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Introduction 

The aim of this work is to show some LP-estimates for the operators which are 
used to represent the solutions of  Cauchy problems for hyperbolic equations with 
constant coefficients. 

Now, we set for d>0 ,  kER, ~ER" 

(1) mk.d(r = eilr 

where ak(~)ES -k and 0~suppak. (S -k is the class of  smooth functions which 
satisfy the estimates ID~a(OI<-C,(1 + [~l)-k-I~l for all derivations D'.) The opera- 
tors MR, n(D)=F-1mk, dF (F denotes the Fourier transform, and F -1 its inverse) 
are used to represent the fundamental solutions of  Cauchy problems for Schr6dinger 
equations (d=  1) and wave equations (d=2).  It was not so easy to obtain L p- 
estimates for them because we cannot apply the famous Marcinkiewicz theorem: 
"I f  [D~m(~)[~C~l~[ -I~1 for I~[<=[n/2]+l, the operator M ( D ) = F - l m F  is L p- 
bounded ( l<p<oo) . "  (See, for example, Stein[15].) But many authors such as 
Hirshmann [5], Wainger [17], Fefferman--Stein [3], Sj6strand [14], Miyachi [10], 
[11], and Peral [12] contributed to it and gave 

Theorem A. (i) In the case d r  l, the operator MR, d(D ) is LP-bounded i f  and 
k >  n 1 1 only i f  = d l ~ - ~ l  (ii) In the case d= 1, the operator Mk a(D) is LP-bounded 

i f  and only i f  k = > ( n - 1 ) l ~ - ~ [  . 

We remark that theorem A in the case (i) is valid even if we replace the 
phase function I~1 a in the symbol (1) by any real function ~o(~) which is homo- 
geneous of  degree d (that is, ~o(00= 0dq~(~) for 0 >0), while the case (ii) does not 
have such a generalization. (See Miyachi [10].) This fact, as well as the dif- 
ference of  the critical order for k, expresses the specialty of  the case (ii). In 
this paper, we shall consider to what extent we can generalize the phase function 
in the case (ii). 
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This problem is deeply related to the Cauchy problem for hyperbolic equa- 
tions. Let p(z, ~) be a strictly hyperbolic polynomial of degree m, that is, p(T, r 
(x-tpx(~))...(T-tp,(~)), where the characteristic roots {q~,}~'=l are homogeneous 
of degree 1 and are ordered as (p~(r >q~m(~) ( ~ 0 ) .  Then the solution of the 
following Cauchy problem 

(2) P(Dt, Dx)u(t, x) = O, 
Dr'u(0, x) = gj(x); j = 0, 1, 2 . . . . .  m -  1, 

associated with the polynomial p(z, ~) is represented as 

. ( t , x )  . - 1  = " Zj o MI'J(D)gJ 

up to a regular term. Here the symbol of the operator M~'-~(D) is of the form 

m~.J(r = em,,<~)at.j(~) , 

where at.j(~)~S - i  and 0r at, j .  So, in order to obtain LP-estimates for them, 
we need to extend Theorem A in the case (ii), replacing the phase function I~1 a 
in the symbol (1) by such functions as characteristic roots of strictly hyperbolic 
polynomials, 

Now, we shall show some properties of characteristic roots {~ot}T=x, especially 
of tpl (accordingly of tpm(~)= -q~l(-~)).  If p(~, ~) is complete, that is, depends 
on essentially all variables ~ and ~, we can write q~l(~)=~o(~)+~(~) with some 
homogeneous function tp(r of degree 1 which is real analytic at ~ 0 ,  and 
with some polynomial u(~) of degree 1. Furthermore, the hypersurface E= 
{~ER*; tp(~)= 1} is strictly convex, that is, every tangent plane of E never lies on 
27 except for the tangent point. Particularly, in case of m=2,  the Gaussian curva- 
ture of E never vanishes. On the other hand, the factor e i'~r corresponds to the 
translation of variables, so it is negligible for LP-estimates. About the properties 
of strictly hyperbolic polynomials described here, consult Beals [1, Section 5] and 
the papers cited therein. 

Then we set a symbol on R ~ as 

(3) mk(~) = e~*<r 

where (p(~)>0 is homogeneous of degree 1 and real analytic at ~ 0 ,  and 
ak(~)6S -k, 0qsuppa k. When is the operator M k ( D ) = F - l m k F  LP-bounded? 
And what effect does the hypersurface E=  {~6Rn; tp(~)= 1} have on this problem? 
There have already been the following answers to this given by Miyachi [11] and 
Beals [1]. 
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Theorem B. (i) In the case that the Gaussian curvature o f  ~ never vanishes, 
1 I the operator Mk(D) is LP-bounded i f  k = > ( n - 1 ) t T - ~ -  t. (ii) In the case that T~ is 

strictly convex, the operator Mk(D ) is L'-bounded i f  

The condition that the Gaussian curvature of  2: never vanishes implies that 
2: is strictly convex, but not vice versa. See, for example, Kobayashi--Nomizu 
[7, Chapter 7]. The following is our main theorem which claims that theorem B 
in the case (ii) is valid for k = ( n -  I as well. 

::>. 1 1 Main Theorem. I f  the hypersurface T~ is strictly convex and 
the operator Mk(D) is bounded on the Sobolev spaces H~(R ") ( l < p <  co, sER) and 
the Besov spaces B~,,q(R ~) (l<=p, q<_oo, s~R). 

Here the Besov spaces are a generalization of  classes of  H61der continuous 
functions. For  instance, B~. .o(s>0)  is "almost" the same as the class of  func- 
tions which are [s]-times differentiable and whose derivatives are H61der contin- 
uous of  order s -[s] .  So the boundedness theorems on these spaces are useful to 
discuss the regularity of  the solution of  problem (2) in a classical sense. For  more 
information about Sobolev spaces and Besov spaces, see Bergh--L6fstrSm [2] and 
Triebel [ 16]. 

We cannot show any results about the case when the hypersurface 2: is not nec- 
essary convex. Although Marshall [9] treated this case and gave some estimates, 
our results are not included in his results. Recently, without any assumptions on 
the hypersurface 2~, Seeger--Sogge--Stein [13] have shown some results which 
contains our main theorem. 

The proof  of  our main theorem is based on two theories. One is the analysis 
of  Fourier integrals with degenerating phase functions, and the other is the theory 
of  Hardy spaces. The following sections are devoted to the details of  them. 

Finally, we remark on notation. Throughout this paper, the capital "C"  (with 
some indices) in estimates always denotes a constant (depending on the indices) 
which may be different in each occasion. 

1. Fourier integral 

As we will see later in the following sections, we need estimates for the con- 
volution kernel K ( x ) = F - l m k ( x )  to prove the main theorem, and we can reduce 
it to the analysis of  a Fourier integral which we shall describe hereafter. 

Let U c R  ~ be an open neighbourhood of  the origin, and let h: U ~ R  be 
a real analytic function which is convex or concave, that is, the Hessian matrix 
h" is semi-definite (not necessary definite). Then we set for tE R and z~ U, 

( l. 1) I(t;  z )  = e ''e(y; z) g (y) dy. 
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Here the phase function E(y;  z) is defined by 

E 0,; z) = h (y) - h (z) - h' (z). (y - z), 

and the amplitude function g(y)~Co(U).  
We shall investigate the asymptotic behavior of the function I(t; z) with respect 

to the variable t at infinity. In this case, the parameter zC U denotes the critical 
point of the function y~-+E(y; z), but there is a possibility that the Hessian matrix 
E'y'y(y; z)=h"(y) degenerates there. So we cannot use the stationary phase method 
as used in H6rmander [6], but need more precise discussions. For our aim, we shall 
split the integral (1.1) into two parts, the part near the critical point z and the other 
part away from it: 

(1.2) 1 l ( t ;  Z) = t-"/a f e i'e~'-'/~r+z; z)g(t-1/3y + z)z(lYl) dy, 

(1.3) Is(t; z) = t-"/S f e"E~'-'/~y+~;~)g(t-1/~y +z)(1-Z)( ly l )dy.  

Here Z(Q)EC o (R) and Z = 1 near the origin. Then for the functions lj and I~ = dlj/dt 
( j =  1, 2) we have the following proposition. 

Proposition 1.1. I f  6 >0 is sufficiently small, then for t>0 ,  zE B~= {xE U; Ix] <=6}, 
gECo(B~), and l>=n/2 

(1.4) II~(t; z)[ -<_ Ct-"/2ldet h"(z)l -~/2, 

(1.5) Itl~ (t; z)l <= Ct-"/2(ldet h"(z)l-a/2+ t-a/Zldet h,,(z)[-~/~), 

(1.6) Ilz(t; z)[, Itl~(t; z)l ~ Ctt-"/~l(t)ldet h"(z)l -(zt-'+~)/2. 

Here the constants C and Cl are independent of  the variables t and z, and 

l(2n+1--41)/6 

r = It ~"-2t)/6 Ilog tl {"+2-~)/2 
l(n--2t)/6 

n n + l  
i f  < - -  g = l <  z ' 

i f  .+1 <: l < ~-+1 
n i f  l => ~-+1. 

We remark that the estimates (1.6) with l=n/2 and l=(n+l) /2  give re- 
spectively 

(1.6") l l 2 ( t ;  z ) l ,  ' " t--n/2+116 It12 (t, z)l <- Ct Idet h"(z)l-1/2, 

(1.6") 112(t; z)l, 1t12" (t," z)l <= Ctt-"/2-1/6llog tll/21det h" (z)l -a. 

The proofs of estimates (1.4) and (1.5) are carried out by the usual stationary 
phase method. If  we set 

y~ f l  (1 - 0) 50~h cp(y; t, z) = ~'l,l=z~.v J 0 --0-~ -(Ot- ' /3y+z)dO 

and 
f ( y ;  t, z) = e,q, tr,t, z)g(t-1/~y + z)z(lyl) ' 
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equality (1.2) is transformed as 

Ix(t; z) = t-"/S f e(m)tl/8<h'~z)y,y>f(y: t, z) dy 

: (2.~--~) ~la e'f=l')sgnh'f:) fe-O/~),-'<~'.)-',.,>:(n; t,z)dtl, 
Idet h" (z)l x/2 

where f (q ;  t, z) is the Fourier transform of  the function y ~ f ( y ;  t, z). Here we 
have used Taylor's formula, Fourier's inversion formula and Fresners integral. 
(See H6rmander [6, p. 145].) Estimates (1.4) and (1.5) are easily obtained from 
this if we notice the estimates II Iqlk/llL,(R-)<=C II flln|fa-) (k=>0, s>n/2+k) .  

In order to obtain estimate (1.6), we rewrite equality (1.3) with polar co- 
ordinates as 

(1.7) 12(t; z) = t-"/S f s . _ lG( t ;  z, co)dco, 
where 

G(t; z, co) = f o eUr(t-l/'o;z'w)~(0' t; z, co)d#, 

F(O; z, co) = h(eco+ z ) - h ( z ) -  oh'(z), co, 

fl(e, t; z, co) = g(t-a/seco+ z)(1--Z)(0)Q "-1. 

For the sake of  simplicity, we shall often omit the parameters z and co. 
Now, for l=0, 1, 2 . . . . .  integration by parts yields 

(1.8) G ( t )  = f o eUr('-~/3Q)(L*)Zfl(e' t) de. 
Here 

I 0 
L =  

it2/aF" (t-l/aQ) 0Q 

and L* is the transpose of  L. By induction, we easily have 

( t ) '  F(t+~O'"F(~+") i~" 
(1.9) (L*)' = 2 t'ta (F,)q (t-'/30) 00 ' '  

where the summation ~ is a finite sum of the cases sl+. . .  +sp+r=l ,  q - p = l .  By 
the analyticity and the convexity (concavity)of the function h, the derivatives F cs) 
satisfy the following lemma. 

Lemma 1.2. I f  6 > 0  is sufficiently small and i f  101, [el-<& then for m=0,  1, 2 . . . .  

IF'(e)l => Col(h" (z)co, co)l, 

IFCm)(o)l <= free  1-m IF'(o)I. 

Here the constants C and C,, are independent o f  the variables Q, z and co. 
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Proof. See Beals [1, lemma 3.2, 3.3]. 
We may assume that t-I/3 0 is sufficiently small and t is sufficiently large. Then 

if we use lemma 1.2, we obtain from equalities (1.8) and (1.9) 

IG(t)l <-- C,t-' ~ f o lt'/3 F(X+*O'"F(~+~')(F,) q (t-x/a 0) ~ (Q, t) do 

c , t  -'/~ ~ l ~ do 
<= ](h"(z)o), o))[' " t) 

C, t -  t/3 

I(h" (z)o), @1' 

[t (n-~1)/3 i f  l < " u  

, f , = .  T '  
;1 

if I ~" -ft. 

For l>=n/2, which is not necessarily integer, we have by interpolation 

C, t-"16 
IG(t)l ~- I(h"(z)o), o))l' (l(t). 

From this and equality (1.7), we can obtain estimate (1.6) with the function I2(t; z) 
if we use the following lemma. 

I.emma 1.3. Let Q be a positive-definite quadratic form on R", and let 2 be the 
maximal eigenvalue of Q. Then, i f  l>-n/2, 

do) ='~ Ca , 2 ((21-n)(n-x))/2 
f 
a s.-, (Qo), o))' ' (det Q)(21-.+x)/2 

o 

Proof. Let {2j}~.=~ be the eigenvalues of the quadratic form Q. Then we have 

do) = 2 L , _  do). f ~  e_,,<a~,.,~>Q2,_Xdo~ f 
~ s"-' (Qo), 09)' F(----O 

2 
= 1"(0 fR.  e-(X'x~+'"+z"~")lxl2Z-"dx~'"dx" 

,'z f 2 , 2 
< C, . ,~  JR e-(al"*+ .... a"x")lxjl2'-"dxa'"dxn 
: j = l  n 

This yields the lemma. 

~ .  r -IxI' ( Ixjl 1"-" dxx...dx. 
=  ""ZJ=ls"e 

~) ((2l-n)(n-X))/2 

_~ C,.t (det Q)(2t-,+x),,2 �9 
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Estimate (1.6) with the derivative ' �9 I~(t, z) is obtained in a similar way if we 
notice the equality 

G" (t) = i f [  ei'FO-~/'*Q) F(t-l/3 o)fl(O, t) do 

i 
3ir/a foe,,m_.,o,F.(t_~/~e)e#(e,t)@+ foe,,r(,_.,o, a,~ 0--7 (Q' t) d~o 

= i f[e 'F('-'/'e) (L*)' + a (F(t-'/a O) fl (o~, t)) do 

1 . -  . F ' , - , / , Q ) - - * ' t  O(O/ / )  - e -  , ' ,  �9 z O/~ 
+ - ~ - J  0 e ' (L)---~o ~Q,t)dO+joei 'r( ' - 'o)(L)--~-(e, t )d O. 

We shall omit the details. 

2. Convolution kernel 

In this section, we shall investigate the properties of the convolution kernel 

( 2 . 1 )  K ( x )  = F - l m ~  (x) = 1 f ~,, ei{X'~ +~cr ak(~) d~, (2,~)" 

especially the relationship with the geometrical properties of the hypersurface 
X={{ER"; ~o({)=1}. We may assume, without loss of generality, that ak({ ) is 
homogeneous of  degree - k  for large Ill and vanishes near the origin. Since the 
main theorem in the case n =  1 is trivial, we shall assume n=>2 throughout this 
section. 

Let the Gauss map v of the hypersurface 2; be 

Vg(p) 
v: 2;3p ~ IVq~(p)------~CS "-1, 

and let x(p) be the Gaussian curvature at the point pE 27 with respect to the Gauss 
map v. By the strict convexity of the hypersurface E, the Gauss map v is homeo- 
morphism. The following proposition says that the kernel K(x) has a singularity 
on the hypersurface 

E* = {-Vtp(~); ~EZ} = {x; H(x) = 0}, 
where 

H(x) = I x l -  [v~o(v-~(- x/IxO)[ 
Proposition 2.1. (i) The kernel K(x) is smooth in R"\27" and we have 

(~ I' (2.2) ~ K(x )= O(Ix[ -M) as Ix[-~o. 
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because of  the trivial equality 

for every derivative (o-~-) ~ K(x) and for every M>O. (ii) There exists a decomposi- 
tion K(x)=~jo*__ 1Kj(x) such that, for sufficiently small t, tl>-O, every term Kj(x) 
has the estimate 

(2.3) u v-X(--x/lx -~H(x) ~ Kj(x <-- Cp 
L ! 

Here the constant Cp, e,~ is independent of  the number fi 

The expression (2.1) of the kernel K(x) is in the sense of an oscillatory integral, 
therefore we can rewrite it as 

(2.4) X(x) = 1 (2~) " - ' ' ' T  f a -  ei{x" r162 (L*)Mak (~) d~ 

for all positive integers M. Here 

L = (x+V~0).Ve 
i lx+V~pl 2 

and L* is the transpose of  L. From this we can easily obtain the property (2.2). 
In order to prove estimates (2.3), we shall (micro)localize the problem. That 

is, by the compactness of the sphere S ~-I and the rotation invariance of  the geo- 
metrical properties, we may assume that the function ak(~) in equality (2.1) is 
supported in a sufficiently small open conic neighbourhood F of  the point 
e n = ( O  . . . . .  0,1)EN '-1. Then by equality (2.4) again, we can see that we have only 
to pay attention to x near the point -Vq~(e,,)E27*. Since Euler's identity ~p(r 
~. Vcp(~) yields ~p~ (e~)=tp(e.)>0, the hypersurface 27 can be expressed locally as 

27c~F = {(y, h(y)); y6U} 

by the implicit function theorem. Here U c R  *-x is a sufficiently small open neigh- 
bourhood of  the origin and h: U--R is a real analytic function. The strict con- 
vexity of  the hypersurface 27 implies that the function h is concave and the map 
h" : U ~ h ' ( U ) c R  ~-~ is homeomorphism. 

In this situation, we shall rewrite estimate (2.3) in terms of the function h. 
For  the point x near -Vtp(e,)EZ*, we define the point z6U by Y,)(z,h(z))= 
v-a(-x/Ixl).  If  we write x=(x ' ,  x.), x'=(xx . . . . .  x~-O, this is equivalent to the 
equality 

x" 
(2.5) h" ( z )  = - - -  

x. 

- x v q ,  (z, h(z)) (2.6) Ixl --IV~l 
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and of the fact that the vector (-h'(z), 1) is normal to the hypersurface 2~ at the 
point (z, h(z)). 

Then we know that the Gaussian curvature u is represented as 

( -  1) n-1 det h"(z) 
(2.7) u(v-~(-x/lx])) = { i +  [Vh(z) 12}r " 

See, for example, Flanders [4, p. 126]. On the other hand, by Euler's identity 
(z, h(z)). V~p(z, h(z))= 1 and by equalities (2.5) and (2.6), we have 

(2.8) H(x) = - x. ]V~o(v-l(-x/Ixl))[ (xz ~ + h ( z ) -  h" (z). z). 

Besides, we set Kj(x) as 

Kj (x) = r ( '  [m~(~) ~ (x. ~0 (~))] (x) 

I 
- JR. e'{"e+'<r162 de. 

Here {~y(t)}T= 0 is a partition of  unity of  Litt lewood--Paley, that is, 

�9 (t)CCo({t; t >  0}), ~ ( t ) =  r ~) (j_-> 1) and . ~ a  % ( 0  = 1. 

By the change of  variables ~--~(ty, th(y)) and t~-~x;Xt ( t>0,  yEU), we have 
for large j" 

(2.9) Ks(x ) - (x")k-------~fof vei'(x='+~)-h'(~)'Y)t"-~-kC)(t2-~)g(y)dtdy. (2~)" 

Here we have used equality (2.5) again, and gECo(U ) is a function which is sup- 
ported in a sufficiently small neighbourhood of  the origin. 

Then, by equalities (2.5), (2.7), (2.8) and (2.9), the proof  of  estimate (2.3) in 
the case /~=0 is reduced to the estimate 

(2.10) Illdeth"(z)l~-nz~Fc~[l(t; z)t"-~-k~(t2-i)](z)llL,(R• ~__ Ce,,~21((M-1):'-k-'), 

(z~R, zCU) if we change variables in the order x'~xnx', x,~T -1, x',--,--h'(z) 
and z~r-h(z)+h'(z).z. Here the function 

I(t; z) = f ue~'{h(~)-h~') -h'~')c~-')} g(y) dy 

is the same as in equality (1.1) with n replaced by n - 1 .  Furthermore, if we notice 
the equality 

II~'F,-X[I(t; z)t"-l-k(~(t2-J)](z)llz,(m 

= 2j(,-~-k-,)tlx, F-x[l(2~ t; z) t "-a-k ~(t)](~)llv(R), 
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and notice that the function Ideth"(z)l -(~+") is locally integrable for sufficiently 
small e, q=>O by the Weierstrass preparation theorem, we can see that estimate 
(2.10) is obtained from the estimate 

C 
(2.11) IJz~Ft -1 [1(2 ~ t; z) q~(t)](T)l]ml(a) <= 2j(,_a)/2 Idet h"(z)l 1+~ 

(zEU). Here we have replaced t " - l - ~ ( t )  by 4~(t) again. 
To obtain estimate (2.11), we shall use the following lemma. 

Lemma 2.2. I f  0-<~<L there exists a constant C such that the estimate 

llz~f(z)ilv(R) ~ C(l[fllL:(m)l/2-~([If'llL:(m) a/z+~ 

holds for all functions f on R. 

Proof. From the Schwarz inequality and the Plancherel theorem, we obtain 

f,.,>,, l  ffz)l & = <= Ct~-amllf'llL:. 

Similarly we have 

f !,,<, Iz'f(~)l d~ <= Ct ~+~/2 llf[[m,. 

Choosing t=llf'llL'/[lfl[L,, we have the lemma. 

From this lemma, we obtain 

Ilz~Ft-a[l(2 j t)  q~(t)l(r)tlL,(m 

<= C{)fI(2J t))Im=(A) + ()lI(2J t))lm=(a))'/2--~()t2J l" (2J t)llL--(A))l/2+'}, 

where A----supp ~bc{t; t>0} and we omit the parameter z. On the other hand, 
if we use proposition 1.1 with n replaced by n - 1 ,  we have easily by estimates 
(1.4) and (1.6") 

1II(2Jt)IIL=(A), (lllx(2~ t)[iZ=(A))X/z-'(ll2J l~ (2J t)tlz=(.~))a/2+L 

C 
(llI~ (2 j t)llL=(A))a/2--~(ll2JI ~ (2~ t)I]L~(A)) 1/2+~ 

2j( ,-  1)/2 [det h" (z)] ' 
and by estimates (1.4) and (1.5), 

C (lll~(2J t)l[L=(a))i/2--~(![2i l; (2J t)IIL=(a)) ~/2+" --~ 
2 j("-~)/21det h"(Z)l 1+~ " 

Furthermore, by estimates (1.5), (1.6') and (1.6"), we have 

(lllz (2 j t)Ng-(~)) a'u-~ (ll 2i I; (2 ~ t)IIL-C,)) x/z+" 

C2-J("-a)/z{(2-J/6j~"" Idet h"(z)l-~)a/:-* (!det h"(z)l- a/2)1/: +, 

+ (2 j/~ Idet h"(z)]-a/z)a/z-"(2 -j/z ldet h"(z)]-a/2)a,z+,} <= C 
2 j("-a)/2 [det h"(z)] ~+~ " 
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From them all, we obtain estimate (2.11), therefore estimate (2.3) in the case 
p=0 .  Since estimates (2.3) with the derivatives (-~;)~ Kj(x) are obtained from 
the one in the case f l=0,  the proposition has been proved. 

Finally, we shall show a property of the function H(x). 

Proposition 2.3. There exist a neighbourhood A of  the hypersurface Z* and a 
constant C such that the estimate 

l y -  x[ 
I H ( y ) -  H(z)l <= C 

holds for all x, yE A. 

Proof. We may assume that the points x and y are near the point -V~(e~)E~*. 
Then all we have to show is the estimate 

ly-xl 
[v-l(-yl lyl)-v-~(-xl lxl)]  ~_ c 

I f  we set (z, h(z))=v-a(-x/[xl) and (w, h(w))=v-l(-y/ly[),  we can see that it is 
reduced to the estimate 

Iw-zl  <= C Ih'(w)-h'(z)l 
Idet h"(z)l 

by equalities (2.5) and (2.7). On the other hand, lemma 1.2 yields 

h'(w)-h'(z),  Iw-zl >= CIw-zl h"(z) Iw-z l '  lw-zl 

From this, we can easily obtain the proposition. 

3. Hardy space 

In this Section, we shall give a proof of the main theorem. We have only to 
show it for k=k(p),  where 

k(p) = ( n - l )  ~ - ~ .  

The boundedness of the operator Mk(p)(D) on the Sobolev spaces H~ is obtained 
from the L~-estimate ( l<p<o~) ,  and on the Besov spaces B~.q from the uniform 
LP-estimate (1 _-<p~ ~) for the operator Mk(p)(D)4)i(D ) with respect to the num- 
ber j.  Here {~j};=l is a partition of unity of Littlewood--Paley which is used to 
construct the theory of Besov spaces. (See, for example, Bergh--L6fstr6m [2] or 
Triebel [16].) 

In order to obtain these estimates, we shall use the theory of  Hardy spaces 
HP(R n) introduced by Fefferman--Stein [3]. Since the estimate in the case p = 2  



160 Mitsuru Sugimoto 

is trivial, all we have to show is the boundedness of  the operator Mk(p)(D) from 
H p to L p for some 0 < p <  1. In fact, then we can have the required LV-estimates for 
l<=p<= oo by the interpolation theorem (see the proof of theorem 1 in Miyachi [10] 
and the papers cited therein) and the duality argument. Here we note the fact HV=L p 
( l < p< oo)  and the characterization of H a by the Riesz transform (see Stein [15, 
pp. 220--221]). 

Furthermore, we shall use the characterization of H p by the atom decomposi- 
tion proved by Latter[8] (see also [10, theorem A]). That is, for O<p<=l, any 
f~HP(R ") can be represented as 

f = Z~=x2~gj, 2j~C, gj: p - a t o m ,  

and the norm Ilff l , ,  is equivalent to the/P-norm (~'~=o I;tJlP) l/p" Here we call 
a function g on R" a p-atom if there is a ball B = B g c W  such that supp g c B ,  
IIgllL| -x/p (IBI is the Lebesgue measure of the ball B ) a n d  fg(x)x~dx=O 
for Jo~l<=[n/p-n]. From this, all we have to show is reduced to the estimate 

(3.1) ]IMk(v)(D)fH~(R.) ~_ C, f6off,,p 

for some 0 < p <  1 and some constant C which is independent of 0 < r <  ~o. Here 
~r is the set of all functions f on R" such that 

s u p p f =  {x; Ix[ ~_ r}, IlfllL- ~ r -"Iv, 
and 

f f ( x ) x  ~dx = O for [ ~ l - ~ N = [ ~ - - n ] .  

In the first place, suppose f6~l,.p with r>=b and 0 < p < l ,  where b > 0  will 
be chosen later. Then we split R',,,0 into the following two parts: 

A 1 = {x; In(x)l -<- Ar}, 

As = {x; Ar ~ IH(x)l}, 
where 

. ( x )  = ,x ,  - 

(see section 2) and A=3b -1 IIV~oI1L| 1. 
For the part Ax, we have by H61der's inequality (p-l=q-X-F2-1) and Planche- 

rel's theorem 
Ilnk(p)(D)flE,(~,) <= IIl11,.,(.~,)IIM~,>(D)flIL, 

_~ cr"/q II/11,, --< cr"/q+"/~-"/" -~ C. 

In order to obtain the estimate for the part A2, we write 

(3.2) M,(,) (D)f(x) = f K(x - y)f(y) dy, 

where 
K(x) = F-lmku,)(x). 
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Since the conditions x~Az and lYl<=r imply x - y C d = { x ;  IH(x)l~llVq~llL-} and 
IH(x)l<=CIH(x-y)l, we obtain from equality (3.2) 

[IMkr ~-- CIIH(x)-MIIL,r162 ~-- Cr"-"/P ~- C, 

if M > 0  is sufficiently large. Here we have used proposition 2.1 with (i) and the 
relation n-n/p<O. 

In the second place, suppose fEs4,.p with r<=b and 0 < p < l .  Then we split 
R " \ 0  into the following three parts: 

3x = {x; IH(x)l <- r}, 

~2 = {x; r _~ In(x)l -~ n},  

Zz = {x; IH(x)I -> n}, 

where B >0  will be chosen later. 
In order to obtain the estimate for the part ~x, we notice the estimates 

cIr ~- C]r N+x+'-("/p, 

and IlfllL,<=Cr "/2-"/v. From them and Plancherel's theorem, we obtain 

I IM'~ -< c(f2/" +f17, } 
(2(N+I+"-"IP)f2I" -~'(P)+I(N+I) 1__ <- C r I~1 dr < Crl-2IP. 

Then by H61der's inequality ( p - a = q - ~ + 2  -~) we have 

IIM~(~)(D)flIL,(~_,) <= II I IIL~(--0 IIMk(p)(O)fllL, <= Cr 1/q+ ll2-11p ~ C. 

For the part Z~, we shall decompose the kernel K(x)=~]*=oKj(x) as in 
proposition 2.1 with (ii), and take the numbers B, b>0  so small that the esti- 
mate in proposition2.3 holds with the neighbourhood { x - y ;  xE22, lyl<-b} of 
the hypersurface 2;*={x; H(x)=0}. Then by H61der's inequality (p-~= l+q-1) ,  
we have 

(3.3) liT K,(x- y)/( ,  ayl I,.p,_=,> 
r ~ 

~- CIIH(x)-'IIL,(.-_,) [ IH(x)l ' - t  I ,~ ( ,_ , ( - -x l l x l ) ) l  ` }Kj(x)l,,llfll , 

if 5>0 is sufficiently small and e.q>l (equivalently p > ( l + e ) - l ) .  

-<= Crl/q-e(2J((n-1)12-k(P) -e) q- rg 2Jt(n--1)12-ktp)))rn-n/P 

= C{(2]r)(n-1)O-1/p) -~ + (2Jr)(n-1)(i-1/P)} 

On the other 
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hand, if we use the equality 

(3.4) f K~(x-y)f(y) dy 

_ y  ,8 

- , ,  + ,, e , , .= , ,+ ,  

we have similarly 

(3.5) IIf~c,(x-- nsu)+ll~o,_, <= cit~,(x)-oH~.,~, 

r ~ o ~ 

j ,>, ,+,  I~ (~- ' ( -x / ixD) l  ~ 

=< C {(2;r)  ('-1)(1-1/p)+N+ 1-~ + (2;r) ("-I)(1-Vp)+N+I} 

for the same e, p and q as in estimate (3.3). Then taking the integer ./o such that 
2J~ l<2 i~  ", we have for (I + e ) - a < p <  1 

IlM~u,)(D)fli["(-,) ~-- ZT=a f Kj(x-y)f(y)dy [,(z,) 

C Z~~ (2Jr) ("- i)(p-1)+(N+I-Op Jr- C ZT=Jo+ 1 (2Jr) (n-l)(p-1) ~ C, 

by equality (3.2) and estimates (3.3), (3.5). Here we have used the relations 
(n-1)(p-1)+(N+l-e)p>O and ( n - 1 ) ( p - 1 ) < 0  which are possible for suffi- 
ciently small e>0.  

Finally, we shall show the estimate for the part -=a. Let the number b > 0  be 
chosen so small that the neighbourhood ~ = { x - y ;  xC~a, [y[~b} of the set Z3 
is away from the hypersurface 2*={x;  H(x)=0}. Then from equality (3.2) and 
equality (3.4) with Kj replaced by K, we obtain 

j IM,,, ,(O)jJr~.,- .)  <= CIl(l + I-"l)-%.(-~, 

x sup (1 + l x l )  M K(x) ),[N+I L' ~ Ct ..... /p+N+l <= C. 
1#l=N+x L~ty.) 

Here we have used proposition2.1 with (i) and the relation n-n]p+N+l>O. 
Thus we have obtained estimate (3.1) and finished the proof of the main theorem 
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