Ark. Mat., 33 (1995), 385-403
© 1995 by Institut Mittag-Leffler. All rights reserved

Fractal dimensions for Jarnik limit
sets of geometrically finite Kleinian
groups; the semi-classical approach

Bernd Stratmann(!)

Abstract. We introduce and study the Jarnik limit set 7, of a geometrically finite Kleinian
group with parabolic elements. The set 7, is the dynamical equivalent of the classical set of well
approximable limit points. By generalizing the method of Jarnik in the theory of Diophantine
approximations, we estimate the dimension of J, with respect to the Patterson measure. In the
case in which the exponent of convergence of the group does not exceed the maximal rank of
the parabolic fixed points, and hence in particular for all finitely generated Fuchsian groups, it is
shown that this leads to a complete description of J, in terms of Hausdorff dimension. For the
remaining case, we derive some estimates for the Hausdorff dimension and the packing dimension

of Jo.

1. Statement and discussion of results

This paper continues the ‘Diophantine analysis’ (begun in [13], [14], [17]) of the
limit set L(G) of a non-elementary, geometrically finite Kleinian group G with pa-
rabolic elements. We assume that G acts discontinously on the (/V+1)-dimensional
unit ball D¥*! which is equipped with the hyperbolic metric d.

It is well known that G is of 6-divergence type ([18, Corollary 20]), i.e. the series

3 emedl0s(O)

geG

diverges at its exponent of convergence §=§(G), which is usually referred to as the
exponent of convergence of G.

If 1 denotes the Patterson measure on the limit set L(G), then the §-divergence
type condition is equivalent to the fact that the geodesic flow is ergodic ([18, Theo-
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rem 14]). This implies, for p-almost all ¢ in L(G), the ‘ergodic law’ ({18, Corol-
lary 19})
A(g)

t—o00 t

=0.

Here &; is the unique point on the ray s¢ from 0€ DV*! to £€ L(G), whose hyperbolic
distance from 0 is equal to ¢; and further, A denotes the ray excursion function,
which is defined, for £€ L(G) and positive ¢, by

A&) :=d(&, G(0))-

It is well known that the Hausdorff dimension of the set of points which obey
this ergodic law is equal to 8 ([18, Theorem 15]).

The aim of this paper is to determine fractal dimensions of certain sets of points
which do not follow the above ergodic law. Throughout the paper let o denote some
positive number. We consider the o-Jarnik limit set J,(G) and the strict o-Jarnik
limit set J;(G), which are defined by

Jo(G) = {§ € L(G): hmsup (ft) > 1—:?'—}

J;(G):z{geL(G) tmsup 260 Al Ti‘a}

Now, J,(G) is a dense subset of the limit set L(G). From this we deduce that
dimp(J,(G)), the box-counting dimension of J,(G), is equal to dimp (L(G)), the
Hausdorff dimension of L(G), and hence equal to § (for dimpg(L(G))=dimy (L(G))=
8 ([15, Theorem 3]) and dimp is invariant under taking the closure ({7, Proposi-
tion 3.4])). However, as we shall see in this paper, questions concerning other fractal
dimensions of J,(G) and J;(G) are more subtle.

A first main result in this paper is the determination of dim,(J,(G)), the
dimension of J,(G) with respect to the Patterson measure u (see Section 2 for the
definition). We derive the following theorem, where kmax denotes the maximal rank
of the parabolic elements of the underlying group.

Theorem A. If G is a geometrically finite Kleinian group with parabolic ele-
ments, then

5
5+0(26—Kmax)

For the proof of this theorem we shall construct and analyse probability mea-
sures which are supported on Cantor-like subsets of J,(G). Our proof generalizes

dim,, (J5 (@) = dim, (T (G)) =
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the classical methods which were developed by Jarnik ([8]) and later by Besico-
vitch ([2]) for their calculations of the Hausdorff dimension of the set of well approxi-
mable irrational numbers.

On the basis of Theorem A, we continue the investigation of J,(G) and J; (G),
and derive an estimate for the Hausdorff dimension of 7,(G) and J; (G) which is
exact in the case ‘6<kmax’- More precisely, mainly by using Billingsley’s lemma
(see Section 2) and the global measure formula for the Patterson measure ([17,
Theorem 2]), we derive the following theorem.

Theorem B. If G is a geometrically finite Kleinian group with parabolic ele-
ments such that §<kmax, then

dimia (7, (G)) = dima(J3 (G)) = 1=

We remark that this theorem covers in particular all finitely generated Fuchsian
groups with parabolic elements. This follows, since for groups of this type we have
that kmax=1, and also that § is less than or equal to 1. Hence Theorem B is
applicable.

Also, if we let G=PSLy(Z), Theorem B implies the classical number theoretical
results of Jarnik and Besicovitch ([8], [2]).

Now, in the remaining case, i.e. the case ‘6>kmnax’, our semi-classical approach
does not lead to an exact result for the Hausdorff dimension of the o-Jarnik limit
set. However, our method still allows the derivation of the following approximations
for the Hausdorff dimension dimy (7, (G)) and the packing dimension dim, (7, (G)).

Proposition C. If G is a geometrically finite Kleinian group with parabolic
elements such that 6>knay, then

5
1+ 0(26— kmax) /6

Also, we remark that the o-Jarnik limit set may also be expressed equivalently
in terms of the set of standard horoballs {Hy,)(rg):p€P, g€T,} (we refer to Sec-
tion 2 for the definitions). For this, let F denote the set of functions ¢: R* —R*
such that lim, o log ¢(z)/logz=0. An elementary calculation in hyperbolic geo-
metry shows that a necessary and sufficient condition for £ to be an element of
J»(G) is that there exists ¢€F such that £ is contained in the shadow at infinity
Hg(p) (#(rg)ryt7) of infinitely many ‘reduced’ standard horoballs Hyp) ((rg)rit+?).

Hence, we have that

JG(G U ﬂ U U g(p) ¢(Tg) )

PeF neNpeP 9€7Tp
rg<i/n

< dimp(7,(6)) < 7 <dimy(J,(G).
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If in this expression for J,(G) we take the first union only over those functions
¢ which are constant, then we derive the more classical set of well epprozimable
limit points, which has already been investigated by Melidn and Pestana for cofinite
Kleinian groups ([9]). In this paper, we shall consider in particular the set of simple
well approximable limit points, which is defined by

W, = ﬂ U U ’Hg(p)(r;*'”).

nENpeP 9€Tp
rg<1l/n
We remark that the proofs in this paper immediately yield corresponding results
for the fractal dimensions of the set of well approximable limit points.
Finally, we give a few applications of the results in this paper to related topics.

Convex cocompact groups

For a convex cocompact Kleinian group, the limit set and the Patterson measure
form a ‘6-homogenous system’ (see [13, Definition 0.1.1]). By replacing the parabolic
fixed points in this paper by a finite set A of loxodromic fixed points and then using
the geometrical techniques which were developed in [13] in combination with the
semi-classical method of this paper, one derives the Hausdorff dimension of the set
of limit points which are well approximable with respect to A.

Parabolic rational maps

Let J(T') denote the Julia set of a parabolic rational map T. There exists
a global measure formula for the (dimy J(T'))-dimensional conformal measure on
J(T') which is similar to the formula for the Patterson measure ([6, Proposition 5.3]).
Again, as in the Kleinian group case, one may derive a Dirichlet-type theorem which
delivers economical coverings of J(T') in terms of the dynamics of T (this Dirichlet-
type theorem for J(T') will appear in a joint paper with M. Urbanski ([16])).

Since these two concepts are the main ingredients of our semi-classical method
here, it is not difficult to see that this method also gives rise to the corresponding
results for the set of points in J(T") which are well approximable with respect to
the rational indifferent periodic points of the parabolic rational map 7.

Orbifolds

Let Mg be the cusped, geometrically finite Riemannian manifold corresponding
to the Kleinian group G, which is of constant negative curvature and not necessarily
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of finite Riemannian volume. Let S(Mg) be the unit tangent bundle over M¢ and
let {¢:} denote the geodesic flow on S(M¢). Further, let 7m: S(Mg)— Mg be the
canonical projection which maps each line element in S(Mg) to its base point
in Mq. Analogous to the ray excursion function, the geodesic excursion function
Ay is defined, for v€S(M¢) and positive t, by Ag(v, t):=d(7(v), (¢:v)).

For positive og<1, let the large deviation sets jao (Mg) be given by

= Ag(v,t
Joo(Mg) := {v € S(Mg) : lim sup —# = 0’0}.
t—o0
Using the results in {15, Theorem 3], it is easily seen that Theorem B and Proposi-
tion C give rise to the following statements.
(i) If 6<Kkmax, then

dim (F,,(Mg)) = 6(2—00)+1.

(i) If 6>kmax, then

-1
6(2—0’0 (0’0+2£§1_-1;J)-> ) +1 S dimH(jgo(M(;)) S 5(2—0’0)+1.

Acknowledgement. The author would like to thank the SFB 170 at the Univer-
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on the writing of English.

2. Preliminaries

I. Conformal geometry and measure theory

As already stated in the introduction, we let G denote a non-elementary, geo-
metrically finite Kleinian group with parabolic elements. Further, we let P be a
complete set of inequivalent parabolic fixed points. For p€ P, the stabilizer G, of
p in G contains a maximal abelian subgroup of rank k(p), and k(p) is referred to
as the rank of p. We choose a particular element pg€ P such that k{po)=Fkmax:=
max{k(p):p€ P}.

We assume that a set 7, CG of coset representatives of G} in G is chosen such
that if g€7,, then |g(0)|<|h(0)]| for all REGy(p):=gGpg™". Also let Tpnax: =Ty, and
T:"_‘UpeP ’1;

It is known that the cusp regions of the manifold Mg=D"*+1/G are represented
in DN*1 by a set of pairwise disjoint horoballs. To be precise, to each g€T,, we
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associate an (N+1)-ball Hy((ry) CDV*! which is tangential to SV:=0DN+1 at
g(p) and whose Euclidean radius ry is comparable to (1—|g(0)|). The horoball
Hyp)(rg) is a Gy(p)-invariant subset of DV+! and G permutes the set

{Hy(p)(rg):9€ T, pE P},

which we refer to as the set of standard horoballs with top representation.
We shall also require the notion of the shadow at infinity of a horoball Hy,)(r),
which is defined by

Ho(o)(r) :={£ € SN : 5N Hy(p) (r) # 0}
We now state two fundamental results concerning the geometry of standard horo-
balls and its relation to the limit set L(G). These results are required in the following
section.
If there is no risk of confusion, we shall use the notion <« and > to indicate
inequality with a positive constant factor, and if <y and z>>y, i.e. if x and y are
comparable, then we shall write z<y.

Lemma 1 (Decoupling lemma). ([17, Proposition 2.3]) For p,q€P and
g€T,, there exists heT, such that

h(q) € Hy(p)(2rg) and rp=xry.

Lemma 2 (Dirichlet-type theorem). ([17, Theorem 1]) There ezist positive
constants kp and 3¢ such that, for all positive a<kp, the set

{Hy@)(rg(a)):peP, g€Tp, 1420}

covers L(G) with bounded multiplicity.
Here r4(0):=3¢,/Tqa denotes the a-Dirichlet radius corresponding to rg.

We assume that the reader is familiar with the construction and basic properties
of the Patterson measure p (we refer to [11], {12] and [10]).

For the purposes of the present paper it is sufficient to know that y is a non-
atomic probability measure which is supported on the limit set L(G) and further,
that there exists a uniform estimate for the y-measure of N-balls in SV which are
centred around limit points. This latter estimate was derived in [17, Theorem 2],
where we referred to it as the global measure formula (see also [19, §6]). In order
to restate this formula here, we require the following notation.

For £€ L(G) and positive t, we let b(£;) denote the intersection of SV with the
(N+1)-ball whose boundary is orthogonal to SV and which intersects the ray s¢
orthogonally at &. Hence, b(¢;) is an N-ball in SV whose radius is comparable
to e~*. Further, we define k(¢;) to be equal to k(p) if &€ Hy(p)(rg) for some peP
and g€7,, and we let k(&) be equal to § otherwise.



Fractal dimensions for Jarntk limit sets of geometrically finite Kleinian groups 391

Lemma 3 (Global measure formula). If£€L(G) and t is positive, then

p(b(&r)) < et~ (E—FENAE:),

II. Fractal geometry

We recall a few results from the theory of fractal sets which are required in this
paper and which cannot necessarily be found easily in the literature. We assume
that the reader is familiar with the definition and basic results of Hausdorff measures
and packing measures (see [7]).

Let A denote a compact subset of RN. Further, let m be a non-atomic Borel
probability measure on A. For positive ¢, a covering {U; };en of A’CA is an (m,¢)-
covering of A’ if m(U;)<e for all i€N. If U"(A’) denotes the set of all (m,e)-
coverings of A’, then, for positive s, the s-dimensional m-Hausdorff measure HT*(A’)
is given by

m A H 3 s
T (N) =l {U,-}égfemm')zi:mwi) '

Analogous to the Hausdorff dimension, we may define dim,,(A’), the m-dimen-
sion of A’ by

dim,, (A') :=sup{s: H*(A') = co} =inf{s: HT*(A') =0}.

A weaker version of the following lemma can be found in [3, Theorem 14.1]. The
proof in [3] is easily extended to the slightly more general situation here.

By B(z,r) we denote the spherical, Euclidean N-ball of radius r which is
centred at z.

Lemma 4 (Billingsley’s lemma). Let A be a compact subset of RN. Pur-
ther, let m1 and my be two Borel probability measures on A. If E is a Borel subset
of A such that, for positive s and for each z€ E, we have
. . logm;(B(z,71))

lim inf

>
r—0 logmgy(B(z,1)) %

then it follows that
dim,, (E) > sdim,,, (E).

For estimates concerning the s-dimensional Hausdorff measure H, and packing
measure P;, the following lemma turns out to be useful. For the proofs we refer
to [19], [4] and [7] (see also {5, Theorem D, EJ).
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Lemma 5. Let A be a compact subset of RN. Further, let m denote a Borel
probability measure on A which is positive on open sets. For z€ A and positive r,
we define Dp, s(z,7):=m(B(z,7))/r°.

Suppose that E is a Borel subset of A.

(i) If, for all ze E, we have limsup, _,g D, s(2,7)>1, then Hs(F)<m(F') for
all Borel subsets F of E.

(ii) If, for all z€ E, we have limsup,_,q Dm s(z,7) K1, then Hs(F)>m(F) for
all Borel subsets F of E.

(iii) If, for all z€ E, we have liminf,_,g Dp, s(2,7)>1, then Ps(F)<K<m(F) for
all Borel subsets F' of E.

(iv) If, for all z€ E, we have liminf, .o Dy, s(z,7) K1, then Ps(F)>m(F) for
all Borel subsets F of E.

3. Fractal dimensions of J,(G) and J}(G)
I. Counting horoballs in the shade of a o-reduced horoball

In this subsection we give a local counting estimate for standard horoballs.
Roughly speaking, for a given horoball Hy,)(r,), we calculate the cardinality of
equally sized standard horoballs Hy,(;,) () which are totally contained in the ‘o-
shade’ of Hy(p,)(rg), i-e. for which we have that Hp(po)(Th) CHg(pe) (r517). We
show that the number of these horoballs is, as should be expected, comparable to
1(Hg(p0) (577)) / 1(Hn(po) (T4))-

We remark that for the purposes of this paper it is sufficient to give these
estimates for the maximal rank parabolic fixed point py. Nevertheless, using the
same arguments, similar estimates could be derived for arbitrary pe P as well.

We require the following notation. For positive 7, n in N and g in Tiax, we
order the elements in Tmax in the following way:

An(r) i ={h € Tnax : " <rp <™},
Qn(g; g, 7') = {h € An(T) :Hh(p) (Th) C Hg(p) (T‘;"'U)}_

Now, we derive the following counting estimate.

Proposition 1. There ezists a positive number g, positive constants ko, k1, ko
and a rapidly increasing function v: N—R* such that the following holds:

If g is an element of An(g) for some n in N greater than ko, then we have, for
m in N greater than v(n),

klgé(n—m)+an(26—kmu) < card(Qm(g, o, Q)) < k2g6(n—m)+o‘n(26-—kmu);
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and, in particular,
card(Qm (g$ a, Q)) Z 2

Proof. Let g be in Tpay such that rg is less than min{(4)~',k%}. Further,
for ge P, let Q, denote the set of heT; such that Hyg, (rh)CHg(pO)(r;""’). If we
define ¢(g):=(42)"'ry*2?, then we have for the Dirichlet radius r,(f), for  less
than c(g),

rq(d) < 'r;"'".

The Dirichlet-type theorem (Lemma 2) implies, for # less than ¢(g),

Hoy(po) (473 )NL(G) D (Hg(po)(rg(o))u U U ’Hh(q)(rh(ﬂ))> NL(G).

gEP h€Qq
TR26

Then, the finite multiplicity of the covering in the Dirichlet-type theorem and the
fact that pu(Hg(pe)(rit?)) is comparable to p(H () (s¢r;17)) together imply that,
for @ less than c(g),

(1) #(Hopo) (T5)) > 1(Mg(po) (rg(0))+ D > 1(Hng) (ra(6)))-

gEP h€Qq
TR0

On the other hand, it is easily checked, using the fact that rJ is less than (45)71,
that we have, for 6 less than c(g),
rg(8) <Tate—2x:r 3,

and hence that
Hg (po) (Tg (0)) C Hg(po) (r;"'” — 2%.,.;+20 ) )

Using once again the Dirichlet-type theorem and also the fact that

+o 140 __ 1420 140
<ty 2xr, T <rg™Y,

1
379
which implies that M(Hg(po)(T;Jra)) is comparable to »U(Hg(zz(,)(7”£1;+L7 _2”7';+2U)), we
derive, for 6 less than c(g),

(2) ﬂ(Hg(po)(7'517+a)) <<N(Hg(po)(7"57(0)))“*‘2 Z #(Ha(q)(rn(0)))-

gEP h€Qq
Thp >0
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Combining (1) and (2), and using the global measure formula (Lemma 3), we deduce
that, for positive constants ¢, and c;, and for ¢ less than c(g),

3)
1y (750" < (:99) " +2. ) (Th)k(qm < eap(Hg(poy (rg™))07°.

geEP h€Qq
20

Now, we let §=:A™, for some m in N and positive A which will be specified in
a moment. From the above we have that

Kmax /2 (9)/
(Am+1) Z Z ()\:z}-lrl )k i < CZ)‘—mé)‘_km“m/‘(Hg(po)(T;+0))

gEP heQq

TR 22T
= cpA= (DN s /2,3 (r1H));
and hence
T \k()/2 rh\(@/2
o 7D T )
gepP heQq La:
Xm+l$rh<)‘m thAm+1
@) D (T—h)k(q)/z
m+1
qu h€Qq )\
T2 A™

> A~ (e (e _C2A6_kmx/2)/‘(H9(po)(r;+a))'

In an analogous way we derive

. \k(2)/2 _ L .
Z Z (A'm+1) <A (m+1)5(02_cl)\6 kmm/2)/1'(Hg(p0)('f‘;+ ))

geP h€Qgq
am+1 <rp <A™

Now, for A less than (2cpcy?)~2/(26—kmax) | (4) and (5) together imply

o , T \k(@)/2
%01)\ ( +1)6N(Hg(po)(r;+ ))SZ Z ()\m+1>

gepP h€Qq
amtlicr, <am

< CZA_(m+1)6F"(Hg(po) (T;+a)),

and hence, if c3:=(2))"!¢;

A (Moo (ret N <D N 1< eAT DL (M ) (rEE)).

qeP h€Qq
amtlgp, cam
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The decoupling lemma (Lemma 1) then gives the existence of a positive number
g such that

(6) > xS (M (i)

hGQpO
o™m+1 <rp <™

Recalling the definition of Q@ (g, o, 0), we have now shown that there exist positive
‘constants cg4 and cs such that

ca0™ ™ U(H (o) (ri ) < card(Qm (9, 0, 0)) < e50™ O (Mg () (r1H0)).

Let n€N be such that g€ A, (p). Using the global measure formula, we derive the
existence of positive constants cg and c7 such that

(7) cﬁg(n+1)6+n6(26—kmx) < N(Hg(po)(T;-HT)) < c7g(n+1)6+n0(26—kmx)_
Now, (6) and (7) together imply that
C4CGQ(n—m)6+na(26—kma_x) < ca,rd(Qm(g, o, Q)) < C5C7Q(n_m)6+na(26_km“).

If we define 1o(n):=6"1(n(6+0(26 —kmax)) +(log cace —log 2) /log o), then it is easy
to see that we have in particular, for m greater than ¢o(n),

Qm(g,0,0)>2.

Finally, if we convert the imposed conditions on r4 and m into conditions on n and
m, an elementary calculation shows that the above holds for

1. n greater than ko:=(log p) ™! min{-o~'logds,logkp},

2. m greater than ((n):=max{n(1+20)—(2log 2s/log g), 1o(n)}. O

IX. The construction of the probability space (Z,,v,)

For the remaining part of the paper let p denote the positive number which we
derived in Proposition 1. For ease of notation, we put, for n in N and g in 7.y,

An:=An(0) and Q,(9):=Qn(g,0,0).

Now, we define a rapidly increasing sequence {n;}ren of positive integers which
satisfies the following three properties:

1. ng is greater than max{kg,2071};

2. if ng_; is given for k in N, then n; is greater than ¢(ng-;);

3. limm—oo((1/nm) Y725 n7)=0.
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The sequence {ng }ren Will be central in the following construction.
For k in N, we define

N = i dQ, .
pi= Jpin car Qn(9)
Further, for each k¥ in N and g in A,,,_,, we let an (g9) be an arbitrary subset of
Qr, (g) such that

Ny, =card Qy, (9)-

Also, for a given go€ A, we define sets I7 by induction as follows:

1. Ig::{Hgo(po)(r;:a)};
2. if I7_, is defined for k in N, then let

I7 = {Hnpo)(rs™):he Qn, (g) for some g€ A,,_, such that Hg(po)(r;+”) ery_,}

Clearly, we have that each element in IJ , contains exactly Ny elements of If.
The ‘level sets’ I form the basis for the Cantor-like set Z,, which we now

define by
Iy:= ﬂ U I.
k>01Iclg
We would like to warn the reader that the set I, is not a ‘spherical Cantor set’ in
the sense of Beardon ([1, Definition 1]).
Distributing the mass (Nj ... Nx)™! uniformly on each of the Nj ... Ny horoball
shadows in the level set If, we derive a probability measure on Z,. To be precise,

for each k in N, we let ut(,k)
for Borel sets E in S by

v (E) =Y (N1... Ny) " u(ENT) /(D).
Ierg

denote the probability measure on I, which is defined

Using Helly’s theorem, we then derive a mass distribution v, on Z,; i.e. we ob-
tain the probability measure v, on 7, as the weak limit of the sequence of measures
{Vr(fk)}keN-

It is easily checked that, for each k in N, I in I and m greater than k, one
has

(1) =vi™(I).

This observation then implies that
V¢(7k) (1) =v,(I),

for all kin N and I in I7.
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IIL. An analysis of the system (Z,,v,)

We shall give an estimate for the v,-measure of sufficiently small balls centred
around elements of Z,. In order to obtain this estimate, we require the following
lemma.

Lemma 6. There exists a positive constant ks such that if B(€,r) is a spherical
N-ball with centre £€Z, and radius r satisfying o™ T <r<o™-1*1 for some k in
N, then

card{I € I : INB(¢,r) # 0} < min{ Ny, kso~ ™ u(B(&, 7))}

Proof. Let B(£,r) be given as stated in the lemma. We shall first see that
B(&,r) intersects at most one element in I7_,. For this, we observe that, since £ is
an element of Z,, £ is contained in exactly one element H(p,)(rg™7) of I7_;. Let
'Hh(po)(r,lf”) be an arbitrary second element in I7_;. We then have, for sufficiently
small g and for ng>20"1,

,rl+0'+,r1+o’+ max ,r<29nk_1(l+d)+gnk_1+l
9 h
p"kt1 51-<g"k—1+1
< an..l-l-l (2g0'nk_1—~1 +1) < 2an_1+1'
On the other hand, the pairwise disjointness of the standard horoballs implies that
|lg(po) —h(po)| > 2,/FgTh > 2¢™ 1.

It hence follows that

1+o 1+o _
Ty Ty +an+lg<a‘zcnk_l+lr<|g(po) h(po)|.

Since Hp(py) (ri ") was an arbitrary element in J7_,, the latter estimate gives that
’Hg(po)('r;“‘” ) is the only element of J€J7_, which has non-trivial intersection with
B(¢,7). It now follows that

card{I e I : INB(¢, 1) £ 0} < Ny

In order to derive the second upper bound which is stated in the lemma, we
observe that for each ‘H f(po)(r}*"’)GI,‘c’ intersecting B(£, r) non-trivially,

Hyg(er) CB(Er+2  max  ri¥4o  max  m).
f(PO) Hh(po)(r}ll+q)61g h Hh(Po) (-r:b‘f"’)GI:
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Since, for sufficiently small g, we have that He(py)(ere)VHs(po) (07)=0 for distinct
elements e, f in A,,, it follows that

card{I € I{:INB(¢,r)#0}  min  p(Hage)(ern))

Hh(po)(rt+u)61g
< B 140
S &r+2 mq‘x U ] m:%x Th
Hh(?o)('rh+a)61fc’ Hh(po)(rh+o)€If:

< p(B(E,r+20™F9) 4 gm 1)) < (B, 4r)).

Using the global measure formula for the Patterson measure (Lemma 3), it follows,
for some positive constant k3,

card{I € I : INB(&,r) #0} <ks o~ ™ u(B(¢, 7). O

Proposition 2. There erists a positive constant ky such that, for each positive
€, there exists a positive number ro=ro(g) such that, for all ¢€L, and for all T less
than rg, we have that

VU(B(§7 "')) <k M(B(f, r))(‘s—f)/(5+a(26——kmu)) )

Proof. Let € be in T, and let 7 be positive and sufficiently small. Without loss
of generality we may assume that o™t <r<p™-1t1 for some k in N. If 6 denotes
an arbitrary element of the closed unit interval, i.e. if 0<#<1, then we derive from
the construction of the measure v and from Lemma 6, that

k
ve(B(&,r)) < [[ Ny card{I €I : INB(¢,7) #0}
=0

k
<[ 7" min{Ne, ks=™ u(B(¢, 7))}
=0

<k§o ™ u(B(E, ) N ° f[ Ny
7=0
Using Proposition 1, it follows that
ve(B(§,7))
< kgkl—ag_nkao”(B(& ,,.))Bkl—(k—l)Qeé(nk—nk_l)Q—Gank_1(26—kmax)
x g8(Pr=1-70) o= (20—kmax) ions

=Kk (B, T))°

x g1 (680 ~00(26—kmax)—ng 1 (Ro+0(26—kmax) T 523 nj+(k—1)(log k1) (log g)—l))'
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The growth condition which we imposed on the sequence {nj}ren now yields,
for each positive ¢, the existence of a positive number co=cy(e) such that, for all k
greater than cp,

no+0(25—kmax) T5—g nj+(k—1)(log k1) (log ¢) ™ <
Ng—1

For k greater than cg, it hence follows that
Vo(B(E, 7)) < KSkT® u(B(E, r))? gne—1 (6=00—00(20~kmax) —e)

If we specify 6 by
6—¢

0 =————
6+0(26—kmax)’
then the proposition follows. [

Now, if we define
Ir:=I,NT}(G),

Proposition 2 immediately implies the following result.

Corollary 1.

. L logua(B(Er)) 5
o c {5 € L(G) M ipt S U (BE ) = 5% (26—Fm) }

The following Proposition is required in the proof of Theorem A.

Proposition 3. Where I} and v, are as above,

vo(TH) =1.

Proof. Let €, T be positive such that £ <76(26—kmax)/(6+(0+7)(26 — kmax))-
We first make the following observation. If g denotes an element in 7, such that
r¢<ro(€) and such that
Moy (rg ™" INTs £0,

then there exists £ €H () (137 ")NZ, such that (using Proposition 2)
o (Hy(p) (75 INT,) S v (B(E, 2y *74))
< p(B(E, 27‘;+0+T))(6—5)/(6+0(25——kmax))
<My (4"";+0+T))(6_5)/ (é+7(28—kmax))
< ﬂ(Hg(p) (7517+U+T))(6_5)/(6-"”(26_’“’““)).
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Now, the latter observation, the global measure formula for u and the fact that
6 is the exponent of convergence of G imply, by the above choice of € and T,

Z vy (Hg(p) (r;+"+7)) < Z ,U(Hg(p) (,',.;+U+T))(6_5)/(6+a(26—kmax))

€T
rg<ro(e) 9€T

< Z T,g—e+‘r(6—e)(26—km“)/(6+a(26—kmax)) < o0.
9€T
If, for g€7,, we define
E(g) :=Hy(p)(rg™*7),

and interpret E(g) as an event in the probability space (Z,, v, ), then the previous
calculation implies

> v (Elg)) < oo.

geT

Hence, we can apply the first part of the Borel-Cantelli lemma, which then yields
that

Vo (lil;lesTup E(g)) =0.

Since we have that

lim sup E(g) =W tr,
geT

the proposition follows. [

IV. Fractal dimensions of J,(G) and J}(G)
Proof of Theorem A. Using Proposition 3, we derive, for positive T,
inf v (U;) > inf Vo U, | =1
{viyeure (z;*)z,-: (@) (Usyeuze (z3) (L;J z)

It hence follows that
dim, (Z})>1.
From Corollary 1 and from Billingsley’s lemma (Lemma 4) we now have that
dim, 7} > 5 dim,, I} > ————6——
B0 = 40(26—kmax) 7 7 T 6+0(26—kmax)
It hence follows that

é

dimy, Jo(G) 2 dimy, I3 (G) 2 55—
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In order to derive the upper bound, we consider ¢€F and define

We= U U Howm@a)rit).

neEN peP 9€Tp
rg<i/n

For 7>0 and £>>0, the global measure formula yields that

inf U 6/(640(26—kmax))+e
{U,-}eu#(W?)Z#( )

%

< Z Z 1(Hy(p) (¢(rg)r51,+”))'5/ (6+0(26—kmax))+€

pEP geTp
< Z Z (,,.g+a(26—k(p))¢(,rg)26-—kmax)5/(6+a(26—kmax))+e < 00.
pEP geT,
This implies that
dim, W¢ 5

————r.
~ 6+0(26~kmax)
Since Jo(G)=Uye» WE and since J; (G) CTo(G), it follows that

)
. + < di Y IR
dim,, J} (G) < dim,, J»(G) < 5 w7 — O

For the proof of Theorem B and Proposition C we require the following fact,
which is immediately implied by the global measure formula and the definition of
JHG).

Lemma 7.
(1) If 6<kmax, then

JHG)C {5 € 1(G) timipr EMBEr)) _ 0020 ) }

logr 140

(ii) If 6> kmax, then

THG)C {geL(a);nmﬁﬁgu_ﬁg&w:&},

Proof of Theorem B. The upper bound §/(1+0) for the Hausdorff dimension
of J5(G) is trivial. The calculation is analogous to the derivation of the upper
bound in the proof of Theorem A.
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In order to derive the lower bound for the Hausdorff dimension, we use Billings-
ley’s lemma (Lemma 4), Lemma 7(i) and Theorem A, which imply that

5+0(26—kinax)

]
; +
T dim, (73 (C) 2 14y

dimzr (73 (G)) 2 —

Since J; (G)CJ»(G), Theorem B follows. O

Proof of Proposition C. As in the proof of Theorem B, the upper bound
6/(1+0) for the Hausdorff dimension of J,(G) is trivial.

In order to derive the lower bound §/(1+0(26 ~kmax)/6) for the Hausdorff
dimension, we use Billingsley’s lemma, Lemma 7(ii) and Theorem A, which imply
that

2
dimy (J,(G)) > dimp (T (G)) > 6 dim, (T, (G)) > 5;;(2%_7——

ma.x) )

For the lower bound 6/(1+0) of the packing dimension, we observe that by
Proposition 2 and by the the global measure formula (Lemma 3) we have, for
arbitrary positive € and for each (€T},

e Va(BE 7))
b s reye <1

Hence, using Lemma 5(iv), it follows that

. . )
dim,(J,(G)) > dlmp(I;)Zm. a
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