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Almos t  everywhere  convergence  of the 
inverse spherical transform on SL(2, R) 

Cristopher Meaney(1) and Elena Prestini(2) 

Abstract.  We prove the almost everywhere convergence of the inverse spherical transform 
of Lp bi-K-invariant functions on the group SL(2, R), 4 <p_~2. The result appears to be sharp. 

1. P r e l i m i n a r y  m a t e r i a l  a b o u t  S L ( 2 ,  R )  

Before stating the theorem proved below, we present some background material  
on spherical functions on SL(2, R).  

The group SL(2, R),  consisting of 2 • 2 matrices with real entries and with 
determinant equal to 1, is often the testing ground for questions in analysis on 
noncompact  semisimple real Lie groups. In all that  follows G will denote SL(2, R).  
Inside G there is the compact subgroup K=SO(2), consisting of all orthogonal 
matrices in G, so that  elements of K are matrices of the form 

k(o) = (cos(e) sin(O) '~ 
--sin(0) cos(0) J"  

In addition to the subgroup K,  there is the subgroup of diagonal elements of G with 
positive diagonal entries, 

A= a(s)= 0 e_S/2 : s e R  . 

This normalizes the subgroup 

(1) Partially supported by the MPI 
(2) Partially supported by the CMA 
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In fact a(s)n(~)a(-s)=n(e~) for all s and ~ in R.  

As basic references for calculations on G, there is the survey article of T. Koorn- 
winder [Ko]. 

L e m m a  1 ( C a r t a n  d e c o m p o s i t i o n ) .  Each element xEG can be decomposed 
into a product of the form x=klak2, with kl, k2EK and aEA. If x~ l ,  then there 
are exactly two elements a, a'EA such that xEKaK and xEKa'K.  The elements 
a, a ~ are inverses of each other, i.e. a'=a -1. 

The decomposition G = K A K  is also called the polar decomposition and is 
analogous to using polar coordinates in Euclidean space. We can equip K with 
normalized Lebesgue measure, so that  

/ K f ( k ) d k =  l ~0 2~v 2--~ f(k(O)) dO 

for all continuous functions f on K.  Similarly, since A is isomorphic with the real 
line, it can also be equipped with Lebesgue measure. Let # denote Haar measure 
on G, normalized according to the following integral formula. 

L e m m a  2 ( I n t e g r a t i o n  f o r m u l a ) .  For every compactly supported continuous 
function f on G, 

f(x)d#(x)-= ~ ~ ~ ~ f(k(Ol)a(s)k(Oa))sinh(s)dOldO2ds. 

Consider the action of G on the upper half plane ~ t = { z e C : I m ( z ) > 0 } .  If gCG 
is of the form (a 

g =  d ' 

and if zCT/, then the action of g on z is g.z=(az+b)/(cz+d)ETl. In particular, N 
acts by translation parallel to the real axis ( n ( ~ ) - z = z + ~ )  and A acts by dilations 
(a(s).z=e~z). This shows tha t  the action is transitive. K fixes the point i E ~ ,  
which we will t reat  as the origin. Hence ~ can be identified with the homogeneous 
space G/K, so that  g.i is identified with the coset gK in G/K. 

If f is a r ight-K-invariant function on G, then it can be identified with a func- 
tion f~ on ~ by assigning ff(g.i)=f(g), for all gCG. Similarly, every function F 
on 7-/is equivalent to a r ight-K-invariant  function F ~ on G, with F~(g)=F(g.i), for 
all g E G. The set ~ can be equipped with the Poincar~ metric ds 2 =dx 2 +dy2/y 2, 
which is invariant under fractional linear transformations z~-~g.z. The correspond- 
ing G-invariant measure on 7-I is 

dxdy 
n f(x+iy) y2 
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When 7-( is equipped with the Poincar6 metric, it carries the Laplace-Beltrami 
operator 

/ 02 02 \ 

and this is G-invariant. Clearly A acts on smooth right-K-invariant functions on 

G by forming Af(g)=(Af~)b(g). 
We now concentrate on analysis of bi-K-invariant functions on G. From the 

Cartan decomposition, we see that  if f satisfies f(klgk2)--f(g) for all kl, k2eg  
and gEG, then f is completely determined by its restriction to {a(s):s>O}. In 
particular, 

J; /o (1) f(g) dp(g) -- 2~r f(a(s)) sinh(s) ds. 

In addition, if f is bi-K-invariant then s~-*f(a(s)) is an even function on the real 
line. Another interpretation of bi-K-invariant functions comes from viewing them 
as functions on 7-/with the property that  F(k.z)=F(z) for all k c K  and zET-/. In 
this setting, they are "radial functions" on/-/ ,  depending only on the distance from 
i with respect to the Poincard metric. When thinking in these terms, it is natural  
that  there should be an integral transform analogous to the Hankel transform of 
radial functions and coming from the eigenfunctions of the Laplace-Beltrami op- 
erator. The transform which plays this role is called the spherical transform. For 
an introduction to this theory, see the notes of Godement [Gd]. The elementary 
spherical functions are radial eigenfunctions of A. 

Definition. A continuous function ~ on G is said to be an elementary spherical 
function if it satisfies the following three conditions: 

�9 ~ ( 1 ) = 1 ,  

�9 ~ is bi-K-invariant, 
�9 there is a complex number a such that  Aqo=a~. 

These are given by Legendre functions on [0, ce). That  is, 

1 fo 2~ ~(a(s))  = ~ (cosh(s)+sinh(s) cos(O)) -(1/2)+r dO 

for all nonnegative numbers s and complex A, with A ~ = - ( A 2 + � 8 8  
The spherical transform of an integrable bi-K-invariant function f on G is 

/o /o ~'f(A) = f (g)~x(g)  d#(g) = 27r f(a(s))~(a(s))sinh(s) ds. 
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In particular, there is the Plancherel formula for square-integrable bi-K-invariant 
functions on G. There is a measure v on [0, oc) such that  f~-*bvfl[o,o~) extends from 
KLKI(G ) •L2(G) to be an isometry 

jr :K LK (G ) ~ L2([0, oc), v). 

The density for this measure is dv(A)--A tanh(TrA)dA/Tr, and the inversion formula 
is 

(2) 1// 
- Jrf()~)w~(a(s))A tanh(TrA) dA. f(a(s)) = z~ 

When f is a smooth, compactly supported bi-K-invariant function, this inversion 
formula converges absolutely for all s>0.  Hence, in order to prove almost every- 
where convergence for the inverse spherical transform on some space KLKp(G), it 
suffices to prove a boundedness result for the maximal function 

f l  R S*f(a(t)) -- sup Jrf(A)W~ (a(t)) dr(A) . 
R>I 

2. S t a t e m e n t  of  r e s u l t s  

For simplicity we write t instead of a(t) and we set 

r  A) = IAtanh (TrA)ll/2(sinh(t))l/2~(t). 

We now state our main theorem, its consequences and make comments on the 
sharpness of the results. 

T h e o r e m .  Let SRf(t)= f o  f(r)HR(t, r)dr where 

fR 
HR(t, r) = V ~ Jo r  A)r A) dA. 

Then S*f(t)=supR>l ]SRf(t)] is a bounded operator from KLpK(G) into L2(G)+ 
4 Lp(G) for g < p < 2 .  

C o r o l l a r y  1. With the same notation, S* maps KLpK (G) boundedly into itself 
if and only if p=2. 

Proof. Because of the theorem, we need only show that  S* is unbounded on 
KLK(G) when l < p < 2 .  However, it is true that  if f # 0  belongs to KLK(G) and 
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l < p < 2  then S~f is not in Lp(G). This follows from Theorem 4.4 [ST] where it is 
shown that  if g is in KLK(G) then its spherical transform ~ may be extended to be 
an analytic function in the strip 

{ 1 ( ~ - 1 ) }  z e C :  I Im(z)l < E 

Notice that  (Slf) cannot be analytic on such a set unless f is identically zero. 
The case p>  2 is handled by an argument which goes back to Rubio de Francia [CS]. 
The point being that  S l f  is not even a tempered distribution on G. If it were the 
case t hat $1 :KLK(G) --* C~ (G)' with p > 2, then by duality we would have S~: C ~  --* 

L p' (G) p, with p~ <2. The analyticity argument used above excludes this possibility. 
4 C o r o l l a r y  2. If fegLKp (G), g < p ~ 2 ,  then Snf(t)--*f(t) a.e. as R--~c~. 

Now let us comment on the sharpness of the main result. By Rubio's argument 
our theorem cannot hold for p>2.  In addition the lower bound 3 4- appears to be 
sharp. As we shall see below, if f(r) is supported near the origin then SRf(t) for t 
close to zero is essentially the spherical partial sums operator of the Euclidean space 
R 2, that  we also denote by SR, applied to radial functions. Now Kanjin in [Ka] 
proved that  there exists h in L4/3(R 2) compactly supported and radial such that  
SRh(x) diverges a.e. as R--~c~. 

Our proof is based on Schindler's asymptotic estimates for r ~) of Section 3, 
on an analogous result in the Euclidean space R 2 [P] and on the LB---~LB+L2 
estimate for the Carleson operator with exponential weights of Section 4. 

3. Sch ind le r ' s  e s t i m a t e s  a n d  p r e p a r a t o r y  l e m m a s  

The following formulas (S1)-($4) give the asymptotic properties of the function 
r ~). They can be found in [Sc], since r )~) is a special case of Kin(x, y) in [Sc] 
with m=O, x= A, y=t. 

In the region t > l ,  A<I  

/ 2 "d/2 
(S1) r ~) = -t- ~ )  sin()~t)+cos(~t)hl(~)+sin(~t)h2()~) 

+cos(At)sl ()~, t) + sin(At)s2 (A, t) 

where 
08j = O(e_2~), Sj, --~ 

hj ()0 -- O(A), 

h}(A), h~(A) = O(1), j = 1, 2. 
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In the region t>  1, A_>I 

(s2) 

where 

Cristopher Meaney and Elena Prestini 

r = (2) l /2cos(At-4)+(2)l /2~--~sin(At-4)  

+cos ( A t - 4 ) [ S I ( A ) +  ~jTI(A)1 + s i n ( A t - 4 ) [ S 2 ( A ) + ~ ]  

-~eos(At-4)Dl(~,t)~-sin(At-4)D2()~,t) 

In the region t < l ,  A<I 

(S3) 

where 

Sj i! i! ,Tj,S~T~ =O(A-~), 

Dj, ODj -- O(~_2e_4t). 
OA 

r A) = vr~A sinh 1/2 (t) + v/-~/~t 1 (t,),) + sinh 1/2 (t)s(A) + s(A)tl (t, A) 

Otl = 0(t5/2), t l , ~ -  

s(A) = o(~3) ,  

s'(A) = o(A2). 

In the region t_<l, A_>I 

($4) r ~) = (t/~)l/2Jo(t/~)+~l(t)t3/2A-1/2Jl(tA)+Fo(t , A) 

where ~, (t)-- O (1), 

Fo(t, A) ---= (tA)l/2~[o(~)Jo(tA)+ { O(A-3/2t5/2)' At ~_ 1, 
O(A-2t2), At _> 1, 

and Ko(A)--O(A-2), K~(A)=O()~-3), 

{ -~ {~o(A)(tA)l/2jo(tA)} + 0 (A-5/2t5/2), At < 1, 
O (A-2t3), At _> 1. 

The following lemma computes the Fourier transform of a smooth function, 
zero at the origin and equal to 1/A at infinity. 
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L e m m a  1. (a) There exists q2eC ~176 supported on [1,2] such that 

O 0  

�9 (2-k~) = 1 on [1, +o~). 
k=0 

(b) Set Ar then E;~o 2-k* (2-~)=1/~  oN [1, + ~ ) ,  and 

( ~  f {clg[-~[,  {x{<l, 
2 - k ~ ( 2 - ~ )  (x) < 

"k=O , - -  C M  [xlM , IX[ >_ 1, 

for every M>_I. 

The proof is easy and it is left to the reader. The next lemma carries well 
known estimates on Bessel functions Jk(t) that we shall need only for k=O, 1. 

L e m m a  2. 

(1) [Jk(t)l<_ck , t_>O, 

[ 7r k 

where IEk(t)l <ek/t 3/2 for t > l .  

Recall that 

4. A s i m p l e r  c a s e  

r./n ~176 f(r)HR(t, r) dr, Snf( t )  

R 

HR(t, r) = V ~ Jo r A)r A) dA, 

S ' f  (t) -- sup [SRf(t)[. 
R > I  

Using Schindler's estimates one sees that the kernel Ha(t, r) shows a singularity 
along the line t=r, so we are going to focus on the region t~r .  We write 

I 
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and consequently we have S* f (t) _< S~ f (t) + S~ f (t). 
First we consider the case r,t<_l. By ($3) we have [Hl(t,r)l<r and so the 

corresponding operator S~ f (t) _< cll f II L,(~) by H61der's inequality. Therefore 

S* I[ lfllL,(a) <-cpIlfllLv(a), l < p < c ~ .  

By ($4) we see that  H2(t, r) contains a typical term like 

, s iC(r )  tl/2r1/2 R 
f Jo(t,A)Jo(r,A)AdA. 

V sinh(t) Jz 

Adding a term that  can be controlled as we did with H 1, we can say that  in 
first approximation H2(t,r)~-rf? Jo(tA)Jo(r)OAdA. We still denote by S~ the 
corresponding operator and we handle it as follows. 

In [P] it has been shown that  

o. R d/k rf(r) dr (P1) sup f f Jo(t,/~)Jo(r,A))~ < ct-1/2M(f(r)rl/2)(t), 
R>I Jo Jo 

where M denotes the sum of the maximal function, of the maximal Hilbert transform 
and of the maximal Carleson operator. Therefore the same estimate holds for 

S~f(t). 
Then by a weighted estimate [OR] we have 

( fo  e )l/p [IS~f(t)[]Lp(a) <_ Cp [M(f(r)rZ/2)(t)IPtl-p/2dt 

\i/p 
<-CP(fol [f(t)[ vtdt) <--CpHf[ILp(G), 

4 if g <p<4 .  
Now we consider the case r,t>_l. Again one finds that H 1 is much simpler 

than H~, so let us disregard it for the time being. 
By ($2) we can see that in first approximation 

1 fl (P2) S~f(t) ~ - ~ s R u  p - -  

We write the above operator as 

1 ~:l(fkk+le iR(t-~) 
= t--r 

eiR(t-~) 
t - r  f ( r ) ~ d r .  

- - f ( r ) ~ d r  (~k(t)+r = E Ak,R+Bk,R, 
k=l 
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where pk(t)+r for every t > l  and ~k=X[k_l ,  k+2)(t). Correspondingly 

cx) o o  

S~f(t) < ~_. A*kf(t)+sup ~ Bk,Rf(t) �9 
k-----1 R>llk=l 

We shall prove 

(i) 
o o  

~-~A*ki(t) ~ c~ll.fllL,(a), l < p < ~ ,  
k=l Lp(G) 

(ii) [IsRu>p k~=lBk,Rf(t) IL2(G)~CpiifiiL~(G), 1 < p < 2 .  

From this the desired estimate for S~ follows. To prove (i) observe that 

1 
A~f(t) = ~ ~ k ( t ) ( C g k ) ( t ) ,  

where g ~ ( r ) = f ( r ) ~ x [ k , k + l } ( r  ) and C denotes the Carleson operator. More- 
over two different ATcf(t)'s have essentially disjoint supports. So for l < p < o o  we 
have 

c ~  p 

A'kS(t) <_ cp ~ IIA*~f(t)ll~,(~) 
Ilk= 1 liLp(G) k= l  

c~ Lk+2 
< Cp E ek(1-P/2) ICgk(t) IPdt 

k=l k-1 

< cp ~ e k(1-pl:) Igk(r)l pdr <- ~,~ll]'ll~,c~)" 
k= l  

Now we turn to (ii). Observe that (ii) holds for p=2 by the L2 boundedness of S~ 
that can be easily proved by the L2 boundedness of the Carleson operator and by 
(i) with p=2.  

We shall now prove a restricted (Lp, L2) estimate for ~k=l~ B~f(t), 1<p<2._ By 
interpolation (ii)follows. Let Ec[1 ,+c~]  be any measurable set. If IIXEIIL:(a)> 1 
then II ~-~k B;XEliL2(G)~CliXEliL2(G)~CiiXEilLp(G) for p<2. If ll)(.EiiL2(G)<1 then 
observe that 

/ rk+l ~ e -t/2 
IB;x~(t)l <e-~12( [ l r l x ~ ( r ) ~ d r )  r ~--k~ek/21EklCk(t)' 

- ~ k  li 
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where Ek=EN[k, k+ l ]  and IEk[ denotes its Euclidean measure. Now 

~ B~XE <_ ~ IIB;xE(t)IIL~(a) N C~-~ ek/21Ek I <_ c~f~ eklEkl 
L2(G) k k k 

5 <_ c XE(r)sinh(r) dr <_ cll  llL,(a) 

for l<_p_<oc. We suggest the interested reader to see [CV] for a closely related 
argument. 

5. T h e  c o m p l e t e  p r o o f  

In this section we shall see that  
(1) the main term of our operator is slightly more complicated than the one 

considered in Section 4, namely it will be the one of the previous section applied 
not directly to f ( r ) ~  but to a * ( f ( r ) ~ )  where c E L l ( R ) ,  

(2) we will take into account the error terms, 
(3) we will take into consideration the region { t_ < l , r> l}  and { t> l , r_< l} .  

Let us start from the last point and subdivide the region {(t, r ) : t  > 0, r > 0} into four 
pieces 
1 ~t region = { t>  1 1 _ 5 , r - > ~ } ,  

2 nd region = {O<t<_�89189 
3 rd region = {O<t~�89  
4 th r e g ion=  { t> l , 0_<r< �89  

Observe that  the 3 rd and 4 th regions are far away from the line r=t where 
H(t, r) is "singular". 

The first region 

For technical reasons we are going to break up smoothly the domain of integra- 
tion in A. Let gl(),) be a C ~ function supported on IAI_<I and such that  g1(),)=1 
for IAI<�89 Let g2(A) be defined by g l (A)+g2(A)=l  for every A_>0. 

Then HR=H 1 +H 2 where 

1 ~  i f  
Hl(t,r)= 2V ~ J-ir162 

is independent of R. From ($1) it follows that  

~ H  1 t (,r) 



Almost everywhere convergence of the inverse spherical t ransform on SL(2, I t )  205 

is the sum of terms like 

f_llei~(t-r) g1( A ) dA = ~l ( t -  r), 

./_~ei~(t-r)hl()~)gl()t) d,~--~ (hlgx)A(t--r), 

f_Xxei~(t-~)h1(A)sl(A,t)gl(A ) dA, 

:_lleiA(t-r)hl(~)81()~,r)gl(/~) d)~ , 

:_llei)~(t-r)81(/~,t)81()t,r)g1()t)d)t 

and similar terms containing t+r in the exponent. Simpler operators are associated 
to the latter and we leave their study to the interested reader. 

The first two terms are L I (R)  convolution kernels, since gl,hlglCC(2)(R). 
Hence the corresponding operator, being simpler than the operator (P2) handled in 
the previous section, maps boundedly KLK(G) into Lp(G)+L2(G), l < p < 2 .  Let us 
consider the third term; its corresponding kernel, that  by an abuse of notation we 
still denote by HI(t, r), is dominated by e-3/2ter/2/r. For, if t>r/2 taking absolute 

values inside the integral we obtain a bound of 

g e-, 
which implies the claimed estimate; if t<r/2 one integration by parts gives a bound 
of 

~ e-2t 
r 

as claimed. 
Then, i f p  and q are dual exponents and 1<p_<2 we have 

Hi(t, r)f(r) dr ~_ e-3/2t[[f[[Lp(G) er(1/2-1/p)qr-qdr 
/2 /2 

<_ cpe-3/2tllfllL,(a) 

and so 
o~ o~ p \ l / p  

(jl '/2fl/2Hl(t,r)f(r)dr sinh(t)dt) ~_CpllfllLp(a ). 
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Exchanging the roles of t and r we handle the fourth term; its corresponding kernel, 
that  we still denote by H 1 (t, r),  is dominated by (e-~/2e-t/2)/t. Hence for 1 <p_< 2, 

and so 

(/1 Hi(t, r)f(r) dr < - - I l f l l / p ( a )  e-r(U2+q/P)dr 
12 - t 12 

e-t /2 
__ c  -IlfllL,(a) 

sinh(t) dt < CpllfHLp(C ). 
/2 /2 

The fifth term is even easier. So we proved that  s~:KLK(G)--+L2(G)+Lp(G), 1< 

p<2 .  
Let us turn to H~.  From ($2) it follows tha t  

is the sum of terms like 

~ H  2 R 

o R ei~(t-~) g2( A ) d)~, 

~0 R e i)~(t-r) g2( ) 

fo R " _ e *;~(t ~)Sj()~)g2(A) dA, 

fo R ei~(t-~) Dj( A, t)g2 (A) dX 

Let us examine the first te rm which is equal to 

~o 1 ~1R eiR(t-r) el(t-r) 
ei~(t-~)g2(/~)d~+ ei~(t-~)d~=G(t-r)+ i( t-r)  i ( t -r) '  

where G(y) is bounded at the origin and for [Yl > 1 is equal to eiy/y plus an error. 
The error is dominated by c/y 2, as one can see integrating by parts  twice. So 

the work done to control the operator  in (P2) applies here. The second term, by 
inspection, should not be any worse than  the first one. We shall back up this claim 
by a precise argument.  We write the second te rm as a sum of three pieces as we 
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did above. Let us follow the most complicated one, namely the one that  carries the 
dependency upon R. 

Setting y = t - r  

~1 Rei)W ( ~ '~1  A --~--g2(A) dA-- X[0,R](A)" (Y) 

Now a(y)=((g2(A))/A)A(y) is described in Lemma 1. So we have to handle 

~ R > I  eiRx )it) �9 (P3) 1 sup *a* ( f ( r ) ~  
X 

By the method used to control the operator in (P2) we can prove that  

// 1 ~ ( y - r ) f ( r ) ~ d r  T f ( y ) -  ~ /2 

maps boundedly KLK(G) into L2+Lp. 
Now we have to apply to Tf(y) the operator in (P2) namely 

RP ~o ~~ eiR(t-Y) T f ( y ) ~ d y  , t :  >1 --~ s t - y  

that  we know maps Lp into L2+Lp, l < p < 2 .  
This proves that  the operator in (P3) does the same. 
The third term is a convolution kernel uniformly bounded at the origin and 

equal to (eiRy/y)Sj(R) plus negligible terms at infinity, as one can see integrating 
by parts twice and using ($2). 

The fourth term can be handled in a way similar to that  used for the third 
term of the preceding H 1 (t, r) kernel. So we proved that  

S~ :KLK(G) --~ L2(G)+Lp(G), 1 <p < 2. 

The second region 

As before we break up the domain of integration in /k in a smooth way by 
means of gl()~) and g2(A) and we have HR=HI+H~. By ($3) we obtain 

/. f2 A2sinh 1/2 (t) sinhU2 (r)gl ()~) dA + similar terms~ < cr  l(t")<-cv tJo j 
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and so the corresponding operator S~ satisfies 

/o (P4) IS;f(t)l <_ rf(r)dr < Cpl[f[IL,(G), 

Therefore [Is~fllL,(a)<_cp[lfllL,(a), for l < p < c ~ .  
By ($4) it follows tha t  

R 

breaks up in several terms like 

l < p < ~ .  

f./m R Jo(tA)Jo(rA)Ag2(A) dA, t1/2r1/2 

[R J0(t~)Jl(r~)g2(~) d~, tl/2r3/2~l(r ) 

ta/2rX/2~l(t) Jx(t~)Jo(rA)g2(A) d~, 

t3/2ra/2~l(r)~l(t) f oR j l ( tA )Y l ( rA)~  dA, 

/? r 1/2 A~/2Jo(rA)Fo(t, A)g2(A) dA, 

t 1/2 f R  Ai/2Jo(tA)Fo(r, A)g2(A) dA 
JO 

and other negligible terms. 
We consider the first term that  we write as a main term plus an error as follows 

tl/2r 1/2 [fo R Jo(tA)Jo(rA)AdA- fo 2 Jo(tA)Jo(rA)(l-g2(A))A dA]. 

For the operator that  corresponds to the main te rm see (P1). 
The error term, independent of R, is dominated by ctl/2r 1/2 and so the corre- 

sponding operator satisfies the estimate in (P4). Let us move to the second term 

that ,  by inspection, should not be any worse than  the first one. Suppose e.g. that  
r<t and break up the domain of integration [0, R l--J0, 1/r]tA[1/r,R] in a smooth 

way, obtaining an error and a main term. Since [f~lr Jo(tA)Jl(rA)g2(A)dA[<c/r, 
the error term is harmless; the corresponding operator  satisfies the estimate in (P4). 
Consider the main term. By Lemma 2 

f i  R f Reid(t-r) Jo(tA)J~ (rA) dA = ct-X/2r -~/2 - -  dA+ errors. 
/~ J1/r A 



Almost everywhere convergence of the inverse spherical t ransform on SL(2, R)  209 

We leave to the interested reader the s tudy of the errors. To decode what remains 
recall tha t  we broke up the domain of integration in A in a smooth way, so the 

corresponding operator  is dominated by 

t_ l /2sup e i R x  * ~r* (f(r)1" 3/~) (t) , 
R>I  X 

where er E L l ( R )  satisfies the estimates of Lemma 1 independently of r. (By K*g(t) 
we denote f K(t-r)g(r)dr.) This is slightly more complicated than  the operator  in 
(P1). We already encountered a similar situation and we know that  the Lp est imate 
remains the same. Similarly if r > t. The third and fourth te rm are not any worse 

than  the second one and they can be handled similarly. The remaining terms can be 
controlled by taking absolute values inside the integration in A. Let us consider for 
instance r 1/2 fl~2 Al/2J~ t, A)g2(A)dA. Suppose r<t (and proceed similarly 
if r>t). Then break up the domain of integration [�89 Now 
observe tha t  [rU2 f:/2 A1/2 Jo(rA )Fo( t, A)dA[ <r 1/2 lg(r)t 1/2. 

Therefore the corresponding operator,  let us call it again S~, satisfies the esti- 

mate  [S~f(t)l<Cpllf[IL~(a).(fdrlgq(1/r)dr)l/q<cp[[f[[Lp(G)and so S~ is bounded 
from KLK(G) to itself, l < p < e c .  We are left with 

R 

1"1/2 fl/r A1/2j~176 A) dA < 1. 

Therefore the corresponding operator,  tha t  we call again S~, satisfies the estimate 

Is f(t)l <t-i~ If(r)lr-1/2dr<cpt- /211yllL,(C), i f p >  4 

Then 

IlsZYll  ( ) -<  pllfll  ( ), if p < 4. 

The third region 

We shall prove that  the corresponding operator  maps boundedly KLK (G) into 

itself, l < p < 2 .  This easily follows from the estimate 

[Hn(t,r)[ < V ~ r' 

tha t  we are going to prove after breaking up HR=HI-bH 2 as usual. Using (S1) 
and ($3) we write H 1 as a sum of several terms. Let us consider one of them, for 

instance the first one ~ f l  Aei~rdA. 
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One integration by parts gives a bound of ~ / r ,  stronger then what 
claimed. All the other terms can be handled similarly since we have good estimate 
on the derivatives with respect to A of all functions involved. 

Using ($2) and ($4), H 2 breaks up in several terms. Let us consider the first 
one 

A1/2J~ V sinh(t) [~11/t~- ~'l/t] " 

Recall that  J~(t)=-Jl(t). Then one integration by parts proves that  

~ t l / 2  ~l/tA1/2jo(At)ei~dA c 

Since, up to negligible terms, we have 

~1 R ~l R e:t:i;~t ein(• tl/2 A1/2jo(At)ei~rdA=tl/2 A1/2 e~dA _ 1 
/t /t (At) 1/2 i(• i(• 

the claimed estimate is proved for the first term of H 2. Proceed similarly for the 
others. 

T h e  f o u r t h  r e g ion  

The corresponding operator maps boundedly KLK(G)--~L2(G), p> 4. To prove 

this, observe that 

IHR(t,r)l <_ 
V t 

This follows from the estimates for HR in the third region, exchanging the roles of 
t and r. Now 

c 
9~olHR(t,r)f(r)dr ~ t ~ [ l f l [ L p ( a )  

4 From this, it follows easily that  the L2-norm of the corresponding opera- if p >  ~. 
tor S* satisfies 

* 4 IIs __ cIIfll ,( ), p > 
This concludes the proof. 

In [MP] we extend the present result to all rank one, non compact, connected 
Riemannian symmetric spaces G/K using a different approach that  produces a 
shorter proof, but works only for square integrable functions. 



Almost everywhere convergence of the inverse spherical transform on SL(2, R) 211 

R e f e r e n c e s  

[CS] CARBERY, A. and SORIA, F., Almost everywhere convergence of Fourier integrals 
for functions in Sobolev spaces and an L2-1ocalisation principle, Rev. Mat. 
Iberoamericana 4 (1988), 319 338. 

[C] CARLESON, L., On convergence and growth of partial sums of Fourier series, Acta 
Math. 116 (1966), 135-157. 

ICY] COLZANI, L. and VIGNATI, M., Hilbert transforms with exponential weights, 
preprint. 

[GR] GARCIA-CUERVA, J. and RUBIO DE FRANCIA, J. L., Weighted Norm Inequali- 
ties and Related Topics, North-Holland Math. Studies 116, North-Holland, 
Amsterdam-New York, 1985. 

[GM] GIULINI, S. and MAUCERI, G., Almost everywhere convergence of Riesz means on 
certain non compact symmetric spaces, to appear in Ann. Mat. Pura Appl. 

[Gd] GODEMENT, R., Introduction aux travaux de A. Selberg, Seminaire Bourbaki 144 
(1957). 

[Ka] KANJIN, Y., Convergence and divergence almost everywhere of spherical means for 
radial functions, Proc. Amer. Math. Soc. 103 (1988), 1063-1064. 

[Ko] KOORNWINDER, T., The representation theory of SL(2, R), a non infinitesimal ap- 
proach, Enseign. Math. 28 (1982), 53-90. 

IMP] MEANEY, C. and PRESTINI, E., On almost everywhere convergence of inverse spher- 
ical transforms, preprint. 

[P] PRESTINI, P., Almost everywhere convergence of the spherical partial sums for radial 
functions, Monatatsh. Math. 105 (1988), 207-216. 

[Sc] SCHINDLER, S., Some transplantation theorems for the generalized Mehler transform 
and related asymptotic expansions, Trans. Amer. Math. Soc. 155 (1971), 257- 
291. 

[ST] STANTON, R. and TOMAS, P., Expansions for spherical functions on noncompact 
spaces, Acta Math. 140 (1978), 251-276. 

[S] STEIN, E. M., Singular Integrals and Differentiability Properties of Functions, 
Princeton Univ. Press, Princeton, N. J., 1970. 

Received March 22, 1993 Cristopher Meaney 
School of MPCE 
MacQuarie University 
NSW 2109 
Australia 

Elena Prestini 
Dipartimento di Matematica 
I1 Universit~ di Roma 
00133 Roma 
Italy 


