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Introduction 

Let (~,) be a sequence of  independent +_ 1-valued random variables on a proba- 
bility space (D, #) with /, (e,, = 1) =/~ (~, = - 1) = 1/2 (for instance the Rademacher 
functions on the Lebesgue interval). 

Let X be a Banach space and let (x,,) be a sequence in Y. In recent years, a great 
deal of work has been devoted to try to find "explicit" necessary and sufficient con- 
ditions for the series 

(o.1) Z7=1 ~.x,, 

to converge (in norm) ahnost surely, see for instance [Ka], [MP] and [LET]. 
Equivalently the problem reduces to find an "explicit expression" equivalent 

to the norm defined by 

<0.2) II<x.)ll = [ i  IIz ~.x.ll'd~) 1'2 

considered as a norm on the set of  all finitely supported sequences (x,,) in X. While 
a satisfactory solution seems hopeless at the moment for an arbitrary space X, there 
are cases for which the answer is known to be very simple and as complete as 
possible. For  instance, if X is the Banach space Lp(Q, ~ ,  m) (1 ~ p < ~ )  the classical 
Khintchine inequalities (cf. [LT, I.d.6]) and Fubini's theorem imply that there is 
an absolute constant C such that, for all x,, in X=Lv(.Q, ~ ,  m), we have 

1 
<0.3) g El(x,)ll -<- I1(2 Ix.~')%. ~ c a~<,-,,)~L. 

This solves the above mentioned problem when .u More generally, as 
shown by Maurey (cf. [LT] p. 50) (0.3) remains valid ~hen X is a Banach lattice iff 
X i s  q-concave for some q<oo. In this paper, we investigate what remains of (0.3) 
when X is a non-commutative Lp-space (or a non commutative analogue of  a Banach 
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lattice). In the case 1 < p < ~ , ,  the problem has been solved in [LP l]. This left 
open the more general case of  C E spaces and the case p = 1. In that case our main 
result is as follows. We denote by Ca the Banach space of  all trace class operators 
on l., and we denote its norm by }j Ila. 

Theorem 0.1. Let (x,,) be a finite sequence in Ca. We define 

inf Y~'Y,)adl, + II(Z (0.4) [[l(x.)[[[ = =,~=~,,,+=. { [ [ (Z  z, 

where the infimum runs over all possible decompositions x,,=y,+ z,. Then there 
is an absolute constant C such that Jor all finite sequences (x,) in X=C1 we have 

1 
(0.5) -C [l(x.)ll ~ l[l(x.)lll ~ CN(x.)ll. 

As an immediate consequence, we have 

Corollary 0.2. The series (0.I) converges a. s. in Ca if/" there is a decomposition 
x . = y , + z ,  with y,, z, in Ca such that both series Y~  y*y, and ~ z.z* converge 
.n the space of  compact operators and both ( ~  y .  y.)a/2 and (•  z.z*.) aj~ belong to Ca. 
l 

In the appendix to this paper, we show that Theorem 0.1 can be viewed as 
dual to the form of  the non-commutative Grothendieck inequality ~,hich was con- 
jectured by Ringrose and first proved in [P 1]. Our main results are in Section II. 
There we prove a strengthening of Theorem 0.1 which appears as a non commuta- 
tive version of  Paley's inequality. Paley's inequality [Pa] says that there is a constant 
C such that for all functions f - - ~ = o  a, ei"t in H ~ we have 

(~'~=o [a2~l'~) a/2 <= C IT f i lm.  

More generally, the sequence {2 k} can be replaced by any increasing sequence {nk} 

which is lacunary ~ la Hadamard, i. e. lira n~+l >1.  
nk 

Let {nk} be such a sequence. It was proved in [P 2] that if  (x~) is a finite sequence 
in an arbitrary Banach space, then we have 

1 (fll  {[2dt} 1.'2  C [[(xk)[I (0.6) ~-ll(xk)ll -~ e'"~'xk ~- 

where H(xk)][ is defined in (0.2) and where C is a constant depending only on the 
sequence {nk} (essentially only on its degree of  lacunarity, in fact only on its Sidon 
constant). Moreover, the a.s. convergence of  (0.1) is equivalent to the a.s. convergence 
of  the series ~ = 0  ei"~txk. 
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For a Banach space X, the space Hi(X) is defined precisely in Section I. An 
extension of Paley's inequality in C1 has already been given in [BP]. Here, we will 
prove the following (see Theorem II.1 below) 

Theorem 0.3. Let X=Ca. There is a constant C such that for all functions 
f=.~n=o Xn eint in Ha(x)  (with x, q X) we have 

(0.7) [ll(x.~)lll <= CNfllz~,(x). 

In particular, we may apply (0.7) to a lacunary series ~k_~0-%, ei'kt, using 
(0.6) (or an elementary averaging over all choices of signs) this yields the right side 
of (0.5). Since the left side is very easy (see below 0.14)) xve thus obtain Theorem 0.1 
as an immediate consequence of Theorem 0.3. In particular, (0.7) becomes an equi- 
valence when f is a lacunary series, this is an advantage over the versions of Paley's 
inequality considered in [BP]. Moreover, taking our appendix into account, this 
gives a new proof of the Ringrose conjecture mentioned above. An alternate proof 
was already given in [H]. Our method to prove (0.7) is very simple. It is based on 
the fact that e ve ry / i n  Hi(C1) can be written as a product f=gh with g and h both 
in H2(C2). This was established by Sarason in [S] while the matrix case goes back 
further (Helson--Lowdenslager). By (0.5), (0.6) and (0.7) we have 

Corollary 0.4. There is a constant C" such that for all f = ~ = o  x, ei"t in Hi(Ca) 
we have 

Ilz _ o e"Jl[.i,cl, c" IfftI,,1,c , 
and the series on the left-hand side converges in Ha(Ca). 

In particular i f  we denote by P: H ~--.H a the "orthogonal'" projection onto the 
span of A={e i2kt} in H a, then, when X=C1, the operator P| is bounded on 
Ha(x) and IIPII-<-C'. 

Remarks. (i) It is well known that for a general Banach space X, the operator 
P| x is not bounded on Ha(X), for instance if X=c o or C(T) hence if X is 
any space containing l~'s uniformly, furthermore if  X---LIf t  a, P| x is un- 
bounded on Ha(X). 

(ii) A variant of  a proof  in [BP] shows that the operator P| x is bounded 
on the "atomic version" of  Ha(X) iff X is K-convex. In that case, P| is a 
fortiori bounded on Ha(J(). This variant of  a result in [BP] was observed by the second 
author (see the last remarks in [BP]). It shows in particular that i f  X=CI,  P| 
is not bounded on the atomic version of Ha(J(). 

For convenience we denote by /~: H i ~ f z  the operator which maps a func- 
tion f to the sequence (f(2~))k. (By Paley's inequality, P is bounded.) 

In this paper, we study the range of P |  Ha(X)~Ha(X)  and similarly 
for /~| x when X=Cp ( l<=p<~)  or more generally X=Cr. where E i s  a sym- 
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metric sequence space. The main interest is when E is 2-concave, in particular 1 <=p<-2. 
In that case (Section III) we obtain results similar to the preceding statements. These 
results can also be extended to the case when Xis a general non-commutative L~-space, 
i.e. the predual of a v o n  Neumann algebra (Section II). Finally, we are able to treat 
more general multipliers m: H ~ L ~  in place of the operator/~. This is explained 
in Sections II, III. 

We also study the boundedness of P |  H~(X)~H~(X)  when X = Y |  
is a projective tensor product of Banach spaces satisfying suitable assumptions 
(Part III); more precisely we give cases where 

H ~ ( X ~  Y)  : H~x (X) ~ Y+ X ~ H~,(Y). 

I. Definitions, notation and background 

We denote by T the group R/27rZ equipped with its normalized Haar measure 
dt. We denote by H p the closure of {e~"tln_->0} in Lp(T), l_-<p<~, by H i the 
closed span of  {e iz~t, k_->0} in Lp(T). We recall (cf. [D, Chap. 6] that an H1-~2  
multiplier is a sequence m=(m,),_~0 such that there is a constant K such that for all 
J -  Z,~_oa, e i"t 

(~.~_0 I".a~ lj~ --< KllflPl. 

It is known (cf. [D]) that this holds iff 

Ilmil = sup(~'~=7 tmkt2) a'z 
n ~ 0  

is finite. Moreover the preceding condition is equivalent to 

(I.O) sup ( Z  2,, ~_,~_2-+, link 12) 1/2 < ~. 
n~O 

We denote by fit: H1--,-H ~ the mapping 

,~  n>= o an eint ~ ,~n_~0 renan elnt. 

Let X be a complex Banach space with dual X*. Let 1 ~ p  <oo. We will denote by 
He(X) (resp. H~(X)) the closed subspace of LP(T; X) spanned by HP|  (resp. 
HyI@X ). We recall that H~t(X ) and H2A(X) are canonically isomorphic. 

We refer to Section 1.d in [LT] for the definitions of a p-convex or q-concave 
Banach lattice X. We recall that X is 2-concave iff X has cotype 2, that X is 2-con- 
vex (resp. 2-concave) iff X* is 2-concave (resp. 2-convex), cf. [LT, Prop l-d-4]. 
The 2-convexification X ~) of X is such that 

I]al[x,~., I]1ol2!1)/2, 
for example [PO)=[ zp. 
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We also recall ([LT], p. 47) that X*({e) is a closed norming subspace of  X(f2)*. 
A symmetric sequence space E is a Banach sequence space such that either the 
canonical sequence is a symmetric 1-unconditional basis for E or E is the dual of  
such a space. The first case occurs iff E is separable. If  E is not canonically iso- 
morphic to r E lies in c o [Si, Theorem 1.16]. We also recall [LT, Prop. 1-d-2(i)] that 

l[ ab]l E <= I[ all ~-~)[1 b[] v<~'. 

Let E be a symmetric sequence space. Cz is the space of  compact operators A on a 
separable Hilbert space H whose sequence of  characteristic numbers (s.(A)).~_~ 
belongs to E [Si] and 

When E--<" (I ~p<o~)  we write C, instead of  Ct~. When E=co or <~ we write 
C instead of  C~o=C#~. The space of  all bounded operators on a Hilbert space H 
is denoted by B(H) .  It is the dual space of  C~ if H is separable. If  E is separable 
and E ~ s  I the dual space of  C E is Ca, [Si, Theorem 3.2]. Duality between CE and 
Ca. is defined by 

(A, B)  = tr AB*. 

If  E, F, G are symmetric sequence spaces which satisfy ][ablla<=llal[FllbllG we have 
[Si, Theorem 2.8] 

(I.1) IIABIIcE ~ llAllc~llBllc~ 

in particular 
IIABIlc~ <= llAIIcE,.,> IIBIIc E<,., . 

2-concavity and 2-convexity of Ca. The spaces CE(/~) and Ca(ED 

Let K (Ak)k= 1 be a finite sequence in B(H) .  Let H =  G2 H be the Hilbertian sum 
of  a countable number of  copies of  H. By a well known observation (Ak)~=l can be 
viewed as an operator ~ :  /7-+/7 (xl . . . . .  x~ . . . . .  x . . . . .  )-~(Aa(xi) . . . .  , AK(XO, O . . . .  ) 

! !  KA 1 0 " '1 
~ - -  0 . .  . 

0 . .  

We define cg a exactly as CE w i t h / 7  instead of  H. Hence 

( i . 2 )  UdtJcE = Irl- Lllc  - -  Ak)I/o'IICE �9 
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This enables us to define the Banach space CE(/~) as the completion of the finite 
sequences of compact operators r (Ak)k= 1 for which the following norm is finite: 

K , 112 

Ce(d~) is canonically isomorphic to a closed subspace of ~e which is also 1-com- 
plemented. B(H)(fzQ is defined in the same way; Ce(f~) is defined similarly with 

K __ * K ~t K * 1/2 [t(Ak)k=II[CE(' ~, --[I(Ak)k=II[CF,(dR) = [ [ ( Z 1  AkAk) Ilc . 
�9 1/2 We warn the reader that in general [[(Z~AkAk)[Ic~ is different from 

( x;r A* A ~1/~11 
,d .a l  K k]  IIC~" 

Clearly if E is separable and E e l  I the dual space of CE(f ~) is CE,(E~) for 
the duality defined by 

<(Ak)~, (Bk)~> ~ * = t r y 1  AkBk. 

If E, F, G are as in (I.1), (I.1) and (I.2) imply 

�9 1/2 (i .3) 

by writing 

At. . .  O. " 
IIz A 8,11c  = o ii 0 

i ~ Oi %" 

A non discrete version of (I.3) is the following: Let (~Ok)~=l~L2(/~), r (Ak)k=l, 
B K ( k)k=lEC~, A ( t ) = ~  q~k(t)Ak, B ( t ) = Z ~  q~k(t)Bk 

(L4) [If [[(fA(OA*(O+(O)"=ll=r ll(fs*(')B(,)+(,))l'=ll=o 
(approximate the q~s by functions with finite range). 

If E is 2-convex there is a symmetric sequence space F such that Ft=)=E. 
Hence 

(I.5) IIAllc~ * ~/~ = IIA &l~ . .  

Let (Ak)k=l be a finite sequence in CE. Then 

by the triangle inequality in Cr. 

(I.6) II(zf AZAk)x/ZIIcz ~ ( Z  I l a k l I ~ )  a /z  
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is the 2-convexity inequality for C E. It holds true iff E is 2-convex. It also holds true 
in B(H). 

A non discrete version of  (I.6) is the following: let (q0k)~= 1 be an orthonormal 
sequence in L2(/~), r ~ A ( t ) = ~ ' ~  (Ak)k=IEC , %(t)A,  

(I.7) I{(ZU A~Ak)'/alIC~ = {{(f A*(t)A(t)dpf/2{{c~ <= ( f  llA(t)ll~dP) v~. 

This also holds true in B(H). 
If  E is 2-concave and separable, E* is 2-convex, Ca, is 2-convex. By the duality 

between Ct  and CE, on one hand, CE(r and CE,(d~) on the other hand, (I.6) 
implies the 2-concavity inequality for CE 

(I.8) (~,~ ilAkll~)~/~ ~ K A* ~'~- 

whose non discrete version, with the same notation as in (I.7) is 

K 2 1/~ 
(I.9) (fllZ   o (OA llc#,) ~ ( f  A*(t)A(t)dp) v2 c~ = II(Z?A~A~)~'Ilc~ 

(approximate the r by functions with finite range and apply (I.8) in order to get 
the first inequality which does not depend on the orthogonality of  the qJk's). In- 
equalities (I.6) and (I.8) are particular cases of [A], theorem 1.3. 

T h e  s p a c e s  ~2 o Ce(ts), B(H)(r CE(E2R)+C~(r 

Let BEB(H), let IBI~ be its symmetrized modulus: 

]B[. = ( B* B + BB* ) 1/2 
2 

Let E be a 2-convex symmetric sequence space and let E =  F (2). We recall that, 
B K if ( k)k=l is a finite sequence of  operators in CE, [ [ ( ~  {B 2~1/211 actually defines k s ]  C E 

B r a norm on ( k)k=l, and we will define CE(r as the completion of  finite sequences 
for this norm. B(H)Vw is defined similarly. Indeed  0il 0 

1 i = B r 0 . 
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We have obviously 

1 
(I.10) if ~ max {I[(Bk)IK][cE(ei0, [](Bk)[tlc~(<t)} <__-- [[(Z~ [Bg[Z~)~/2[[CE 

and by the 2-convexity of  E and the triangle inequality in C r 

< 1 (I[(Bk)~[I~(~)+[[(BK)~[]c~(4_))V ~ (I.11) I [(Zf  lUk]~)i/2[[c~ = ]/~ 

<_- max {ll(Bk)fllcE(e,~), II(g~)~ltc~(t~}. 
Similar inequalities are valid for B(H)(,f2s). 

Let now E be a 2-concave separable symmetric sequence space. We denote by 
2 2 CE(g'g)+CE(fL) the sum of these Banach spaces: 

r A '  r J- A "  r h (AR)I ]l c~(e~) + c~(~D inf .4 - i  - n  k=Ak-~-Ak 

where the infimum is taken over all decompositions for which ][(A~)~llc~(e~) and 
t~K [](Ak)l [le~(eD are finite. By (I.10) and (I.11) CE,(g~)is isomorphic to a norming sub- 

space of  the dual space of  2 2 CE(ER) +CE(~L), namely 

1 
"< "< ll(Bk)l I I ( c ~ ( 4 ) + c ~ ( ~ ) ) *  �9 (I.12) - ~  I[(Bk)~[[(C~(e'~)+C~(4R))* = [[(Bk)~llcz*(bl) = K 

(I.8) and triangular inequality in d2(CE) imply 

(I.13) ( Z ~  [Iakl[~'~) 1/2 <= II(&)fllc~(4)+c,~(4)o 
(I.9) and triangle inequality in L2(p, CE) imply that 

(1.14) (f 112:1 ~ ( t ) A ~ [ [ ~  d]./) 1/2 ~ [[(Ak)f][CE(g~)+CE,g~_ ) 

where (~Pk)~ is an orthogonal sequence in E'(p). 

II. The case X =  C1 or X is the predual of a Von Neumann algebra 

We treat the case X=C1 first. We prove a more precise version of Theo- 
rem 0.3. 

Theorem ILl .  a) Let P be the Pale): projection: H a-~H 1, then 

(i) /~| HI(C1)~CI(d~)+CI([2L) is a bounded operator with norm less than 

(ii) P |  HI(CO~HI(C1)  is a bounded operator with norm less than 1 +r 



Non commutative Khintchine and Paley inequalities 249 

b) Let m: H I ~ f  2 be a bounded multiplier. Then 

( i )  m |  i z 2 H (Cl)---~CI( fR)-~CI([L)  is bounded with norm less than 2l[mli. 

(ii) m |  HI(C1)---~2(C1) is bounded. 

(iii) rh | Id: H1 (C1) ~H2 (C1) is bounded. 

Assertion (b) (ii) already appeared in [BP, Theorem 3.3]. Before we proceed 
to the proof of this theorem we state an obvious consequence of (a) and (I.14), 

2 j_ 2 (take namely that Hla(c1) is canonically isomorphic to CI({R), CI(:L) ~ok(t) =ei2k', 
kEN in (I.14)): 

Corollary 11.2 (Khintchine inequalities in C1). Let A1 . . . . .  A~EC1 

K ~ (1 +1/2) eizkMkllcldt < (I II(ADfllc,(4~+q(4>. ll('/~k)l f [IZf = +v:5) 

By (0.6) this implies Theorem 0.1. 

Proof of Theorem ILl. Assertions (a) are a special case of assertions (b) except 
for the value of  the constant. As g~l is 2-concave, assertions (b.ii), (b.iii) are con- 
sequences of  (b.i) and (I.13), (I.14) (take q~k(t)=e i*', k~N in (I.14)). We now prove 
(b.i). The proof reties on the following theorem of  Sarason [S, p. 198 and Theo- 
rem 4] : 

Let fEH~(CX). Then there exist g, hCH'~(C2) such that 

(~) f ( t )=g(t)h( t )  a.s. on T 

(/D II flln,(c0 = IlgllB~(c=)IlhllH=(c=). 

We now use the same method as in the scalar case. Let us first fix some nota- 
tions which we will keep throughout this paper: let f ,  g, h be as above, k~N 

f(k) = f g(Oh(t)e-'k' dt = ~o~q~_k~(q)f~fk--q) = Ak + Bk 
where 

Ak = Zo~q~_k/z~(q)fz(k--q) = f g(t)Hk(Oe-~k' dt, q~N, 

Hk(t) = Zk/9,~p~ k fl(p)e ipt, pCN. Hk( t)e-lkt = ~o~_q<=,/2 h(k-- q)e -iqt 

and similarly 

Bk = 2~/2<,~ ~.(p)~(k-p) = f GKt)h(t)e-~k~dt. pEN. 

GR(O = Xk/2<,~_k g(P) el'' Gk(t) e-l*' = Zk/Z<,~_* g(P) eiO'-k~'" 

In particular Ao=~(0)h(0), Bo=0. As the finite sums Y~roelk'| k are dense in 
H~(Ca) we may assume that f ( k ) = 0  for k>K. Let m=(mk)~ be a bounded 
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H 1 _ ~ 2  

(7) 
and 

(a) 

multiplier. We claim that 

II(zff I"'.l'&A~;)~/~]lc, <= Ilmll'lg[l'~(c=) !lh'l~r-(c~-, 

It(m~B0fllq(~> = I[(Z~ I"~I=B~Bk)I'=IIc= ~ I!mllllgl!ir-(c=)llhll.=(c'-, 

which implies by (fl) 

hence proves (b.i). 

^ K II(m~f(k))o II= ' ( ,>c,<)  ~ 2 Ii.,lll! #,.~(~, 

We now prove (7). By Jensen's inequality in Cl([i) 

11 (ink A00 ~ II c,(4, = f (g (') "~ H~ (t) e-ikt)~ dt q(t~.) 
9 * 1/2 * <= fli(g(Om~m(Oe-'~')~Hq(4) dt = f l l ( Z f f  J , ,~ l -m(O~(O)  g (,)l!c, dt 

<= fll(Z~. I,,,kl2Hk(t)HZ(t))l"~-llc, llg*(t)IIc~a 't 

<= Ilgll.=(c~,(f llz~ I"'kl2Hk(t)Hy(t)llc~dt) */~ 
and 

f ] [ 2 o  r [mkl2Hk(t)H'~(O]lc, d t = f (y~o [mkl2Hk(t)H~(t))dt q 

-<- II mll'~ II hli~=(c=). 
This proves (7): (6) is proved similarly, replacing Hk(t) by Gk(t). This time there is 
no overlap between the blocks hence we actually get supp_~0 ~p<k~"p Irnkl ~ instead 

of Ilmll 2, which gives finally the constant 1 +I /2  for the Paley projection. This ends 
the proof of Theorem II.1. I f  we consider the lacunary sequence (3 k) instead of  
(2 k) there is no overlap for the blocks Has(t) and we get the constant 2 instead of 

1 + }/~. 
Using known results, it is routine to extend Theorem II.1 and Corollary II.2 

to the case when C1 is replaced by the predual X of a v o n  Neumann algebra X*. 
(Such an X is called a "non-commutative Ll-space".) Indeed all the ingredients for 
the proof exist in the literature and they are discussed at length in the paper [HP] 
to which we refer the interested reader. Actually the analogue of Sarason's theo- 
rem remains true [HP, Corollary 2.5] but the weaker form [HP, Theorem 2.2] 
suffices. We merely make precise the definitions of X(~'~) and X(f~): We may always 
embed X* as a closed C* subalgebra of B(H). We then define X*(d~) as the norm 
closure in B(H)(~)  of the space of finitely supported sequences (B k) in X* equipped 
with tl',e norm 

IB ' * J / 2  . = 11(2 
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If  (Ak) is a finitely supported sequence in X we define by duality 

[[ (Ak)[[ x(t~) = sup { X  (Ak, Bk)IBk ~ X* ]i (Bk)][ x*(t~) ~ 1 }. 

Clearly the 2-convexity inequality expressed by 0.6) holds in B(H) and X*, hence 
by duality we have a 2-concavity inequality 

(II.l) ( ~  ltAk[l~x) ~:'~ ~ !i(/k)llx(e~0- 

As a consequence of (II.1) we also have 

' r (A  ~K~J 

for any orthonormal sequence (q0k) in L2(p). 
We note in passing that (ILl) combined with Theorem II.1 with X replacing 

Ct yields a new proof of the fact that X has cotype 2, which was first proved in 
[TJ 1]. 

III. The case X =  CE 

We will use the notion of  a "UMD-space" or the equivalent notion of an "HT- 
space". We refer to the survey [RF] for more details on UMD-spaces. We will say 
that a Banach space is HT if  the Hilbert transform is bounded on Lp(X) for some 
(or equivalently all) l < p < o o .  By results of Burkholder and Bourgain (see [B1], 
[Bu]) it is known that X is HT iff X is UMD. It is apparently not known whether 
" E  U M D "  implies "CE UMD".  However, it is easy to see that if CE is HT, then 
CE(2~ also is HT. Indeed, this can be shown by essentially the same proof as for C v 
(cf. [RF] proof of Proposition 3) as follows : if ~4 ~ denotes the vector valued Hilbert 
transform acting on L~(Cp) we have the classical identity 

~/f (f)2 =_ ./.2 + ~ (fgf (f) § J f  ( f) f) ,  

hence if M(E,p) denotes the norm of Jg:  LP(CE)~LV(CE) we obtain 

M(E (~), 2p) ~ 2 0 +M(E,p)2) ~2 (I < p < ~). 

This is a classical trick going back to an idea of M. Rie~z exploited by Cotlar [Co] ; 
the non-commutative version of this trick has been known for a long time (the 
second author learnt it from Paul Muhly back in 1976). Incidentally, the interested 
reader will find presented in ([LT], pp. 154--t55) a version of the "Cotlar trick" 
adapted to martingale transforms in the scalar case. 

This trick combined with interpolation and duality implies that Cp (1-<p<~)  
([RF, Proposition 3]) and Cpq ( l < p < ~ ,  l < q < : ~ )  ([A, Corollary 2.10]) are I-IT 
hence UMD. 
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We will prove a generalization of Theorem 0.3 and Corollary 0.4 as follows. 

Theorem III.1. Let E be a symmetric sequence space such that CE(~) is HT. 
Let m=(mk)k_~ 0 be an H x - E  2 multiplier (in particular m=-P). Then 

(i) m |  HI(CE)~CE(E~)+Ce(f~)  is bounded. 
(ii) P |  HI(C~)~HI(CE)  is bounded. 

(iii) I f  moreover E is 2-concave (Jor example CE -- Cp 1 _-<p ~ 2) m Q Id" H1 (CE) -~ 
HI(CE) is bounded. 

The case E 2-convex will be considered in Remark III.5 below. 

Proof. (iii)is an immediate consequence of (i) and (I. 14) applied for (Pk ( t )=  e i2~t. 
In order to prove (i) and (ii) we keep the notation of the proof of Theorem II.l, 

replacing C1 and C2 by Cn and CE(~. 
Sarason's theorem [S, Theorem 4 and proof p. 204] together with (I.1) implies 

that for every f~HI(C~.) there exist g, hCH2(CE(,) such that 

(ct) f ( t )  = g(t)h( t)  a.s. on T 

(/~) Hfll~l(cE) = 11 gll m(cE(~,)I[ hlJ n~.(cE~)). 

(i) The proof is analogous to the proof of Theorem II.1 up to the majoration 
of  f I1 0 Im l I r (t)g (t)llcJt. We claim that there exists a constant C > 0  
such that 

(III. 1) XKo Imki~Hk(t)H~ (0[icjt ~ c II'n," il hll re(rE(=,) 

and similarly for the GkS which concludes the proof as in Theorem II.1. 
In order to prove this claim, let I0={0} and I j=[2 J'-~, 2J[ (j=>l) be the 

dyadic intervals in N. We recall that l!mli '~ is equivalent to supj~0~kCij Im~l ~. In 
particular (2-~l[mll-~imk[2)~ ~ lies in the unit ball of the space ( |  
The extreme points of the convex set of positive sequences in this ball are sequences 

-~z "-=:Z (rk)~ K such that rkE {0, 1} for every k and rk = 1 for at most one k in each Ij (0 j = K ) .  
We call such a sequence (rk) a Marcinkiewicz nmltiplier and we denote by (k~)0 c 
the increasing sequence of integers such that rk = t i f f  kC.(kL)Lo . Inequality (III.l) 
will be proved for any H X - f  ~- multiplier m as soon as we prove it for Marcinkie- 
wicz multipliers. 

As E (~) is 2-convex, (1.7) applied for (p~=e~ gives 

(III.2) I[(Z~ol,.~['H~(t)H~(t))'/'[Ic~(o_ > = [l(~Yo ~ H~r 

for ahnost all tET. 
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For any choice of  signs (eb) we compute 

~ L  eeHke(t)  : L ~ k r  ~(p)elPt = Z v ~ o  aph(P)  eipt Z t = o  '~g kr 

where ap=~p~_ke~_2p ee (pCN). 

If  2 e - l ~ p < U  there exists a partition of  [2 t - l ,  U[ in at most M (M an ab- 
solute constant) disjoint intervals on which ap is a constant integer, with values in 
[ - 2 ,  2]. As CE~,) is U M D  and (ap) satisfies the assumptions of  [B2, Theorem 4] 
(a version of  the Marcinkiewicz multiplier theorem) (see also [MC, Theorem 1.3]) 
we get that for any e t (e e = -t- 1) 

Ilz (011 (II1.3) o eeHkt n,(ce(..)) <= C It hltn-'(c~(..,) 

where C is a positive constant. Combined with (111.2) this implies our claim (III.1) 
for Marcinkiewicz multipliers, hence for every H i - {  2 multiplier. 

(ii) Let f (2k)=A2k+B~.  We have 

f Ilz0 e ̀ 2k' at = f IIz0 e'~k'f g(u) I-I2~ (u)e -i2ku dullc  d, 
<- f f  [Ig(u)l[c~,,, llz0 e iz"(t-")na (u)ljcee.)dudt 

<= IlgllH,,c~,=,, ( f f  II~0 ~ e'2~sH=~(u)HgE,._, ds d l ' )  1/2 . 

By (0.6)the last term is less than C ( f f  HXKo By the proof  

of  (i) above this is majorized by C'llhlln=(ce(_.) ) . The computation is similar for 
the BkS and the triangle inequality in H*(CE) ends the proof. 

The Paley projection can be replaced by any Marcinkiewicz multiplier. But 
we do not know if (iii) holds true under the only assumption that CE(=~ is UMD. 

Remark 111.2. In order to prove (i) it could seem more natural to compute 
-- ikt # * t ~c t ll(mgAg)o~ltc~(xL)=[[f (rnke H;, (t)g ( ))0 d {{c~{t~) by usine (1.4) in C E with 

;~o-~(t) o .../ 

iii] A(t) = ~reiK'H~:(t) 0 
0 0 

but we could not majorize [[(f A(t)A*(t)dt)~/2]]czm properly. 

Remark 111.3. Theorem III.l(i) and (I.13) imply that m |  HI(CE)+L'2(CE) 
is bounded when Ce~ is U M D  and E is 2-concave. This is proved in [BP] for any 
Banach space X such that 2"* has type 2. 

As in Part II, Theorem III.1 and (I.14) imply the following: 
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Corollary III.4. (Khintchine inequalities). Let CE=C~ (I < p < 2 )  or more gene- 
rally let E be 2-concave and C~(~.) be UMD. There exists a positive constant M such 
that for every finite sequence (Ak)~ in Ce 

By (I.13) we obtain as a consequence that C e has cotype 2: this was proved in 
[TJ1] for Cp ( l < p < 2 )  and in [TJ2] for all 2-concave E's. The inequalities in 
this corollary were already proved in [LP1] for Cp (1 <p<2) by a different method, 
with a constant Mp, Mp-~ + ~  as p ~  1. 

Theorem IV.4 in the appendix to this paper, combined with the main result of 
[LP2] gives another proof of Corollary III.4 for a large class of 2-concave E's. 

Remark IIL5. When E is 2-convex, the following result is better than ~Iheo- 
rein III. 1 (i): 

Let E be a 2-convex symmetric sequence space. Then for every H ~-{z multi- 
plier m, m |  HI(C~)-~C~(,f2s) is bounded, with norm less than 2llmll. 

Actually every JEH~(Ce) can be written as f=gh a.s. on T, where g is scalar 
valued, and ][flJm(cE)=[lgrJn~.[lhllm,(c~). With the notation of Part II and Re- 
mark III.2, 

II(m~Bk)~~ <= f (z I,n~l" IGk(t)l~) v2 Illh(t)l~]lc~ dt <= l! rail tlgll,: II hll ,~(c~) 

II(mkA~)~ollcE(t~) = f A(t)g,(t)d, ~e~ <= l!g!lm ( f  A*(t)A(t)dt)~/~l, ~. 

As E i s  2-convex let F be such that E =  F r'). By the same computation as in Theo- 
rem II.1 

K ). 1/2 ( f  A*(t)A(t)dt)l/2[[~e E = f (2o H, (t))a, ll,,,llllhll,, (  , 
The computation is similar for I, ~ �9 ~i(mkAk)o lic~(lh), which gives the result by (I.1 l). 

We recall that if  E is 2-convex the identity mapping: t2(CE)~CE(E2s) has 
norm 1 by (I.7) and (I.11), as well as the canonical mapping: H~(CE)~CE(dw 
f-~(f(k))k~_o. In general CE(r cannot be replaced by Hz(CE) in the assertion 
of  this remark (P |  H~(C=)~Ha(C =) is not bounded)nor  by ('~(CE) (if 
/~| Hx(C~)~d~(Ce) is bounded Ce has cotype 2 hence E is 2-concave). 

Let us now restrict to the case m = P .  By the assertion above if E is 2-convex 
/~| H~(Cz)-*Ce(d~s) is bounded. If  moreover C~({~s) is canonically isomorphic 
to H~(Ce) we get that P |  H~(Ce)~H~(CE) is bounded. CE is K-convex iff 
H,~(C~) is in norming duality with /4] (CE*). I f  moreover the Khintchine inequalities 
as in Corollary III.4 hold in H~(Cd), then H,~(CE) and C~(r are canonically 
isomorphic. Actually (see the introduction and [BP]) it was already known that 
P |  H~(Ce)-~Ha(C~) is bounded if C~ is K-convex. We recall that a Banach 
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space is K-convex iff it has a type >1 [P4]. C e has type 2 if E is 2-convex and 
q-concave for a finite q [TJ 2, Proposition 2]. 

Remark 111.6. The spaces C E in the above results can be replaced by the non 
commutative LP(M, z) spaces ( l < p < ~ )  where M is a Von Neumann algebra 
and z a semi-finite normal faithful trace. We refer to [N] for their definition and 
properties. The extension of  Sarason's theorem is proved in [X, Th6or6me2.1]; 
L2P( M, 0 is UMD [BGM, w 6]; the extensions of (l.V), (I.14), 0.13) are proved in 
the same way as in Part I: LP(M,z)({~) is defined similarly as Cv(r it can 
be identified with a 1-complemented subspace of  LP(_/~, ~) where M is viewed 
as a w* closed subalgebra of  B(H), I~ is a Hilbertian sum of  countable copies of  

H, M={(Bi~)i,j~tIVi, j,  BijEM, II(Bij)ijt[.(B) <: -k ~176 and "~((Bij)ij)=Zi~i r(B,). 
Finally we give an extension of  Theorem III.l(ii) in a different direction. We 

consider the projective tensor product X +  Y of two Banach spaces X and Y. Then 
Theorem III.l(ii) can be generalized as soon as we have a substitute for Sarason's 
theorem. 

Theorem III.7. Let X and Y be HT Banach spaces such that the natural 
product map 

H 2 (X) ~ H 2 (Y) ~ H a (X~; Y) 

H2A(X@Y) : H~(X)(gY + X @ H~(Y), 

P |  HI(X~Y)--* H~(X@Y) is bounded. 

is surjective. Then 

a) 

b) 

By [P5, Theorem3.1]  the natural product map is surjective if X 
and Y have type 2. 

For  any Banach space Z let Rad Z denote the closed span of {ek @zlk~ Z, z~ Z} 
in L~"(D, g, Z). By (0.6) the assertion (a) above is equivalent to the following identity 
(with equivalent norms) 

Rad (X@ Y) = Rad (X) @ Y§ X~. Rad (Y). 

Note that assertion (a) applied for X =  y _ / 2  implies Corollary II.2. The space 
Ca(g~) can be identified isometrically with F 4 ' / ' t / , ~  _ - ~ - ~ - ,  or equivalently with 
E2+H~(g ~') and similarly for Ca(g[). This is easy to yetiS" by considering the dual 
norms. 

Proof Let us first assume that J(t)=g(t) |  a.:. on T and IlJll,,<x~v> = 
Iigllm(x) llhl}n~-<r). We define Ak= f g(t)@Ht(t)e-i~'dt, Bk= f Gk(t)Oh(t)e-iktdt, 
for k=>0, where G~, H k are defined as in the proof  of Theorem II.1. Replacing 
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C E by X ~  Y and CE(,) by X or Y in the proof of Theorem III.l(ii) we obtain 

[IZKo ei2 'A ' x| : I f  g(") |  ei2~('-"'Hk(u)duHx;l~(r). 

By the HT assumption on Y, (0.6) and [B2, Theorem 4] the last term is less than 
CIIhllm(y) by the same argument as in Theorem III.l(ii). The majoration of 
IIz0 ~ e'2~'BKHH](x);r is similar. 

By assumption every F in Ha(X@ Y) ties in the closed convex hull o f f ' s  as 
above with []jtllnl(X~l,)~ [[F[It/x(x~y ) which proves that 

P |  H I ( X ~ Y ) -  X ~ H ~ ( Y ) + H ~ ( X ) ~ Y  

is bounded. As the identity: X ~ H J ( Y ) + H J ( X ) @ Y - , - H J ( X + Y )  obviously has 
norm 1 we have proved (a) and (b). 

Remark III.7. For the "probability oriented" reader, we should mention that 
the preceding theorem as well as Theorems 0.1 and 0.2 remain valid if we replace 
the sequence (~,) or the sequence (d z"t) by a sequence of independent normal Gaussian 
random variables. This follows from well-known results (cf. Proposition 3.2 in [P4]). 

Appendix 

We will prove that the Khintchine inequalities for CE (E 2-concave) as stated 
above are equivalent to a factorization theorem for bounded operators: CE*~H 
(H a Hilbert space). 

We first recall a weak form of Grothendieck's theorem" 

Theorem IV.1 (cf. [P3], Theorem 5.4]). Let C(K) be the space of  continuous func- 
tions on a compact set K. Let T be a bounded operator." C(K) ~H.  Then there exists 
a probability measure It on K such that 

F - -  

' 7 2 7 ,  i l  ' 
Vq~CC(K) ijT(~p)]!,, ~ / ~-IITIjljq011L-'(~). 

The proof in [P3, Theorem 5.4J uses Khintchine Gaussian inequalities in L 1 
spaces. Other proofs are given in [P3]. 
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This theorem was generalized as follows: 

Theorem IV.2 (cf. [P1] and [P3, Theorem 9.41). Let A be a C* algebra and let 
T be a bounded operator: A ~ H .  Then there exists' a state f on A such that 

VxCA ][r(x)l[z ~ 2lIr][ ~f ,  
x * x @ x x *  

2 / 

We wish to replace in the preceding statements a C(K)  space by a 2-convex 
Banach lattice and a C* algebra ,4 by a space CE with E 2-convex. 

Proposition IV.3. Let X be a Banach lattice, o1" a C*-algebra o1" X = C  E, let 
X (2) denote respectively the 2-convexification o f  X, or X, or Ce(..,). For any Banach 
space Z and any bounded operator T: X ( 2 ) ~ Z  the Jollowing assertions are equiv- 
alent: 

(i) there exist C>O and f~X*,f>=O, ]lJi]x*=l such that 

x x ~ - x x  . . 

V x ~ X  (~) IIT(x)ll <= Clirll 2 

(ii) for  every finite sequence (xl) in X 

n 9 r 2 n X i  - X ' i - V - ~ ( i X i  

Z~ IIT(x3ll "~ <= C-hTl[ ~ 2 x " 

The proof is an application of the Hahn--Banach theorem, it is similar to the 
proof of  [P1, Proposition 1.1]. 

When Xis a K6the function space on (f2,.~, p) [LT, 1.b.7] and Z is a Hilbert 
space, Theorem IV.1 easily implies inequality (ii) above (cf. [M, proof of Theo- 
rem28]): put x i = h i ( ~  Ix~12) 1/z (l~i=<n) hence ~ 2  [h~l 2=1, consider the opera- 
tor T: L=(p)-~H, h - . T ( h ( ~ ]  Ix~12) 1/2) and apply Theorems IV.1 and IV.3 to ;V. 

This argument does not seem to work for CE spaces. The main result of this 
appendix is the following: 

Theorem IV.4. Let X be as in Proposition 1u Let Y be either the dual space 

o f  X (~) or its predual i f  X (~) is a dual space. The jollowing assertions are equivalent: 
(i) there exists a constant C > 0  such thatJbr eveo" bounded operator T: X ('z) ~ H  

(Hilbert space) and every finite sequence (xi) in X c2) 

II X~ llT(xi)ll e <= C" IITII ~ x~x7 -~ xLxz 
2 x; 

(ii) The Khmtchine inequalities, hold in Y, i.e. dwre exists a constant M > 0  
such that flor every finite sequence (yi) in Y 

sup { Z I  (xi, yi>lllz  Ix, l llx = l }  =< M (.f IIZ7 = M ! i ( y , ) N  
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In particular Theorems IV.2 and IV.4 imply Corollary 11.2. On the other hand 
Corollary III.4 together with Theorem IV.4 and Proposition IV.3 imply for ex- 
ample: 

Corollary IV.5. There exists a constant C > 0  such that Jot every bounded 
(1 1 / 

operator T: C~p~H (I < p < ~ )  there exists f->=O, i!f'.}cp,--1 P ' + - 7 = 1  such that 

'T'  / f ,  Vx~C~ IET(x)!i ~ C i  ~w, Ixls~) 1/~. 

Such a factorization theorem is proved directly in [LP 2] for a large class of 
spaces CE,). 

Proof o f  Theorem IV.4. (ii)=*(i) is proved by duality: 

Z ~  " IlT(x,)H~t = sup {Z~" (r(x,), z , ) ] Z ;  I,z,][~,l ~ -__1- 1} 

* 2 sup {Z7 (x,, T* (z,)) f IIz  ~, r <>llx,..  ~ iirEl -~} 

=< sup {X7 (x,. y,) f l [ z :  ~iy, llY~,'-,*d, ' ~ l',r!! 2} 

= sup ~_~  , . ,  y ,>/ i lZ~,d[~ ,# ,  ~ lirll 2} 

II , n ~  -<_ sup {~Y~ (x,, y,)ly,~Y, ~03~lx. , .~.) .  ~ MtiTII} by (ii) 

= M tl T tl l[ (x311[ x'~, (t s) 

which proves (i) with C N M .  
(i)=~(ii): let (Yi)~ be a finite sequence in Y and let 

U: [ ~  --~ Y ei ~ Yi  (1 ;5 i ~ n) 

where (el)~ denotes the canonical basis of {~,. 
By the Pietsch factorization theorem for 2-summing operators there exist a 

2 Hilbert space H and two linear operators S: / , , - H ,  R" H ~ Y  such that 

u = RoS;  [[RIIH~, -~ 1; m,(S) _< 7r2(u) 

where rr z denotes the 2-summing norm. 
Let (x3~ be a sequence in X O). Then, by (i) applied to R*, 

[Z7 (x.y,>[ ~-"~ r : :  IZ~ (wc",).s(<)~l 

~ ( Z 7  ][R*(xi)[15)'/2(Z~ IS(e'~'i"- ~,,2 __ t iJl,Hj ' < C {lR*l!ll(xi)7!.x(~)(4) fez(S) 

c ( ) ; ] ( - ) '1  ~) < ~__ 7L~ U ~ 2( i 11 X ( ' - ' ) (E  �9 
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Finally,  by [P3, pp. 35--36] if Y has cotype 2 there is a cons tant  such that  

-_- K If 1121  ,y,llp,o,) 
This implies (ii) with M ~ C K .  

The only case not  already ment ioned  is the case X ( " } = C e m .  By [TJ2] if  F 

is a 2-concave symmetric sequence space Cr  has Steinhaus cotype 2, hence cotype 2 

by [P2] and  so as ~ . Let F be the dual of E (~) if  E (2) is separable or its predual  if 

E (2) is a dual  space. Hence Y = C  u or Y=C*F* has cotype 2, which proves our  claim 

and  concludes the proof.  
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