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Schatten classes 

Abstract. We determine the smallest Schatten class containing all integral operators with 
kernels in "Y~'~ Lp(Lp,,q) , where 2 < p < ~  and 1 ~q~_ ~. In particular, we give a negative answer 
to a problem posed by Arazy, Fisher, Janson and Peetre in [1]. 

1. Setting of the problem 

Let (f2,/a) be a a-finite measure space and let K be a l t•  kernel 
defined on f2 • f2. The integral operator associated to K is given by 

Try(x) = f QK(x, ),)f(y) dlt(.l'), _x-cO_. 

We shall consider TK as a bounded operator  in L~(I2, It), for this purpose we shall 
impose certain summability conditions on the kernel K. 

Let l < p < ~ ,  Up+l / i f=l ,  l<=q<= oo and let Lp, 0 be the Lorentz function 
space (see, e.g., [2]). We say that K~Lp(Lp,,~) if 

Similarly, we say that KC(Lp,,q)Lp if 

= (f.o y)rJL.,  dla(Y)) lip <o~. 

When 
KC Lp (Lp,. ~) n (Ll,," ~) Lp 

we write 
KE Lp(Lp,,~) strum. 

Integral operators generated by kernels satisfying surnmability conditions of  
the type mentioned above are called Hi l le - -Tamarkin  operators. They often arise 
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in functional analysis (see, e.g., [5], [6]). We are interested in the relationship be- 
tween summability properties of  K and the degree of  compactness of  Tx on/_~(t2, #). 
For this we need the Schatten classes. 

Recall that given any compact (linear) operator T in L~(K2,/~), the singular 
numbers of  T are defined by sn(T)=2.(IT]),  n~N, where [T I=(T*T)  1/z and the 
2n's are the non-zero eigenvalues of  [T[, arranged in non-increasing order and repeated 
according to their algebraic multiplicities. In the special case when T is compact 
and self-adjoint, we have sn(T)=lRn(Z)l, nCN. 

The Schatten--Lorentz class Sp,~ consists of all compact operators T on L2(I2, p) 
having finite quasi-norm 

HZltp, q = ( ~ = ~  (na/Ps,(T))qn-1) 1/a. 

These classes are lexicographically ordered, i.e. Spo,%~Spl,q ' if po<pl and 1~ 
q0, ql <= 0% or P0---Px and qo<ql. The space Sp,, is just the Schatten--von Neu- 
mann p-class Sp. For more details on singular numbers and Schatten classes see, 
e.g., [3], [5] or [6]. 

The following result is due to Russo [7]. 

Theorem 1. I f  2<=p<oo and KELa(Lr,) symm, then TKES p. 

Russo's theorem has been recently improved by Arazy, Fisher, Janson and 
Peetre [1]. 

Theorem 2. Let 2 < p <  0% p~q<_ ~ and let K6Lp(Lp,,~) ~y~. Then T~ESp, q. 

As a matter of  fact, the case q= oo in Theorem 2 was established by Janson 
and Wolff [4]. 

The methods developed by Arazy, Fisher, Janson and Peetre in [1] do not 
apply to the case 1 ~_ q<p. They left as an open problem the following question: 

Problem. Does Theorem 2 hold for 1 <= q<p? In particular, can Russo's theo- 
rem be improved to the effect that if K6Lp(Lp,) ~y~m then it follows that TKESp, p,? 

In this note we show that the answer to this problem is "no". Moreover, we 
give examples showing that Theorem 2 is optimal. 

(i) 

2. The counter-example 

Our results can be formulated as follows: 

Theorem 3. Let 2 < p < o o  and l<_-q~_r 

Given any a-finite measure space (f2, la), i f  K is a kernel over I2Xf2 such that 
KELp(Lp,,q) symm, then TKESp.maxClJ,~ ). 
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(ii) Let f2=[0, 1] with Lebesgue measure. There is a kernel K over [0, 1]X[0, 1] 
such that KE Lp(Lp,.~) "r~m but Txr for  every r < m a x  (p, q). 

Proof. Statement (i) is a trivial consequence of Theorem 2, since for q < p  it 
holds Lr  

To prove (ii), we distinguish two cases. Assume first q ~ p  and denote by 
lp., the Lorentz sequence space. Choose a sequence of positive numbers (~.) such that 

(~.)~/p\U,<p t,.,, 
and consider the kernel 

K(x,  y) = Z*~=x 2"a . z . ( x ) z . ( y ) ,  x, y6[O, 1], 

where Z. is the characteristic function of the interval I .=(2-" ,  2-"+1). For x~I . ,  
we have 

IlK(x, .)ILL.,.. -- 2"~. IIx.IIL..,. - c2"~. II.I ,/r 

where c=(p'/q)a/L Hence, since I/.1=2 -", 

IIKII , . . . , . . .  = c i t . = ,  (2" ' f ,  a x ) ' "  = c n(..)ll,. < = .  

The same estimate holds for l[Kll(z..)L., therefore K~Lp(Lp,.qy ymm. 
P ,  . �9 . 

The operator Tx generated by K is self-adjomt because K(x,  y) is real and 
symmetric. Moreover, TK is given by 

Thus 
T~Z. = 2"a.ll.lz. = a.Z.. 

It follows that 
s.(Tx) = I2.(Tx)l = ~. 

and consequently 
IITKIIp,, = ll(~.)lb,., -~o for every 

Now we treat the case q>p.  Take any 7 > l / q  

f ( x )  = ~=x ~.e 2"I"~, x6R, 
where 

By [8], V.2.6, 

as [xl-~0. Since vq> l ,  g belongs to 

r < p .  

and consider the function 

~, = n -1/p (log (1 + n)) -x/q (log 1og (2 + n))- ' .  

If(x)[ behaves like 

t' 1 ,-*/ '  (log logT~l)- '  g(x) -- lxl-m' [log - ~ j  

Lr 1], dx), and therefore the same holds 
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for  f .  Cons ide r  next  the kernel  o f  convo lu t ion  with f ,  

K ( x , y )  = f ( x - y ) ,  x, yE[0, 1]. 

F o r  every x, y6[0,  1], we get  

IlK(x, .)IIL,,,~ = ILK(., Y)IIL,,,~ = [lfllLp,,~ 

Hence KELp(Lp,. q)symm. On the other hand, it is well-known that the eigenvalues 
o f  T r coincide  with  the  F o u r i e r  coefficients o f f  Besides, T r is se l f -adjoin t  because  

K(x ,  y ) =  K(y ,  x) .  Consequent ly ,  

s,(TK) = IL.(Tx)I = If(n)l -- ~., n~N. 

Taking into account that (ct,)r for every r<q, we obtain that 

T~r 
The  p r o o f  is complete .  
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