
Duality of space curves and their tangent surfaces 
in characteristic p> 0 

Masaaki Homma 

O. Introduction 

Let X be a nondegenerate complete irreducible curve in projective N-space 
pN over an algebraically closed field k of characteristic p. Let n: )7~X be the 
normalization of X and (5 the linear system on )? corresponding to the subspace 
V~=Image [H~ N, ~(1))~H0()~, ~*~)x(1))]. Let ff be a point on )~. Since X is 
nondegenerate, there are N + I  integers p0(_P)<...</~N(_P) such that there are 
Do . . . .  , DN~(5 with v1,(Di)=lli(_P) ( i=0,  ..., N), where vp(Di) is the multiplicity 
of Di at ft. When p = 0 ,  the sequence g0(P) . . . . .  ttN(/3) coincides with 0, 1 . . . . .  N 
except for finitely many points. On the contrary, this is not always valid in positive 
characteristic. However, F. K. Schmidt [12] (when (5 is the canonical linear system) 
and other authors [8], [9], [10], [13] (for any linear systems) showed that there are 
N + I  integers b0< . . .<bn  such that Po(P) . . . . .  ~lN(P) coincides with b0 . . . . .  bN 
except for finitely many points. 

From now on, we denote by B((5) the set of integers {b0 . . . . .  bs}. Since we 
take an interest in the invariant B((5), we always assume that p > 0 .  

What geometric phenomena does the invariant B((5) reflect? Roughly speaking, 
this invariant reflects the duality of osculating developables of X. Let Y be a closed 
subvariety of pN. We define the conormal variety C(Y) of Y by the Zariski clo- 
sure of 

{(y,H*)~Z• is smooth, Ty(Y)cH}, 

where ~u is the dual N-spacc of pN and T~,(Y) is the (embedded) tangent space 
at y to Y. The image of the second projection C ( Y ) ~ t  'x is denoted Y*, which 
is called the dual variety of Y. The original variety Y is said to be reflexive if C(Y) 
Y* is generically smooth (The Monge--Segre--Wallace criterion; see [6, page 169]). 
In the previous paper [5], we proved the following theorem. 
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Theorem 0.0 [5; Theorem 3.3]. Let v be an integer with O<=v<=N--2. Assume 
that bv+l~O modp. Then the v-th osculating developable of  X is reflexive i f  and 
only i f  b , + ~ O  modp. 

In the present paper, we prove a more precise theorem on this line for space 
curves, i.e., nondegenerate curves in p3. 

For a space curve X, one has the following five possibilities: 

(RR) p > 3  and B(15)={0 ,1 ,2 ,3} ;  

(RN) p > 2  and B(~)  = {0,1, 2, q}; 

(NR~) B(ffi) = {0, 1, q, q+ l} ;  

(NR~) p > 2  and B ( ~ ) = { 0 , 1 ,  q, 2q}; 

(NN) B(~)  = {0, 1, q, q'q}, 

where q and q' are powers of p (see proposition 1.2 below). Moreover, any case 
can be shown to occur (see example 2.6 below). Our theorem is as follows. 

Theorem 0.1. Let X be a nondegenerate space curve and Tan X be the tangent 
surface of X. 

(i) B(15)is of type (RR) r and Tan X are reflexive. 
(ii) B(15) is o f  type (RN) r is reflexive and Tan X is nonreflexive. 

(iii) B((~) is of  type (NR 0 ~ X  is nonreflexive and Tan X is ordinary. 
(iv) B((fi) is o f  type (NRn)~,X is nonreflexive and Tan X is semiordinary (o f  re- 

flexive type). 
(v) B(~)  is of  type (NN) ~ ,X  and Tan X are nonreflexive. 

The main tool of our proof of the theorem is the Hessian criterion of reflexivity 
obtained by Hefez--Kleiman [2]. 

1. Type of B(~)  

We will use some knowledge of the theory of Weierstrass points in positive 
characteristic. Surveys of this theory can be found in [3; ~ 1--2] and/or [13; w 1]. 

This section is a sort of elementary number theory. Let p be a prime number. 
Then a nonnegative integer u can be written uniquely as u=z~i_~0 uip i, where ui 
are integers with O<=ui<p. We denote by u ~ v  (or v<u)p if u>v and Ui~V i 

for all i=>0. 

/.,emma 1.0. Let u, v be nonnegative integers with u>v. 
P 

vE B(ffi). 

I f  uEB((5), then 



Duality of space curves and their tangent surfaces in characteristic p >0 223 

Proof See [11; Satz6] or [13; Cor. 1.9]. 

Corollary 1.1 (cf. [1 ; Prop. 2]). LetB(fb)={bo<bl<bz<ba} and io=Max {iibi=i}. 
Then 

(0) ion- 1, i.e., bo=O and bl= ]. 

Moreover, we assume that io<3. Then we have that 

(i) b~,+x=0 modp,  
(ii) / f  io<p, then bio+l is a power o f  p. 

Proof. (0) The condition bo=0 is valid for any linear system. Since the mor- 
phism corresponding to (fi coincides with r~: ~ X  which is birational (hence 
separable), we have b l=  1. 

(i) Write b~o+l=ap+r with O<=r<p. I f  r>0 ,  then bio+l-l-~bio+l. This 

implies bi0+x-lCB(~5) by (1.0). Hence we have bio+x-l=bto=io, which con- 
tradicts to the choice of i0. 

(ii) From the above, we may write as bio+x:up m with m > 0  and ( u , p ) = l .  I f  
u > l ,  then (u-1)pm~b~o. Hence (u-1)pmEB(~5) by (1.0). Hence we have ( u - 1 ) p ~ =  < 

b~o=iO< p, which is a contradiction. [] 

The next proposition is the main purpose of this section. 

Proposition 1.2. The invariant B(~5) of  a space curve over a fieM of  characteristic 
p > 0  must be one o f  the following 5-types: 

(RR) p > 3  and B(ff i )=  {0,1,2,3};  

(RN) p > 2 and B(G) = {0, 1, 2, q}; 

(NRt) B(ffi) = {0, 1, q, q + l } ;  

(NR~O p > 2 and B ( ~ ) = { 0 , 1 , q ,  2q}; 

(NN) B(ffi) = {0, 1, q, q'q}, 

where q and q" are powers o f  p. 

Proof We know that b0---0 and b l = l .  First we assume that p > 2  and 
b2---2. I f  B(ffi) is not of  type (RR), then b3 is a power o f p  by (1.1). This case is 
of type (RN). 

Next we assume that bz>2 or p = 2 .  In this case, b~ is a power of  p, say q, 
by (1.1). Write bs=aq+r with O<-r<q. Since b3>bz=q, we have a ~ l .  Since 
r<aq+r,  we have rCB(ff3). Hence r---0 or l. I f  r = l ,  then aq<aq+l .  Hence 

P p 
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aqCB((5) and hence b,~=aq. So we have a=-l. This case is of type (NR~). Next 
we consider the case r=0 .  Write a=up m with (u ,p )= l .  If  u = l ,  then this case 
is of type (NN), Suppose that u > l .  Write u - u ' p + u "  with O~u"<p. Since 
( u , p ) = l ,  we have u">O. Hence we have 

b3 = aq = up"q = u'pm+lq+u"p'q > u ' p " + l q +  (U"-- 1)p"q. 
P 

Hence u'pm+lq+(u "-l)pmqEB(ffi). Since u'p"+lq+(u " -  1)pmq=--O mod q, 
must coincide with b2. Hence we have 

this 

u'pm+lq+(u " -  1)pmq = q, 

and hence we have u '=0 ,  u"=2,  i.e., b3=2q. This completes the proof. 

Remark 1.3. In the next section, ue will shox~ that for each type of B((5) de- 
scribed in (1.2), there is a nondegenerate space curve whose B(O) has the as- 
signed type. 

2. Some properties of B((~) 

Let Reg X be the open set of smooth points of X. We will identify Reg X 
with 7r-~(Reg X). Let PEReg X be a general point. Choose a plane section Go 
of X such that P~Supp Go. Let G0 ~.(~5 corresponding to Go via the isomorphism 

(1) 

Then we have the commutative diagram: 

(2) 
L(Go) "~ {f~ k ()~) • [ div f +  Go > 0} w {0} ~ H ~ ()~, ~* (gx (1)) 

2 u 

L(N;  Go) d~r { fEk(~)•  } -~ V~. 

2,0. A characterization ofB(N) .  Let t~Cx, P be a local parameter at P. Iden- 

tifying the field of fractions of Ox, P with k((t)) and viewing k(X)ck( ( t ) )  via this 
identification, we can define iterative derivations {D}V)lv=0, 1, 2 . . . .  } on k(X) 

such that D,(V)(W)=[m} tm-Vv (see, [5; appendix]). Let ./0, ..., J.~ be a basis of  

L((5; Go). Then the sequence {bo<b~<:b2<b3} coincides with the minimal ele- 
ment of 

{Po < Pl < ~12 < P3I det (D~uOJ'j)(i,i) r 0} 

by lexicographic order (see [3; w 1] o1 [13; page 5]). 
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Remark 2.1. Let us consider the vector space @~k(~)  over k (X)  and denote 

by V,, the subspace generated by 

{(D}')f0, OF ) f l ,  D}~)f,., D} ' )A)I  o ~ ,. ~ ,,,). 

l hen we have 
4 

(3) ~ ~ ~ . . . . .  Vb~_, =C ~ = . . . .  ~ - ~  ~ Vb~ = �9 k(PE) 

by the preceding characterization of B(~). 

2.2. Standard coordinates on pa with re,specr to P. It is obvious that we can 

choose a basis x0, xl, x2, xa of L((5; Go) such that 

0 = ~ , p ( x 0 )  < ~ ' l , ( x 0  < ~ , j , ( x ~ )  < , ~,( .v:0,  

where vp is the valuation of ~x,v. Note that since P is a ~eneral point, this sequence 

is nothing but {bo<b~<b2<ba}. The sections Xo, ...,PE;~ of H~162 cor- 
responding to xo . . . .  , x.~ via isomorphisms (1) and (2) are called standard coordinates 

on pa with respect to P. 

Remark 2.3. With the above notations, 

(a) the plane section X0=0 on X is Go; 

(b) the rational function on X obtained by Xi/Xo is x i. 

Remark 2.4. Let X 0 . . . .  , PE a be standard coordinates on pa with respect to a 
general point P of X and x~ be the restriction of PEJX,o to X ( i=0,  ..., 3). Since 

1 =b,=ve(x~)  , we may consider Xl itself as a local parameter at P. Moreover re- 

placing, if necessary, Xa and Xa by c2X~. and c o x  a for suitable c~, cock • xo . . . .  , Xa 
can be expanded by t = x l  as: 

v o = 1 

(4) x, t 
x 2 t b~+(higher order terms) 
x a t ba +(higher order terms). 

Lemma 2.5. Under the above notations, suppo,~e that be>2. Then we hace 

D} ~) x2 = O and D} ~)x a = O  Jor 2 =~ V v < b.,. 

ProoJ. From (3) in remark 2.1, we have that the rank of 

D(,:)Xo D~t 1) xl DP ) x.a D~ 1~ xa] 
D(t*)Xo Dff) xl D~ *) x2 D~ ") x J  
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is 2, i f  2~_v<bz.  Since 

(i :) (D[i) x j ) i fo , l ,v  : ] -~ 
j=0,1,2,3 0 D~V) x2 D[~) x 

by (4), we have D}~)x2=D~V)x3:0 if  2<=v<b2. [] 

Example  2.6. Let us consider the morphism 

re: P ~  pa with homogeneous coordinates Yo . . . . .  Y3 

t ~ - , ( l : t : t~ : t  v) 
with 

2 < = u < v ,  

and let us denote by X the image of  r~. Then z: p1 ~ X  is the normalization of  X. 
Let ~ be the linear system on pz corresponding to the plane sections on X. Let 
c E P  1 be a general point. Let s = t - c .  Then the coordinate functions yi(=(YdYo)[x) 
can be expressed by using s as follows; 

I 
0 = 1 

(5) yl = c + s 
Y2 ( c+s )  ~ 

'3 ( c + s )  ~. 

Let q be a power o f p .  I f  u = 2  and v=q,  then (5) is rewritten as 

Y0 = 1 

yl--Cyo : s 

Y 2 -  c~ Y o -  2c (Yx - cyo) = s ~ 

Ya-- cq yo = sa. 

Let Go=q.oo on px. Then G0~ffi and 

L(ffi; Go) : (Y0, Yz-Cyo ,  Yz-c~ 'yo- -2c(y l - -cyo) ,  Y3-cqYo)  . 

Hence we have B(ffi)= {0, 1, 2, q}. 
By arguments similar to that of  the above case, we can show that 

if u = 2 ,  v = 3 ,  then 

if  u = q ,  v = q + l ,  then 

if u = q ,  v : 2 q ,  then 

if  u = q ,  v = q ' q ,  then 

where q and q" are powers of  p. 

. ( ~ )  = {o, 1, 2, 3}; 

B((fi) = {0, 1, q, q + l } ;  

B ( ~ )  : {0, 1, q, 2q}; 

B(ffi) = {0, 1, q, q'q}, 
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Note that B((fi) is not always {0, 1, u, v}, which is the "gap sequence" at 
the origin (properly speaking, {1, 2, u +  1, v+ 1} is the gap sequence at the origin). 
The origin may be a N-Weierstrass point. For example, if u=2 ,  v = q + l ,  then 
B (t5) = {0, 1, 2, q}. 

3. Tangential properties of a space curve 

First we review the Hessian criterion of reflexivity of projective varieties (for 
details, see [2; 3.2] or [6; page 176]). 

Let Y be a closed subvariety of dimension n, C(Y) the conormal variety of Y 
and Y* the dual variety of Y. 

Let PEReg Y and tl . . . .  , t n a system of local parameters of  •r,e. Let H be 
a hyperplane with T e ( Y ) c H  and hEOr, e a local equation of H at P. 

The Hessian rank at (P,H*)EC(Y) ~ is defined as the rank of the matrix 
cg~h ,~ 

~ ( P ) J ( i d ) '  where C(Y)~  Y)• Since the Hessian rank is 
- i / -  

l o w e r  semicontinuous on C(Y) ~ we may define the Hessian rank h r of Y by the 
Hessian rank at a general point (P, H*)EC(Y) ~ 

The duality codefect c r of  Y is defined by 

Cr = d i m Y + d i m Y * - ( N -  1). 

Note that the inequality hr<=Cr holds. 

Hessian criterion (Hefez--Kleiman). Y & reflexive i f  and only i f  h r = c  r. 

( 02h ) 
When Y is a hypersurface, the matrix (OtiOtj (P) is an ( N - 1 ) •  

matrix. Hence hr<=N-1. If  h r = N - 1 ,  Y is said to be ordinary. In this case, Y 
is reflexive and Y* is a hypersurface, since c r = d i m  Y*<=N-1. If  h r = N - - 2 ,  Yis 
said to be semiordinary. I f  Y is semiordinary, then 

(i) Y is reflexive e ,  dim Y * = N - 2  

(ii) Y is nonreflexivee*dim Y * = N -  1. 

When the first case occurs, Y is said to be semiordinary of  reflexive type. When 
the second case occurs, Y is said to be semiordinary of  nonreflexive type. 

Now let us return to that problem of space curves. Our result can be summarized 
in the following table. 
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Table 3.0. Let X be a nondegenerate space curve, (fi the linear system on )~ 
corresponding to the plane sections of  X and Tan X the tangent surface of  X. 

Type of B ( (5)  Reflexivity of X hv~. x dim (Tan X)* Reflexivity of Tan X 

(RR) Reflexive 1 1 Reflexive 

(RN) Reflexive 0 I Nonreflexive 

( N R x )  Nonreflexive 2 2 Reflexive 

(NRn) Nonreflexive 1 1 Reflexive 

(NN) Nonreflexive 0 1 Nonreflexive 

3.1. Notes to accompany table 3.0. 

(0) Table 3.0 with Proposition 1.2 implies our main theorem (Theorem 0.1). 

(i) Since Tan X is a surface in p3, the duality codefect of  Tan X coincides 
with dim (Tan X)*. Therefore the last column in the table follows from the preceding 
two columns. 

(ii) The first two rows and the column of reflexivity of  X result from the pre- 
vious paper (see theorem 0.0 and [5; (3.1)]). Therefore, to complete the table, it 
suffices to show the following theorem. 

Theorem 3.2. Notations are same as in (3.0). 
(i) IJ'B(ff)) Of X is o f  type (l'qR1) , then hra, x = 2  and dim (Tan X)* =2.  

(ii) I f  B(ffi) o f  X is o f  type (NRu), then hTa, X = 1 and dim (Tan X)* = 1. 
(iii) I f  B(qJ) o f  X is o f  type (NN), then hT,.x=O and dim (Tan X ) * = I .  

This theorem will be proved in the next section. 

4. Proof of theorem 3.2. 

In this section, we give a proof  of theorem 3.2. Let  X be a space curve whose 
B(ffi) is of  type (NRI) or (NR~0 or (NN). 

Choose a general point Q of  Tan X. We may assume that there is a point 
PEReg ~ (X) with Q{Tp(X),  where Reg ~ (X)={PEReg Xlpi (P)=bi  (0~Vi~3)} .  

Let Go be a hyperplane section of  X such that Supp Go)P, Q and let Go be 
the divisor on )7 corresponding to Go (cf. w 2). 

Choose Xo, xl ,  x2, x3~L(ffi; Go) such that x0=l ,  x~=t is a local parameter 
at P and 

x2 = tq+ ~i>q~i t  i 

(6) x3 tb'+~,>b~/~,t  ~ 
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in (gx ,p=k[ [ t ] ]  (cf. 1.3 and  1.5). The  system of  coordinates  of  p3 corresponding 
to Xo . . . . .  x3 via a natural  i somorph i sm L((5;  G o ) ~ H ~  3, •(1)) (cf. 2.2) will be 
denoted X 0 . . . .  , X 3. 

Lemma  4.0. In the expression (6), i f  eir or fli;~O, then i = 0  or 1 rood q. 

Proof. Let  i be a posit ive integer with i ~ 0 ,  1 rood q. Hence  we may  write as 
i=aq+r  with 2~r-<q. Lett ing D} ") operate  on x2, we have 

~ -  O~ i [ a q  @ . . .  

Similarly, we have f l i=0  i f  i ~ 0 ,  1 rood q. 

Choose  an open subset  V o f  X such that  

(a) PE V <  Reg ~ (X), 

(b) tlv: V ~ t ( V ) ( c P O  is an 6tale covering, 

(c) x~, x2, x3 are regular  on V. 

Then the morph i sm  

(7) ~ = ~//p: V X A  ~ ~ T a n  X c~ {X o ~ 0} c A~x,/Xo ' x,/xo, xjxo) c p3 

(~. ~) ~ ~ (n) + y (~)D} ~) ~ ( , )  

is well-defined and  generically surjective, where ~ : ( x a ,  x2, x..~) and y is a coordinate  
funct ion o f  A ~ (cf. [5; w 2]). 

Since X 0 ( Q ) r  and QET~(JO, there is a point  c~A ~ such that  Q=O(P, c ) =  
(c, o, o). 

Put  s=y--cs Then  we have 

~• = k[[~, t]]. 

Let  us consider  the functions on Tan X 

X2 I Tan  X 
Z2= Xo 

)(3 [ Tan X. Z3 =-~0 
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Since the maximal ideal of  Cr,,q is generated by -~0 - c ,  Xo ' Xo ' that of  OX~nx, Q 

is generated by zx, z2, z3. 

Lemma 4.1. Let 

q'*: --  = k t]] 

be the homomorphism induced by ~k e. Then 

~*z l  = t + s  

~k * za = tr + Z k ~_ ~ Ctkq tk~ + Z k ~_ a a~q + l ( t + s + c ) t kq 

[(t+s+c) tq-4-Zk~flkqlkq-~-Zk~2flkq+l(t-[-S-t-c) lkq 
[ - i f  B(f f~ is o f  type (NR,) 

~*za - - /  i f  B(~i) is o f  type (NR,,) 

I t e ' +  Zk>q, flkqtk'+ Zk~q ,  flkq+a(t + s +c)  t k" 
i f  B(ffi) is o f  type (NN). 

Proof. By definitions of  zx, zz, za and ~k, we have 

~k* Zl = xl  + yD~l) xx - -c  

r  z~ = x~+ yD}~) x~ 

r z8 = x3 + yD} ~ x~. 

Using the expression (6) and lemma 4.0, we get the expression of ~b*zx, ~O*zz and 
~b*zn as above. II 

Put 

(8) 

Then the expressions of ~*z~, ~k*z2, ~k*zs may be rewritten as : 

(9) 

~,*Zl = u 
~,*z2 = ( l + a q + a c ) v + ( ~ + ~ + , c ) v 2 + a q + , u v + ( h i g  her order terms on u & v) 

c v + ( f l ~ + f l ~ + l ) v ~ + u v + ( h i g h e r  order terms on u & v), 
if B(~)  is of  type (NR~) 

~*z3 = (1 +fl~q+lc)v~+(higher order terms on u & v), 
if  B(15) is of  type (NRI0 

J vr order terms on u & v), 
if  B(15) is of  type (NN). 
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I_emma 4.2. I f  Q was chosen as sufficiently general, then ~T,,x,~_~k[[u, v]] 
via ~b*. 

Proof. There is the tower of  rings; 

k [Is, t]] ~k[[u, vii ~ ~*G, nx, oDk[[~*zl, t~* z.21]. 

Since Q is sufficiently general, we may assume that 1 +aq+~c~O. Hence, in the 
expression (9), the linear terms of ~b*z~ and ~b*z2 are linearly independent over k. 
Hence we have k[[u,v]]=k[[~*zx, t~*zz]] (see [14; VII cot. 2 to temma 21). 

Hence ~b*: dr~x.Q-~k[[u, v]] is surjective. Since both sides are formal power 
series rings over k of  two variables, this is an isomorphism. ] 

From now on, we assume that Q was chosen as sufficiently general and identify 

~T,,X,a with k[[u, v]] via ~b*. 

The following lemma is elementary. 

3 with a smooth point at the origin I.emma 4.3. Let Y be a surface in A~z, zrz,~ 
0 and {u, v} a system of  local parameters of ~r,o. Let zl, zz, z.~ be images in ~r, oo f  
coordinate functions Zx, Z, ,  Zz, respectively and let 

zl = p~(u, v) 

z ,  = p~(u, v) 

z3 = p3(u ,  v) 

in k[iu, vii  = ~ ,  o. 
I f  h(Zx, Zz, Za)=0 is an equation of the tangent plane to Y at O, then we have 

h ( z l ,  z , ,  zs)  = 

OP~(O) z2 z~ 
OP2 (0) - ~ ( 0 )  

T Y  
0pl (0) Op2 (0) Op~ (0) 

in ~r.o=k[[u, vl], where 7~k X. 

Let us return to our proof. 
Let h(Z1, Z2, Z3)=0 be an equation of the tangent plane to Tan X at Q. 
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Using (9), we have 

0Z 1 0Z1 
Ou ( 0 ) = 1 ,  - -~ - - (0 )= 0 ,  

Oz~ Oz2 
Ou (o) = o, - ~ -  (o) = 1 + ~ + 1  c, 

Oz3 Oz3 {; if B(N) 
Ou (0) = O, ~ (0) = otherwise. 

is of type (NRI) 

Hence, by lemma 4.3, we may assume that 

{ - e z ~ + ( l + % + l c ) z s  if B((fi) is of type (NRI) 
h(Zl:, Z2, ZS) = Z3 otherwise. 

Now, we compute the Hessian rank of Tan X. 
Put 

0 2 h .^. . [ -~Wtu) Xh (0)1 
Ou Ov I 

H = [ O~h (o) ash (o) ] " 

Case 1. B(ffi) is o f  type (NRI). 
Since 

h(z) = {(1 +c~q+ l c)(fl2q + flz~+ D-c(c% +~2q+ l e)} v z 

+ uv+(higher order terms on u & v), 

we have H = ( 0  ,1}" Therefore hranX=2. 

Case 2. B(ffi) is o f  type (NRI).  

In this case, 

h(z) = (l+fl2~c)v"-+(higher order terms on u & v). 

[0 0 ) Since Q is general and p > 2 ,  we have Hence we have H =  2(l+fl2qc) " 

r a n k H = l ,  i.e., hTanX-----]. 

Case 3. B(15) is o f  type (NN). 
Since 

h(z) = vq'+(higher order terms on u & v) 

and q' is a power of  p, we have rank H = 0 .  
When the first case occur, Tan X is ordinary. Hence dim (TanX)*=2.  
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When one of the remaining two cases occur, the tangent planes to Tan X 
along the line Tp(X) are constant, equal to the plane X3=0. Therefore, a 
general fibre of  q: Tan X~(TanX)*  has positive dimension. This means 
dim(Tan X)*-<I. Since Tan X is not a plane (because X is nondegenerate), 
d im(Tan X)*=>I. Hence we have dim(Tan X)*=I .  This completes the proof. 

5. M i s c e l l a n e o u s  r e m a r k s  

The first remark is concerned with example 2.6. 

Remark 5.1. Example 2.6 can be generalized as follows. Let 

A = {ao < aa < . . . <  aN} 

be a set of nonnegative integers with a0=0 and a l = l .  Let X be the image of 

p1 ~ pN 

t ~-~ (t ~ : f l  : ... : toN). 

Then the invariant B((5) of  X coincides with A if  and only if  A has the following 
property: Let u, v be nonnegative integers with u>v. If  uEA, then yEA. 

P 

This can be proved by using a characterization of B ((5) similar to (2.0). 

Remark 5.2. We give here examples of smooth curves in pa whose invariants 
have the assigned type. 

(a) The invariant B((5) of a smooth curve X in p3 with deg X<p is of type 
(RR). 

(b) (Schmidt [12]) Let p = 5  and Y be the smooth model of the plane curve 
y 5 + y - x 3 = 0 ,  which is nonhyperelliptic of genus 4. Hence X can be embedded in 
p3 by means of the canonical linear system R. Then B(R)={0, 1, 2, 5}, wlaich is 
of  type (RN). 

(c) Invariants B((5) of  the curves described in [4] are of type (NRI). 
(d) (Komiya [7]) Let p =2  and X be the complete intersection of Y1Y2-YoY3=0 

and 2Y0a+Y13+Y23+Y33=0 in p3, where 2#0 ,  1. This curve is smooth of  genus 4 
and the linear system (5 of line sections is canonical. Then x~e have B((5) = {0, 1, 2, 4}, 
which is of type (NN). 

Recently, Hajime Kaji (private communication, April, 1989) gave an example 
of a smooth curve of type (NRH). 

Example 5.3. (Kaji) Assume that p > 3  and q=pe (e>0). Let g: Pa--~P1NPX 
be the graph morphism of  the Frobenius morphism of degree q. Consider the 
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morphism 

q~: p 1 x p l  _. p3 

(s: t) • (u : v) --,- s(3u ~ : 2uv : v ~ : O) + t (0 : u 2 : 2uv : 3v~). 

Let X be the image of  q~og. Then X is smooth of type (NRn). 

Proof. Since p~og: pi_.p1 is purely inseparable, the Zariski tangent space 
.~gts:o(g(P0) coincides with ~o~s:o(Pl• t~)) in Jo~s:,)(P1XP0. Since the mor- 
phism 91v,x(,:~): P1X(u:v) ~P3 is an embedding, d(9og)t~:o#0. 

On the other hand, if (ux: vl) r (us: v2), then ~o (P~ X (ux: v~)) c~ ~p (P~ X (u2: v2)) = 0. 
To prove this, we consider the twisted cubic 

~:  P13(u:v)~-,.(ua:u2v:uvZ:va)CP3. 

Then we have T,~,:~)(C)=q~(P~X(u:v)) ,  where C = r  If  To~,,:,,)(C)r~ 
T,~.,:o,)(C)#0, then there is a plane H c P  a with H D T , ~ , , : ~ , ) ( C ) ( i = 1 , 2 ) .  Then 
we have (H.C)=>4, which is a contradiction. 

In particular, the morphism ~oog is injective. Hence 9 o g  is an embedding. 
From the arguments of  the previous paragraphs, we have T~ogt,:o(X)= 

9(P~x(sq:tq)). Hence we have Tan X = 9 ( P x X P 0 .  Since tp(PxXP0=q-anC and 
C is of  type (RR), tp (px X Pa) is reflexive and its dual is of dimension 1 (cf. [5; (4.2)]). 
Therefore Tan X is semiordinary. 

Since for a general point ( s : t )~P  x 

i ( X .  T ,  ooo:o(X);  9og(s :  t)) = i(g(p1).pl• g(s: t ) )  = d e g p z o g  = q, 

X is nonreflexive. This completes the prooL 
Concerning the example in (5.2.c), the referee posed the following problem. 

Problem 5.4. Is the tangent surface of a (smooth) rational curve of type (NR~) 
always a quadric surface? 

Remark  5.5. It is easy to show that if p > 2  and if X is a nonreflexive smooth 
curve on a smooth quadric surface, then X is one of the curves discribed in (5.2.c). 

Acknowledgement .  The author thanks Professor H. Kaji for many helpful con- 
versations and the referee for valuable comments and suggestions. 
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