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1. Introduction 

Let f denote the Fourier transform o f f  on R". Let/r be the Bochner--Riesz 
means for the Laplacian on R" defined by 

(1.1) ( B ~ f ) ^ ( ~ )  = ( 1 -  ]~[2)a f(r 
R 2 I+  

These operators are related to the summability of Fourier integrals and multiple 
Fourier series. It is well-known that the~e operators are not uniformly bounded on 

2n 2n n -  1 
LP(R ") unless p lies in the interval < p <  . When 6 > ~ ,  

n + 1 + 2 6  n - 1 - 2 6  2 
these operators are uniformly bounded on all LP(R"), for 1 <_-p=<~. When 0 < 6 _  <- 
n--1 

- - ,  the conjecture is that/~R are uniformly bounded i fp  lies in the above interval. 
2 

When n=2  the conjecture is proved and when n>2  it is only proved for 
n - 1  

6 ~ ~ (see [2]). Moreover, in a celebrated work [3] C. Fefferman has shown 
2(n + 1) 

that the conjecture is false when 6=0.  
In this paper we like to treat a similar problem for the Weyl transform. The 

Weyl transform W takes functions on C" into operators bounded on L~(R"). W 
enjoys many properties of the Fourier transform and is closely related to expansions 
in terms of Laguerre, Hermite and special Hermite functions. So it will be interesting 
to study multipliers for the Weyl transform analogous to Fourier multipliers. In [8] 
Mauceri has studied general multipliers for the Weyl transform. In [15] the author 
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considered multipliers of  the form ~p(H) where H is the Hermite operator 
( - z l  + Ixl~). 

Here we propose to study multipliers of  very special form. Consider the Riesz 
means S~ of  order 6 of  the Hermite expansions. These are defined by 

(1.2) S ~ = ~ ( 1  2 k + n ) ~  P k R  

where Pk are the projections of  L2(R ") onto the k th eigenspace of  H. S~ is a bounded 
operator on L2(R"). We define the multiplier operator T~ by setting 

(1.3) W (T~f )  = S6g W ( f ) .  

Analogous to the Fourier transform case one has the following conjecture. Tg ~ are 
4n 4n 

uniformly bounded on Lv(C ") iff < p <  . In [17] weverified 
2n + 1 + 26 2n - 1 - 26 

this conjecture when f is radial function. In fact, when f is radial, W ( f )  reduces 
to the Laguerre transform and T ~ f  is nothing but the Riesz means for the expan- 
sions interms of  the Laguerre functions L"~z-l(r2)e -(1/2~''. 

In this paper we prove that the conjecture is true when 6>1/2.  That is, i f  
1 4n 4n 

6 > - -  and < p <  then 
2 2n + 1 + 26 2n - 1 - 26 ' 

(1.4) IIT~ fl lp <= C Ilfl}~ 

with a constant C independent of  R. This result can be interpreted as a summability 
result for the special Hermite expansions. Using transference results we can deduce 
from (1.4) a summability result for ordinary Hermite expansions on R" and also a 
result for the Bochner--Riesz means for the Laplacian on R 2". 

To prove the uniform bounds (1.4) we adapt a method of  Fefferman--Stein [4] 
to reduce matters to proving L P - L  2 bounds for certain projection operators. 
This technique was well developed in Sogge [10] where the convergence of  the Riesz 
means for the eigenfunction expansions associated to second order elliptic differential 
operators on a compact manifold were studied. The same ideas were used by the 
author in [16] to prove the convergence of  the Riesz means for the Hermite series on 
R ~" for radial functions. 

The paper is organised as follows. In the next section we collect the background 
material and state the main results. In Section 3 we get an estimate for the Laguerre 
functions and in Section 4 we prove the kernel estimate and the L P - L  ~ bounds 
for the projections Qk- Finally in Section 5 we sketch the proof  of  the main result. 

The author wishes to thank Jaak Peetre for his interest in the work and also 
for his suggestions which greatly helped in improving the exposition of  the paper. 
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2. Preliminaries and the main results 

The Weyl transform W ( f )  of a function f on C" is a bounded operator on 
L2(R ") and is defined by 

(2.1) W(f) q,(O = f c.f(z) e,~.v2),+~) ~o (4 + y) dz 

where z=x+iy. The Weyl transform enjoys many properties of  the Fourier trans- 
form. For example we have an analogue of  the Fourier inversion formula 

f(z) = (2rt)-" tr (W (z)* W(f)) 

where W(z) is the operator valued function 

W(z) ~0(~) = ei~((lm,+o 9(~ + y) 

and a Plancherel formula 

(2.2) ][fl]~ = (2rt)-"][W(f)Jl~s. 

Given a bounded operator M on L=(R ") we can define an operator T m on Co(C" ) by 

(2.3) W (TMf) = MW (f). 

We say that M is an L p multiplier for the Weyl transform if T M extends to a bounded 
operator on L p(cn). 

Let q~= be the normalised Hermite functions on R" which are eigenfunctions 
of  the Hermite operator H. Let Pk be the projection defined by 

Pkf = ZI~I =k (f, ~=) q}=. 

We define the Riesz means S~ by 

(2.4) S~t = Z { 1  2 k + n )  ~ Pk. 
)+ 

Observe that S~ is a bounded operator on L2(R"). Let Tg=Tm where M=S~.  
We prove the following theorem. 

2n and J>a(p)=2n[ 1 - 1 ]  1 Then we have Theorem 2.1. Let l<=P<=n+l , , ,  ~ , - - 2 - "  

lIT~f[lp<=Cl]fll~ for all f~LF(C ") where C is independent of R. 

Corollary. Assume that 6>1/2. Then the uniform estimates (1.4) hold iff 
4n 4n 

~ p ~  
2 n + 1 + 2 6  2 n -  1--26 

The necessity of  the condition has been proved in [17]. The corollary immediately 
follows from the theorem. To prove the theorem we need to get an estimate for 
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the kernel of T~ and also to prove bounds for certain projection operators which 
we are going to define presently. 

.--1 Z --. n--1 1 2 Let % ( ) = ( 2 n )  Lk (-elzi) e -w4)t't' where L~ -1 is the Laguerre polynomial 
of  type ( n -  1). Then in [9] Peetre has shown that the projection P, is just the Weyl 
transform of  .-1 q~k �9 NOW recall the definition of the twisted convolution f• of  
two functions 

f x g(z) ----- f c "  f(z-- w)g (w) e (i/~) Im z.~ dw. 

Then it is weU-known that . - 1 . .  ,-~ , - t  q~k X %  =q~k . SO, if  we set Qkf=q~"k--l• then 
Qk is a projection operator. Moreover since W(f• we have 
W(Qkf)=P~,W(f) from which it follows that 

W(T~f)=W(Z(1 2k+n]' q~._~] R )+ k jW(f) 
or 

(2.5) 
where 

T~ f = s~ )<f 

[ 2k+n] 6 
(2.6) ~ ( z )  = ~ '  ~1 )+ ~0~-l(z). 

In Section 4 we will prove the following estimate for the kernel ~(z) .  

(2.7) 14 (z)I ~ CRn( 1 '~ R1'2[ zI) -df-n-(1/3). 

For the projection operators we prove the following bounds. 

(2.8) IlQkfll2 --< Ck "(l/p-l/z)-l/z Ilfll~ 

2n 
for fELP(C"), l ~ p ~  . Once we have (2.7) and (2.8) we can proceed as in 

n + l  
[10] or [16] to the proof of  Theorem 2.1. 

We will now bring out the connection between the special Hermite functions. 
These functions ~,.p are defined by 

r =rc-'/2fR e"'r 

These functions appear as the entry functions of  the Schrodinger representation nl 
of  the Heisenberg group (see Strichartz [12]). They form an orthonormal system for 
L2(R~"). Let L be the differential operator 

L = - A x - A ,  + 1  (ixl 2 + lyl~ ) _  iN 
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_ .  t O 0 ~  
where N=~;=l[x , . -~-fv-yf-~Tx,  j . It has been proved in [12] that @,., are the 

eigenfunctions of  the operator L. In fact 

L(~=, a) = (2l~l+n)~=,a.  

Given a function f ( z ) = f ( x , y )  in L2(C ") we have the special Hermite ex- 
pansion 

f ( x ,  y) =- Z , . p  (f ,  O=.p)Oz.#" 

The series converges in the L ~ norm if  f 6 L  ~. But for other L p functions it need not 
converge. Let us set 

O k f  = Zl=l=k ZB (f,  q~,,.B)~,,.~ 
and 

g•(z) = Z(I 2 k + n ]  a 
"g ")+ O k f  

be the Riesz means of  order 5 of  the special Hermite expansion. We claim that 
X , - t  ~. , , f=f  q~j, . This can be seen as follows. 

Consider the differential operators 

a 1 0 1 
Zj  = ~ + g e j ,  Zj - O2j 4 zi 

on C'. Then it is easily seen that 

1 . 
L = -~-  Z1 (zj2~+ ~'jz~). 

An easy calculation shows that 

W ( L f )  = W ( f ) H .  

From this one can prove that for any reasonable function q~, 

W(q~(L)f)  = W (f)(p(H). 
Choosing ~0 in such a way that ~o(H)=Pk and ~o(L)---Qk we obtain 

Ok f = fX~pT, -1 �9 

This proves the claim. Therefore, we can interpret Theorem 2.1 as a summability 
result for the special Hermite expansions. 

1 4n 4n 
Theorem2.2. Let 6:--~ and 2 n + l + 2 f i  ~ P <  2 n - 1 " 2 6 "  Then one has 

II~ fll~<=C II fll~. Moreover, the Riesz means ~ f converge to f in the norm. 
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where f~ LP(Rn). 

estimates 

are uniformly bounded on This theorem states that the operators 1--~-- + 

LP(R ~) when 6:>~- andp is in the prescribed range. Using a transference result of 
Kenig--Stanton--Tomas [6] we can prove the following result concerning the Boch- 
ner--Riesz means B~ for the Laplacian on R zn. 

1 4n 4n 
Theorem2.3. L e t  5 > ~  and ~ p <  . Then one has 

2 2n + 1 + 26 2n - 1 - 26 

]I/P R fllp<=CHfllp f o r  all fELP(R~). 

This theorem is not new. As we have mentioned in the introduction the above 
2 n -  1 

theorem has been proved in the bigger range 6> . Finally consider the 
2 (2n + 1) 

Riesz means S6R f for the Hermite expansions on R n, 

S~Rf= ~ (1 2 k + n )  ~ Pkf  
R + 

n--1 
In [14] we proved that when 6 >  2 one has the uniform 

[IS~fl[ < Cllfll p ~ -  p 

n--1 
~:= ":::= c<3 for allp, l = p =  . Here we want to deduce a result for S~ when 0 < 5 <  

2 
The following transference theorem has been proved in [8]. 

Theorem (Mauceri). I f  M is an L p multiplier f o r  the W e y l  transform then M is a 

bounded operator on LP(R"). 

In view of this theorem we immediately deduce the following result from Theo- 
rem 2.1. 

Theorem 2.4. 

L e t  tS> 1 - -  and 4n "~ P <  
4n 

2 2n+ 1+25 2 n -  1 - 2 6  
f o r  all fELP(R"). 

Then one has il S~ f ll p ~ f lt f ll p 

3. An estimate for the Laguerre functions 

The Laguerre polynomials L~(x)  satisfy the following equation (see page 107 
of [13]). 
(3.1) L~,(x)= ( -  l)kT~l/2F(k + c t +  l)  1 

F(oc+-~)(2k)! f-1 
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where H~k is the 2k th Hermite polynomial. The above representation is valid for 
1 

~ > - - ~ .  The right-hand side of (3.1) can be viewed as an analytic function of  ~t, 
analytic for R e ~ >  --~. Let us consider the functions 

(3.2) Ip~,(x) = r ( k +  l ) r ( ~ +  l) L~(x)e_Omx, x >= O. 
F ( k + ~ + l )  

In the next section we require the following estimate for the above functions. 

Proposition 3.1. 

(3.3) I~(x)l <= C(1 + Izl)a/2 

f o r  all x uniformly in 0 <-_ a <= n where ~ = a + i~. 

Proof. Let %k(t) be the normalised Hermite function defined by 

(3.4) ~o~ (t) = (2 zk (2k) ! ( -~)-  ,/z Hzk ( t) e -  (1/z),,. 

We will prove the following estimates: 

(3.5) fl (1-/2)-1/2 [(p2k(xt)[ dt <= C(2k+  l )  -x '4  
- -1  

2 k F ( k + l ) F ( c t +  1) <= C(2k+l )X /4 ( l+ l z l )  11z. 
(3.6) F(~ +1)(r(2k + 1))a/~ 

It is clear that the proposition follows from these two estimates. 
Recall the Stirling's formula which states that 

(3.7) F(z )  = zZ-(1/2)e-Ze J(~) 

where J(z )  tends to zero as z~o~. From (3.7) it is clear that 

(3.8) 2~r(k + 1 )  <= C(2k+  1 )  1/4 .  
(F (2k + 1)) 1/3 

To estimate F(o~+l) /F ' ~ (~--~), we use Legendre's duplication formula, namely, 

(3.9) ~/~- F(2~.) = 2 ~-1 r(~) r (~ + ~-). 

In view of  this 

I / ~ r ( ~ +  1) 2 ~ - ~ r ( ~ ) r ( ~  + 1) 2z~-~:,(r(~))~ 
r(~+-}) r(2:0 r<2,) 

Again by Stirling's formula this gives 

, 1 (3.10) [F(~+ 1)I ~ C(I  + tz,V/2 It- (:r ' L ty ; ~  
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uniformly in 0_~ a ~ n. 
n e x t  l e m m a .  

I . e m m a  3 . 1 .  

S. Thangavelu 

This proves (3.6). The estimate (3.5) will be proved in the 

f ( 1 -  tZ)-l/Zlq~,(xt)l dt ~_ C ( 2 n +  1) -1/4. 
--1 

Proof. Let us set N = 2 n + l .  By making a change of  variable it is enough 
to show that 

( 3 . 1 1 )  fo (x2 - t2)- 1/.,] ~p, (t)l dt <= C N -  1[4. 

To do this we need the asymptotic properties of  the Hermite function q3, for various 
regions (which can be seen from Askey--Wainger [1]). We need to establish 

s I = (x 2 -  t2) - v 2  I~o. (t)l dt <= C N  -1/4 

where a < x < - b  for various values of  a and b. We have to treat several cases. 

1 1/.~ Case i). a = 0 ,  b =-~ N . 
<1 12 When 0 < t = - ~  N / we have the estimate 

I~o,(t)l <- CN-1/a(N1/2- t) -1/t. (3.12) 

Therefore, 

As 

(3.13) 

and hence we have 

I <= C N - t t 4 f x  ~ (x2-- t2)-r '2dt  <= C N  -lt4. 

Case ii). a=Tlv-  1 ~T1/2, b =  N1/Z N~/6. 

In this range also we have the same estimate (3.12) and so 

s I <= C N  -~/8 (x 2 _ t2)- 1/2 (NlJ2_ t)-  1/4 dt. 

1 a r l [ 2 <  _ A T 1 / 2  -s : x ~ z ~  and N l l Z - t > - x - - t  we have 

I <- C N - Z / S f o  ( x - t ) - Z / 4 d t  <- C N - Z / S x  1/4 <: C N  -114. 

Case iii). a : N 1 / 2 - N - 1 1 n ,  b = N 1 / 2 - N  -x/6. 

In this range we have the estimate 

I~o,(t)l -<- C N -1/1~ 

As x - N I I 2 + N - 1 / 6 < - 2 N - 1 / 6  

I <= C N - I / l Z N - V ~ ( x  - N 1'2 + N- l / s )  ~/2. 

we immediately get I < - C N  -1/4. 
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Case iv). a= Nll2 + N -1/6, b=(2N)  1/2. 

In this range there is a constant e>O such that 

(3.14) Itp.(t)[ ~_ C N - a / s ( t -  Na/2) -1'4 exp { -  eNa/*(t - Nll2)312}. 

The integral I is bounded by 

1 <- C N - a / s f ~  (x 2 -  t2)-~12(t - N1/z) -11~ exp {-  eNa/4(t - Na/2)s/2}dt. 

Applying HiSlder's inequality with 4 / 3 < p < 2  the above 
AB where 

.4 = (F. (x2_t , ) - . , ,d t )"  
and 

B = ( f :  ( t -  N'12)- ' l 'exp { -eqNal ' ( t  - N1/2) a/2} dr) 11  ̀

where p+q=pq.  A simple calculation shows that A<=N -a/2+a/~p. 
of variable B gives the estimate 

B <- c ( f ]  t-, ,'  exp { -  r~v~/' ,'/'} at) TM <_- CN l'2"-a/aq. 

Finally, we have the estimate 

I <= CN-114N-112+I/2pN 1/24-aleq 

which after simplification becomes, as 4 /3<p<2 ,  

I ~_ CN-114N -alg+g/Sp ~ C N  -U4. 

Case v). a=(2N)  a/2, b=oo. 
In this range we have 

ko. (t)l -<= C e - "  
and hence 

I ~_ C e - ~ N f  x (x2-t2)-X/Zdt ~_ Ce -uN. 
, s O  

This completes the proof of  the lemma. 

315 

integral is bounded by 

By a change 

4. Estimate for the kernel and bounds for the projections Qk 

As we have already mentioned the two ingredients to prove the multiplier 
theorem are the following: the kernel estimate 

(4.1) 14(z)l <- CR"(1 + RI'2[z[) -8-1 
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and the LP--L 2 bounds for the projections 

(4.2) II Okf[I 2 -< C k~a/p- llz)-1/~ II fll ,- 

Our aim in this section is to prove (4.1) and (4.2). Once we have these two ingredients 
we can proceed as in [16]. 

First we will prove the kernel estimate. Let a~ denote the Ces~tro means 

1 N 
(4.3) 4 = ~ •k=0 A~-kPk. 

The kernel st(z ) can be expressed in terms of  the kernel a~(z) corresponding to the 
multiplier a~. In fact the following formula (see Gergen [5]) connects the two kernels. 

S~(z) = R- '  ~ = o  V(R-k)A6k~(z) 

where v satisfies the estimate 

[v(t)l <= C(1 + tz)-L 

In view of  the above formula it suffices to prove the following estimate. 

Proposition 4.1. 

(4.4) I~(z)l ~ Ck"(1 +kl/Zlzl) -a-"-r 

Proof. The kernel trek(Z) is given by 

1 k t~ n- -1  ~(z) = ~ ~=o-4,_j~oj (z). 

In view of  the formula 

we get that 

k 6 Zj=O &-JL~(z) = La+6+l(z) 

t~t(Z) = -~k Lk+ e-1/41=1" 

I f  we let .~,(r)=k-'/*L~(r)e-'/Zr ~/z then the following estimates are well-known [7]. 

[ .~(r)[  ~_ C 

(rv) ~/~ if  0 ~_ r ~_ 1 
v 

1 v 
(rv) -1/4 if - - ~ r ~ - -  

v -- - - 2  
v 3v {v(vl/3+lv-rl)}-v4 if  ~- ~_ r _~ -~- 

3v 
exp{--?r}  if r ~ 2 
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where v=4k+2~+2 .  Using these estimates it is now an easy matter to establish 
the estimate (4.4). 

Now we will prove the bounds (4.2) for the projection operators. 

2n 
Proposition 4.2. Let 1 <-p<= and fE LP(C"). Then 

n + l  

IIQJII2 <= CF~VP-v2)-v211fllp 

where C is independent o f  k. 

Proof. In view of Riesz--Thorin convexity theorem the estimate for Qk is a 
consequence of the following two estimates. 

(4.5) llakfll2 <= Ck~"-x)/Zllflll, 

(4.6) Ilakfllz <= C I1f11~/r 
rl--1 x Since Qkf=Cpk f and II~o~-Xll2<=Ck ~"-1)/2 (4.5)is a consequence of the Young's 

inequality. Since Qk are projections 

ilQkfilz~ <= [IQkfllp'llfllp 

and hence (4.6) will be proved once we show that 

(4.7) IIa~fll~./<.-a) <- C [IfII2,i(.+I). 

To prove this inequality we are going to use Stein's interpolation theorem for analytic 
families of operators. 

Consider the family of operators 

(4.8) G~ f -- d/~'Xf. 
1 

Then clearly G~, is an analytic family of operators, analytic in Re ~>-2---n and 

r ( k +  n) r(n) 
(4.9) Q k f  = F ( k + l )  G(~S-1)Isf" 

If  l a n d  g are simple functions then using the estimate (3.3) we have 

dz I C(l + l~l) 1/2 Ilfll~ Ilgll~ 

where ~ = a + i ~  uniformly in tr, 0_~o'___1. This shows that the family G~ is admis- 
sible in the sense of Stein [11]. Since 

r ( k  + n) r(n)  
r ( k + l )  

CF -I 

the estimate (4.7) will follow from the following lemma by analytic interpolation; 
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Lemma 4.1. 

(4.10) 

(4.11) 

S. Thangavelu 

| f  IIG~ f l l -  ~ C(1 + Izl) ':~ Ilflh 

l lGP" f lh  ~ C(1 + lxi)'k -" Ilflh. 

Proof. The estimate (4.10) follows from (3.3). To prove (4.I I) we use the Planche- 
rel theorem for the WeyI transform. I f  T and S are bounded operators on L2(R ") then 

IITSlI~ ~ IITII IISIhs 

where 117"i is the operator norm of  T and IISIIHs is the Hilbert--Schmidt norm 
of  S. By applying Plancherel theorem for the Weyl transform 

(4. I2) DG~ + i~fl[~ = (2x) -n II w(~,+~*O WGOll~s 

~- IITII ~ Ilfll~ 
where - n+n i~ T-W(~b k ). So it is enough to show that 

(4.13) IlZl[ =< C(1 +lzl)"k-".  

In order to do this we make use of  the following formula. 

(4.14) LI+#+a(r) = Z~=0 Af_~Lj(r)  

where 
F ( k + ~ + l )  

~ = r ( k  + l ) r ( ~  + l) " 

This formula is stated in [7] for real values of  ~, and fl but it remains true for com- 
plex values also. So we have 

F ( k + l ) F ( n + l + n i ~ )  ~ k  ~ j  . . . . .  aez ~ 
(4.15) ~k~'+~i'(z) = F ( k + n + l + n i T )  ~ J = ~  ~ j" 

Since W(9~-a)=Pj  this gives 

F ( k + l ) F ( n + l + n i ~ )  ~,k A, t, p 
T =  F ( k + n + l + n i z )  ~,j=o k-J J" 

Now 
(n+ l + n i z ) . . . ( n+k  + ni~)F(n+ l + ni~) = F (k  + n+ ni~ + l)  

and hence 

r ( k  + O F ( n +  1 + ni~) r(k- 
F ( k + n + l + n i ~ )  ( l+n i~ ) . . . ( k -  

Similarly we have 

A~i, = F ( j +  1 + niz) = 
r ( j +  1) r(ni~ + 1) 

r (k  + 1)(1 + niO... (n+niO 
k +  ni~)(k + 1 + niz)...  (n+ k + niO" 

( j +  niO...  (1 + nd~) 
r ( j +  1) 
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Together we have 

r ( k  + D r ( n +  1 + ni~) A~, = 
F ( k +  n+ 1 + ni'c) 

Thus we have the estimate 

( j +  1)... ( k -  1)k (1 + nix)... (n + ni'c) 
( j +  1 + niz)...  (k + nix) (k + 1 + ni'c)... (k + n + nix) " 

Ir(k+l)r(n+l+ni'O I ~ u  A~" <= C(l+t,t)"k-". 

Therefore, in view of (4.15) we have (4.13). This completes the proof  of  Lemma 4.1. 

5. Proof of the multiplier theorem 

We will give only a sketch of  the proof  referring to [16] for details. We take 
a partition of  unity z~7=-** tP(2Jt) ---1, t > 0  where ~ C o ( ~ , 2 ) .  For  each j 
we set 

and define for j = l ,  2 . . . .  

(5.2) T ~ , l f  = ,~  (p~,~(2k+ n) Qkf ,  

R ' R Q k f  

where q~0(t)=l--z~7__x r . Then we have 

T: f +  x;,[Iogl/~] T~ , j f+V~f .  T . ' f =  . , o J  ~ j = l  

We will show that there exists an e > 0  such that 

(5.4) IIT~,l/lip <= C2 - ' J  llfll~, 

(5.5) IlV~fllp <= C2 - ' j  Ilfllp. 

Then by summing we wilI get the theorem. 
Proceeding as in [16] and using the kernel estimate (4.1) we can obtain the fol- 

lowing. Given 

(5.6) 

Next using the 

(5.7) 

y > 0  there is an ~>0  such that 

f 1~ (z)l dz <= C2- 'L  
Izl>2J- + v)/I/'~ 

L P - L  2 bounds (4.2) we can show that 

[IZ~.jf[l~. <~ C(2 - J  t/R)a/~2-'I(}CR) ~(p) f i l l , .  
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From this it follows that if B is a ball of  radius  2J(I+~)/I/R - then 

II T~,j fllL.(n) <= C 2 -  J(O+ l/2) 2 j(l + z')(O(p)+ ll2) Ilfllp- 

Since a > a ( p )  we can choose a e > 0  such that 6+-~>(1+~,)(5(p)+-~)  and 
with this choice it is clear that there is an e > 0  such that 

(5.8) [[T~.j f[lL,.(,) <- C2- 'J  [If lip. 

Now split the kernel into two parts ~ ( z ) = K l ( z ) + K ~ ( z )  where 

Kl(z)~= s~(z)  if Iz[ =< 2J(X+r)/(-R, [= 0 otherwise. 

Then (5.6) immediately gives that 

Ilg2fllp <= C2 -~j [If lip. 

To get a similar estimate for K l f w e  proceed as follows. Let hCC" and B,(h) be 

the ball of  radius r2J(X+r)/(-R centred at h. Write f = f l + f 2 + f 3  where 

f l  = fzns/,(h), A = fzss/,(h)m,/,(n). 

Then it is clear that 

K l f  = K x f l + K 1 A .  

Using (5.6) and (5.8) we can show that 

f.,,,(,) I/s f(z)l p de <- C2-'JP f~ n,/,(h) If(z)l p dz. 

Integrating with respect to h we get 

Ilgxfllp <= C2 - ' j  Ilfll~,. 

This completes the proof. 
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