dirichlet-type theorem (Lemma 2) implies, for 9 less than c(g), 

7-lg(po)(xrl+~)nL(G) D (Tlg(po)(rg(8))U U U 
q E P  hEQq 

rh >_O 

?-lh(q) (r~(8))) nL( G). 

Then, the finite multiplicity of the covering in the Dirichlet-type theorem and the 
fact that #(7/g(po)(r~+~)) is comparable to #(7-/a(p0)(xr~+~)) together imply that, 
for 9 less than c(g), 

(1) ,(u~(po) (ri+~)) >>,(u~(~o)(r~ (9)))+ ~ ~ ,(U~(~)(r~(9))). 
q E P  h~Qu 

r h ~ e  

On the other hand, it is easily checked, using the fact that r~ is less than (4x) -z, 
that  we have, for 9 less than c(g), 

rg(~) _lq-a ,l. lq-2~ < l g  - - ~ l  g , 

and hence that 

~g(,o)(rg(0)) cug(po)(ra+~-2~,g j. 

Using once again the Dirichiet-type theorem and also the fact that 

_l+a ,~. _l+2a <_l+a I _l+a < #g --,~.~r __ Ig  , 
~ ' lg  _ 

which implies that  ~ g(po)[ g )} is comparable to ~(~g(p0) (rgZ+=-2xrgZ+2=)), we 
derive, for O less than c(g), 

(2) l+a 

q E P  h~qq  
rh  ~_O 
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Combining (1) and (2), and using the global measure formula (Lemma 3), we deduce 
that, for positive constants Cl and c2, and for O less than c(g), 
(3) 

( r h  ~ k(q)/2 14-a --5 

qEp h~Qq 
rh >~ 

Now, we let O--:A m, for some m in N and positive A which will be specified in 
a moment. From the above we have that 

rg km~/2  

qEp heQq 
the_Am 

rh ~k(q)/2 --rn6--kmax/2 14-o" i--a-~j <c~A A ~(~g(po)(r~ )) 

~--(m+l)6~6-kmax/2.  la_~ [ _ l + a x \  
: t;2A A [~l,~g(po) Vrg )); 

and hence 

I rh ~k(q)/2 ( rh  ~k(q)/2 

qEP hEQq qEP UEQq 
Avn-kl ~_r h (A T M  r h _>A~n+ I 

(4) [ rh ~k(q)/2 
qEP hEQq 

the_Am 

In an analogous way we derive 

Z Z 
qEP heQq 

rh ~k(q)/2 < A_(m+l)6/C C A 6-km~=/2~-ta-~ trl+ax~ 
~---~--~.] __ i 2 - -  1 )~'i,~q'g(po)!, g ))"  

Now, for A less than (2c2c11)-2/(26-k~.x), (4) and (5) together imply 

1 -(m+l)~ { rh hk(q)/2 

qEP hEQq 
Am-l-l ~_rh <Am 

--(re+l)6 l + a  

and hence, if c3:=(2A)-1Cl, 

--(m4-1)6 14-a 

qEP hEQq 
Xm~rl<_rh<A m 

1 <_ c~A-('~+l)~(~g(po)(r~+a)). 
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The decoupling lemma (Lemma 1) then gives the existence of a positive number 
0 such that  

(6) E 1 x 0-(m+l)6#(7-/,(Po) (rg 1+~))" 
hEQpo 

@mq'l<_rh<Om 

Recalling the definition of Qm(g, a, 0), we have now shown that there exist positive 
~constants c4 and ca such that  

c40-(m+l)~/z(~9(po) (r~+~)) < card(Qm(g, a, 0)) --- c50-(m+l)~/z(7-/g(po) (r~+~)). 

Let n E N  be such that gEAr(o). Using the global measure formula, we derive the 
existence of positive constants c6 and c7 such that 

(7) C60(nq-1)6+na(2df-kmax) <~ , t (~ -~  , , {?.l+a~ < C..(n+l)dfWna(2$--kmax) 

Now, (6) and (7) together imply that  

c4c60 (n-m)6+'~(2~-km~x) < card(Qm(g, a, 0)) -< c5c70 (n-m)~+~a(2~-km~). 

If we define ~0 (n):=5 -1 ( n ( 5 + a ( 2 5 -  kraal)) + (log c4c6 - l o g  2)/log 0), then it is easy 
to see that  we have in particular, for m greater than e0(n), 

Qm(g,o,0) >2. 

Finally, if we convert the imposed conditions on rg and m into conditions on n and 
m, an elementary calculation shows that the above holds for 

1. n greater than k0 := (log 0)-1 min{_a -1  log 4x, log kD}, 
2. m greater than ~(n):=max{n(l+2a)-(21og2x/logo),~o(n)}. [] 

II. The construction of  the probability space CZ~, v~) 

For the remaining part  of the paper let 0 denote the positive number which we 
derived in Proposition 1. For ease of notation, we put, for n in N and g in Tma~, 

An:=A~(o) and Q~(g):=Qn(g,a,o). 

Now, we define a rapidly increasing sequence {nk}k~N of positive integers which 
satisfies the following three properties: 

1. no is greater than max{k0,2a-1};  
2. if nk-1 is given for k in N, then nk is greater than e(nk-1); 
3. limm-,oo((1/nm) ~--:~=~1 nj)=O. 
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The sequence {nk}kEN will be central in the following construction. 
For k in N, we define 

Nk := min card Qn~ (g). 
gEAnk_ 1 

Further, for each k in N and g in A,~k_l, we let Qnk (g) be an arbitrary subset of 

Q~k (g) such that  

Nk = card Q)~k (g). 

Also, for a given goEA,~o, we define sets I~ by induction as follows: 
1. I ~ ' - -  l-ha . -{  o(po)(rgo )}, 
2. if I~'_ 1 is defined for k in N,  then let 

I~:={Tlh(po)(r~+a):heQ.,~(g) f~ s~ g e A,~k-1 such that  Tlg(po)(rgX+O-) e /ak_l}. 

Clearly, we have that  each element in I~_ 1 contains exactly Nk elements of I~. 
The 'level sets' I~ form the basis for the Cantor-like set Z~, which we now 

define by 

 o:=N U 
k>_O IEI~ 

We would like to warn the reader tha t  the set Za is not a 'spherical Cantor set' in 
the sense of Seardon ([1, Definition 1]). 

Distributing the mass (N1 ... Nk) -1 uniformly on each of the N1 ... Nk horoball 
shadows in the level set I~, we derive a probability measure on Z~. To be precise, 

for each k in N,  we let v (k) denote the probability measure on I~, which is defined 
for Borel sets E in S N by 

v(k)(E) = ~ (N1 ... N k ) - l # ( E n I ) / , ( I ) .  

Using HeUy's theorem, we then derive a mass distribution v~ on Z~; i.e. we ob- 
tain the probability measure u~ on Za as the weak limit of the sequence of measures 

It is easily checked that,  for each k in N, I in I~ and m greater than k, one 
has 

This observation then implies that  

for all k in N and I in I~. 
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I I I .  A n  ana lys i s  o f  t h e  s y s t e m  (27~ u~) 

We shall give an estimate for the u~-measure of sufficiently small balls centred 
around elements of 27~. In order to obtain this estimate, we require the following 
lemma. 

L e m m a  6. There exists a positive constant k3 such that if B(~, r) is a spherical 
N-ball with centre ~ E ~  and radius r satisfying Qnk+l<_r<Q'~k-l+l for some k in 
N, then 

card{ /E  I~ :  INB(~, r) ~ 0} <_ min{Nk, k3Q-~n~ #(B(~, r))}. 

Proof. Let B(~, r) be given as stated in the lemma. We shall first see that  
B(~,r)  intersects at most one element in I~_ 1. For this, we observe that,  since ~ is 
an element of I a ,  ~ is contained in exactly one element 7-/g(po)(rg l+a) of I~_ 1. Let 
7-(h(po)(rlh +a) be an arbitrary second element in I~% 1. We then have, for sufficiently 
small Q and for n o > 2 a  -1, 

l+a_u_l+a ~ rg --~h -v max r ~ 29 nk-l(l+a) .~_ ~)nk-l+l 
~nk+l <r<~nk--I +I 

_< ~k-~+1 (2~k-~-i + I) _< 2Q ~k-I+I. 

On the other hand, the palrwise disjointness of the standard horoballs implies that  

Ig(P0)- h(p0)l > 2 ~ v ~ h  _> 2~ ~-~+~ �9 

It hence follows that  

rl+a ._l+a. 9 -r'h -r max r<lg(po)-h(po)l. ~nk+l<r(~nk--I+l 

Since 7-Lh(po)(rlh +a) Was an arbitrary element in Ik%l, the latter estimate gives that  
r l+a a 7-/g(po)( 9 ) is the only element of IEI~_ 1 which has non-trivial intersection with 

B(~,r).  It  now follows that  

card{/C I~:  INB(~, r) # O} < Nk. 

In order to derive the second upper bound which is stated in the lemma, we 
~rl+~EI~ intersecting B(~, r) non-trivially, observe that  for each 7-/i(po)( f / 

( ~+~'  max rh~ 7-//(po)(Yr/)CB ~ , r + 2  m ax+~ " h  -e~ 
7"~h(190) ( r  h )Cite 7"(h(PO)(rl+a)~I~ / 
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Since, for sufficiently small Q, we have that ~/~(po)(gr~)nus(po)(grs)=0 for distinct 
elements e, f in Auk, it follows that 

c a r d { / � 9  I~: IMB({, r) # O} min #(?-/h(p0) (grh)) 
l + a  a 7-Lh(po)(r h )El k 

< # (B (~, r-t-2 max r l+a -t-0 max rh)) 
-- 7./h(,0) (r~+~)el~ 7-/h(po) (r~+a) EI~ 

_< r+2Q + <_ 4,')). 

Using the global measure formula for the Patterson measure (Lemma 3), it follows, 
for some positive constant k3, 

c a r d { / � 9  INB({, r) r O} _< ks Q-a"k#(B({, r)). [] 

P r o p o s i t i o n  2. There exists a positive constant k4 such that, for each positive 
c, there exists a positive number r0=r0(e) such that, for all {�9 and for all r less 
than ro, we have that 

va (B({, r)) 5 k4 #(B({, r)) (6-e)/(a+~(2a-k=~)). 

Proof. Let ~ be in :/:~ and let r be positive and sufficiently small. Without loss 
of generality we may assume that Qn~+l <r<Qnk_l+l,  for some k in N. If 0 denotes 
an arbitrary element of the closed unit interval, i.e. if 0<0<1,  then we derive from 
the construction of the measure u and from Lemma 6, that 

k 

~a(B({, r)) _~ H NJ -1 ca rd{ / � 9  I~ :  IMB({, r) r O} 
j=O 

k 

<- H N71 min(Nk, k30-6"~k#(B(~,r))} 
j=O 

k 
< kOo-'~k ~o, rBrr r~ONl-O - - 3  ~k k~, ], k H N j  1" 

j=O 

Using Proposition 1, it follows that 

~,~(Bff, r)) 

<__ k~ o-n~e~ tz(B(( , r) )Okl(k-1) QOe(nk-nk-1) Q-Oan~-1(2e-k=~) 

X ~5(nk-l--n~ ~-~k-2j=o nj  

= ke3kf~ r)) ~ 
X 0 nk-l(a-eS-Oa(2e-kmax)-n~ll(nO-~a(2e-kmax) ~"~-~g nj+(k-  1)(log kl) (log 0)-1)). 
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The growth condition which we imposed on the sequence {nk}keN now yields, 
for each positive ~, the existence of a positive number c0=co(e) such that, for all k 
greater than co, 

no+a(26-km~)  k-2 Y~j =o nj + ( k -  1)(log kl)(Iog Q)-1 
< e .  

n k - 1  

For k greater than co, it hence follows that 

v~(B(~, r)) < k~k~~ #(B(~, r))~ ~ nk-l(6-80-Oa(2a-k~)-~). 

If we specify 0 by 

then the proposition follows. 

Now, if we define 

0 := 
(~-{-o(2(~-- ]r ' 

[] 

z2 :=z~nJ2(G), 

Proposition 2 immediately implies the following result. 

Corol lary  1. 

{ liminf logv~(B(~,r)) > 6 } 
27 + C ~ e L ( G ) :  ~-~0 log #(B(~, r)) - 6+a(26-kma~) " 

The following Proposition is required in the proof of Theorem A. 

Propos i t ion  3. Where 27+ and v~ are as above, 

v~(27 +) = i . 

Proof. Let e, T be positive such that e<T6(26-km~x)/(6+(a+T)(26-km~x)). 
We first make the following observation. If g denotes an element in Tp such that 
rg ~ r0 (e) and such that 

"}-(g(p) (rgl+a+r) NZa ~= ~, 

then there exists ~ET-/9(p)(r~+~+~)N27~ such that (using Proposition 2) 

v,~(~g(p)(rg )nz~) 
<< #(B(~, 2r~+~+r)) (6-~)/(a+~(2~-km~x)) 

< It(']-( , ,{4r l+a+v~(a-e)/(~+a(2~-k~"~)) 
- -  \ g~,P)k g 11 

<< ~(~Q(p)(r~+~+~))(~-~)/(6+~(26-k~=)). 
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Now, the latter observation, the global measure formula for # and the fact that 
is the exponent of convergence of G imply, by the above choice of e and r, 

#(7"~ (r l+a+r~(a-e)/(6+a(2~-k=~xl) lJa(~g(p)(rl+a+r)) << ~ g(P) g J) 
g6T g ~ "  

~g<r0(E) 

<< ~ ~S--e'+'r(~5--e)(2~5--kmax)/(~5+o'(2~--kma, x)) < (2'0. ~g 
gET 

If, for g E Tp, we define 
l + a + r  E(g) :=  9(p)(r9 ), 

and interpret E(g) as an event in the probability space (Z~, ~ ) ,  then the previous 
calculation implies 

gET 

Hence, we can apply the first part of the Borel-Cantelli lemma, which then yields 
that 

=0. 

Since we have that 

the proposition follows. [] 

lim sup E(g) = W~+r, 
gET 

IV. Fractal dimensions of J~(G) and J+(G) 

Proof of Theorem A. Using Proposition 3, we derive, for positive r, 

inf ~ u , ~ ( U i ) >  inf u~. ( U  Ui) = 1. 
{u~}eug~ (z +) . - {u,}eug- (z +) 

It hence follows that 
dim~r (Z +) > 1. 

From Corollary 1 and from Billingsley's lemma (Lemma 4) we now have that 

5 
dim"Z+ -> ~+a(2~-kmax) dim~ Z + _> fi+a(2$-kmax)" 

It hence follows that 

dim. J~. (G) _> dim. ,.7"+ (G) _> 
~ + o ' ( 2 ~ - -  kmax) " 
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In order to derive the upper bound, we consider CE~ and define 

w :=N U U 
h e n  p E P  geTp 

l+o- u~(~)(r ). 

For T>0 and e>0, the global measure formula yields that  

inf ~ tt(U~) ~/(~+~(26-km=))+6 
{u,}eu~(wg) . 

< X-" V"  , , r ~ ,  ,~,~(,. ~,.l+~n~/(8+~(2e-km~))+~ 
- -  ~ . ~  ~ t~t." ~g(p) k'i~k--g/--g /1 

p 6 P  g e t  v 

<< ~ ~ D, .5+o(2$-k (p ) )  g,(~,. "~25-kma~ '~5 / (5+a(25-kmax) )+6  < CO. 
t ' g  w ~ - g ]  ) 

p E P  g e T  v 

This implies that  
5 

d im.  W r <_ 
5-{-a(25- kmax)" 

Since J~(G)=Uceyl4) r  and since J + ( G ) c J ~ ( G ) ,  it follows that 

5 
d im.  J+(G)  _< dim.  J a ( a )  _< 5+a(25-kmax)" [] 

For the proof of Theorem B and Proposition C we require the following fact, 
which is immediately implied by the global measure formula and the definition of 

J 2 ( c ) .  

L e m m a  7. 
(i) I] 5<_kmax, then 

J+(G) c {~ E L(G): liminf log#(B(~, r)) _ 5+a(25-kma~) } 
~-~o log r ~ " 

(ii) If S>kma~, then 

J+(G)  C {~ EL(G):liminf l~ = 5 }  
r--*0 log r " 

Proof of Theorem B. The upper bound 5/(l+a) for the Hausdorff dimension 
of J~(G) is trivial. The calculation is analogous to the derivation of the upper 
bound in the proof of Theorem A. 
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In order to derive the lower bound for the Hausdorff dimension, we use Billings- 
ley's lemma (Lemma 4), Lemma 7(i) and Theorem A, which imply that 

dimH(J+(G) ) > $+a(2~-km~)  dimu(j+(G) ) > 
- l + a  - l + a "  

Since J+(G)EJ~(G) ,  Theorem B follows. [] 

Proof of Proposition C. As in the proof of Theorem B, the upper bound 
6/(1+a) for the Hansdorff dimension of :T~(G) is trivial. 

In order to derive the lower bound ~ / ( l + ~ ( 2 6 - k m ~ ) / ~ )  for the Hansdorff 
dimension, we use Billingsley's lemma, Lemma 7(ii) and Theorem A, which imply 
that 

62 
dimH (J~ (G)) _> dimH (J~+(V)) > ~ dim,(J~+ (V)) > 

~+cr(2~-km~) " 

For the lower bound ~ / ( l+a )  of the packing dimension, we observe that by 
Proposition 2 and by the the global measure formula (Lemma 3) we have, for 
arbitrary positive e and for each ~E2 "+, 

liminf u~(B(~, r)) 
r-*0 r6/(l+a) -e << 1. 

Hence, using Lemma 5(iv), it follows that 

dimp(J~(G)) _> dimp(2: +) > 1+----~" [] 
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