Noncommutative classical invariant theory

Torbjérn Tambour

Abstract. In this thesis, we consider some aspects of noncommutative classical invariant theory,
i.e., noncommutative invariants of the classical group SL(2, k). We develop a symbolic method
for invariants and covariants, and we use the method to compute some invariant algebras. The
subspace I of the noncommutative invariant algebra I, consisting of homogeneous elements of
degree m has the structure of a module over the symmetric group S,,. We find the explicit decomposi-
tion into irreducible moduies. As a consequence, we obtain the Hilbert series of the commutative
classical invariant algebras. The Cayley—Sylvester theorem and the Hermite reciprocity law are
studied in some detail. We consider a new power series H (J4, 1) whose coefficients are the number
of irreducible S,-modules in the decomposition of IJ*, and show that it is rational. Finally, we
develop some analogues of all this for covariants.

Abstract

In this thesis, we consider noncommutative invariants of the classical group
SL(2, k). We develop a symbolic method, and with the help of this method we
compute some invariant algebras. The invariant algebras are stable under permuta-
tions of the factors in homogeneous elements, and we decompose the homogeneous
subspaces into irreducible modules over the symmetric group. We study the Cayley—
Sylvester theorem and the Hermite reciprocity law in some detail, and we introduce
a “faise” Hilbert series, whose coefficients are not dimensions, but the number
of irreducible components in the decomposition into irreducible modules over the
symmetric groups. Finally, we consider classical covariants.
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Foreword

In this thesis, I will discuss some aspects of the noncommutative invariant
theory of the classical group SL(2, k). This subject was suggested to me by my
teacher, Dr. Gert Almkvist, during a series of seminars on invariant theory held
by him. I would like to thank him for many stimulating discussions and much in-
valuable advice.

Lund, in February 1987.
Torbjérn Tambour
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Introduction and preliminaries

Classical invariant theory is concerned with the invariants of the group SL(2, k),
where k is an algebraically closed field of characteristic 0. This group will always be
denoted by G in the sequel.
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The most classical part of the subject treats commutative invariants. The founda-
tions of this theory were laid by Cayley and Sylvester in the 1840’s, and it was further
developed by, among others, Aronhold, Clebsch, Gordan, and Hilbert. In later
years, noncommutative invariants have attracted some interest, see, e.g., {3], [4],
191, [12], [13], [15], [24].

In this thesis, we will discuss some aspects of the theory of noncommutative
invariants and covariants. We will develop a symbolic method for noncommutative
invariants, and it will be seen that this method is not essentially different from its
commutative counterpart. In fact, had the 19th century invariant theorists con-
sidered noncommutative invariants, they would have developed the method in this
case, too. In the commutative case, Gordan proved that the algebra of invariants
if finitely generated (the famous Endlichkeitssatz, which was extended to SL(n, k)
by Hilbert). Unfortunately, this is not true in the noncommutative case. But we
have something that is almost as good: the algebra of noncommutative invariants
is finitely generated if we allow permutations of the factors in homogeneous poly-
nomials. This has been proved by Koryukin {14]. Hence, it should be interesting
to study the invariant algebras taking into account this new structure (which is
degenerate in the commutative case). We will consider some aspects of this after
we have developed the symbolic method.

Let us start by reviewing the representation theory of the group SL(2,k)
and of the symmetric groups S,,, since this theory and the theory of symmetric
functions will be extensively used throughout our discussion.

Fundamentals on the representation theory of SL(2, k)

The group G=SL(2, k) is reductive, hence every finite-dimensional, rational
G-module is completely reducible. There is precisely one irreducible G-module R,
of dimension d+1 for every integer d=0. This module can be described as fol-
lows: let V' be the standard G-module with basis e;, e,, and let e} =X, e;=Y be
the dual basis in ¥* (the dual space). On V* G acts by

{g‘l-X= aX+bYy
g7t Y =cX+dY
where

[a b
&= d)eG'

Rd = SJ(V*)S

Then
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the dth symmetric power of V*, i.e.,

d

1] X1y 4. 4q,79, a,{k}.

R, ={aOX‘+a1 (
Hence
Sy = SV = & R, = k[X,Y],
d=0 d=0

the polynomial algebra in X, Y. An expression of the type

aoX"+al[ﬂ XY +... +a, Y

is called a binary form of degree d. For the details and the proofs of all this, we refer
to [21]. We denote the G-character of R, by y,. The sutgroup

{2 ]

plays an important role in the theory, and to simplify notation, we write

&0
w5 o)) = 1@
§d+1 —f_(d+1)
.

The algebra of noncommutative polynomials in the coefficients a; will be identified
with the tensor algebra

It is easily seen that

2@ =&+ e =

T(R}) = & T"(RD),

m=0

and the commutative algebra is identified with

S(R3) = & S™(RD.

m=0

It is convenient to regard S™(R}) as the subspace of symmetric tensors in T™(R}).
The group G acts on these algebras, and we denote the invariant algebras by

TR =I,= @ Iy, and SR)°=1,= @ I
mz=0 m=0

Another object that we are going to study is the algebra of (noncommutative) co-
variants Cj. It is defined by
Cs = (T(RD & RS,

where R=k[X,Y]. Its commutative counterpart is

C, = (S(R) & R)°.
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These two algebras are bi-graded,

Ci= @ Cipey and Ci= @D Cype,
m,e=0 m,ez0

where
ca"dme = (Tm(R:) Qx Re)G’ and Cime = (Sm (R:) &x Re)G’
respectively,
When A=@,,=04,, is a graded k-algebra, we denote its Hilbert series (some-
times called Poincaré series) by H(4, t), i.e.

H(Aa t) = ngo (dlmk Am) tm

(provided that dim, 4, <<, of course). This series is an element of the formal
power series ring Z[{r]], but we will sometimes treat ¢ as a real or complex variable.

A useful device when dealing with Hilbert series is the Reynolds operator:
consider the field extension C(#")—~C(¢), which is Galois with Galois group gen-
erated by r—exp (2ni/n)t. If feC(t), we define the Reynolds operator ¢, by

(@ ) = % S-S (exp (2kni/n)1).

Since the right-hand side is fixed by the Galois group, it is clear that it lies in C(s").
If f'is represented by a power series > a,#*, ¢, has the effect of killing all terms
a,* such that n{k, whence

(@O = Zzo a1

When defining the Hilbert series of the covariant algebras, we use the grading in
the first component, i.e.,

H(Cy, 1) = 3z (dim, Cyp) 1™,

where C,=@®,20 Cime (it will later be seen that dim, C;,<<). The Hilbert
series. of I, and C, were studied in the 19th century, and it is well-known that they
are rational. Suppose M is a finite-dimensional, rational G-module with character y,,.

Write
w((§ 3-1)) = @

El+1_€—(l+1)

n(6) = 2i=o —'Fa

where the o, are non-negative integers, and only finitely many are non-zero.
The set of G-invariants of M is the set

We can write

MC = {meM; g-m = m for all geG},
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and we have

dimk MG = ao,
since RS=R, and R§=0 for d=1.

Writing
§l+1_£—(l+1)
¢—¢t

we see that a is the difference between the coefficients of 1 and &2 (or £€72) in y, (§)-
It is convenient to let

=gy e

[zle e~z

denote the “coefficient of 1"’ map (see [4]). In particular, we have

= [(1=E (8 = [(1-8) 1u(®) = 3 [ Q= E=EDu(©).

If we put £=¢', then
gH1_g-U+D  gin(I+1)x
E—E1 T sinx

whence
1 2r . .
@y = _;z-fo sin® x ype(e') dx.

Hence f is an integral in the usual sense. We will use f and the analytical counter-
part interchangeably.

Symmetric functions and symmetric groups

Here we will only give the most basic definitions, and we refer to Macdonald’s
book [17] for a full treatment of this very useful theory.

The symmetric group on n letters will be denoted by S, and the ring of sym-
metric functions in » variables Z[x, ..., x,]5> by 4,. By 4 we denote the ring of
symmetric functions in countably many variables (see {17] for the definition of A).
A Z-basis for 4 is wsually indexed by partitions A. The bases that will appear here
are: the monomial symmetric functions m;, the complete symmetric functions h,,
the elementary symmetric functions e;, and the Schur functions s;.

We denote the transition matrix between the bases s, and m, by K, and this
matrix is called the Kostka matrix. Its elements are also indexed by partitions,
K=(K,,), and K,, is the numbzr of tableaux of shape A and weight u. The transi-
tion matrices between the other bases can be found in [17], p. 56. There is an involu-
tion w on the ring A given by

wle) =h,.
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Its effect on the Schur functions is especially important; it is given by

w(s;) = Sues

where 1’ is the conjugate partition of A.

We denote by R, (not to be confused with Ry, the irreducible G-module of
dimension d+1; we still insist on using Macdonald’s notation) the Z-module of
generalized characters on §,, and we let

R= O R,.

n=?
The module R has a ring structure, where the multiplication is defined by the induc-
tion product: if fE€R,, g€ R,, then their induction product is
f-g =ind$"3 (f¥g).

The rings 4 and R are isomorphic, and the isomorphism is given by the charac-
teristic map ch: R—~A. The elements y* of R, defined by ch(y*)=s; (where
[A]=n) are the irreducible characters of S,. Then ™ is the trivial character, and
%" is the sign character. The involution w on A corresponds to multiplication by
¥ on R,, ie.,

="k

We let M* be the irreducible S,-module with character x*.

Gaussian polynomials

The Gaussian polynomials (or g-binomial coefficients) [:’] are defined by

n B ‘(1"q")(1—q”-‘)...(l-—q"—’“)
L] @= I-9(1—g%...(1—¢") .

=L

There are two generating functions:

n—~ { n _ n
th (1+4'0) = 2'=0 q1/2r(r 1 [1] (@,

Obviously

and

i (—g'n1 = ;0["+:—1](q)t’-
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The Gaussian polynomials are related to the symmetric functions by

-1y — g12r(r=D) n]
e(l,g,...q" N =gq [r ’
and

h gy =[],

as can be seen from the generating functions.
For more information on these polynomials, see [17], and [1] for more about
their use in invariant theory.

S-Algebras
Consider the free associative algebra

A=k{xy, 0, X)) = D Ap,
m=0

where 4,, is the subspace consisting of homogeneous polynomials of degree m.
The symmetric group S,, acts on 4,, by permutation of the factors.

A subalgebra or ideal may or may not be closed under this action, e.g.; the
subalgebra k({x,x,) is not closed, since it does not contain x,x;. Let us call a closed
subalgebra (or ideal) an S-subalgebra (S-ideal). Often we will simply write S-alge-
bra, when it is clear what the ‘“big” algebra is.

Let us also say that an S-subalgebra B of k{(xi, ..., x,) is finitely generated
as an S-subalgebra if there is a finite set {f;, ..., ;,} B such that B is the smallest
S-algebra containing {f},...,f;}- If B is finitely generated as S-algebra, it does
not have to be finitely generated as.an algebra. For more information on S-alge-
bras, see Koryukin’s paper [14]. We now concentrate on the tensor algebra T(R})=
k{ay, ..., az). By the definition of the G-action, it is clear that the actions of G and
the symmetric groups commute. Hence the invariant algebras I, are S-subalgebras,
and the I™:s are S,-modules. Furthermore, if we let the symmetric group S,
act only on the first factor in T™(R}) ®, R,, it is clear that the same holds for
C; and C,,..

Finally, let us note that I7* is the maximal trivial sub-S,,-module of I".
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The symbolic method

The symbolic method in the commutative classical invariant theory was devel-
oped by Aronhold, Clebsch, and Gordan in the 1860’s. In [24], Teranishi describes
a symbolic method for non-commutative invariants. Here we will develop the sym-
bolic method for non-commutative classical invariants, and also for non-commutative
classical covariants along the lines of Dieudonné—Carrell in [8]. Our description of
the method will show that there is not really any difference between the commutative
and the non-commutative cases..

1. The Method

Let V be the standard SL(n, k)-module with basis ey, ..., e,.

Definition. We define a multilinear function V"*--k, denoted by (x, ..., x,)—

[x, ..., x,] by
[x15 ..is x,] = det (fu),

where x;=27_, &;e;. We define a function (yy, ..., y)—[p1, ---» ya] from (V*)"
to k analogously. (These are sometimes called brackets.) Finally we define the
scalar product (x,y) of x and y, where x€V, yeV*, by (x,y)=y(x). This is a
function ¥VXV*-k. Clearly the bracket functions and the scalar product func-
tion are SL(n, k)-invariant. In fact, if g€GL(n, k), then, informally,

g [x1, ..oy x,] = (det @) [xy, ..y X,],
gy s ] = (det )7 py, ..y 3l
g- (%) = ()

One of the cornerstones of classical invariant theory is the

Fundamental Theorem. Let f: VPX(V*)¥—k be a multilinear form invariant
under SL(n, k). Then fis a linear combination of products of factors of the types
1) functions (xy, ..., X,)—>[xy, ..., x,] from V" to k,
ii) functions (yy; ..., y)—[»1, ..., ¥,] from (FV*)" to k,
i) functions (x, y)—(x,y) from VXV* to k.
For the proof, we refer to [8].
By the formula

(y1®"' ®ym)(xls ey xm) = <x1’ y1>"'<xm’ ym>’

x€V, y,€V*, we identify the tensor space T™ (V*')» with the.space of m-linear forms
on V. The with symmetric power S™(V*) then corresponds to the subspace con-
sisting of symmetric m-linear forms.
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We now restrict our attention to the classical case n=2. We have earlier
defined
Ry =SV,

Cdme = (TM(R:) ®k Re)G’
and
i:' = Ldmo-

If g¢T™(R}), then g is an m-linear form on R,. Let
@: TIWV*) -~ S'VY)
be the projection. Then we get an m-linear form ¢*g on T4(V'*) by

(0*8)(21, -5 20) = g(021, ... PZp).

If we only consider decomposable tensors z,=y;®...®yy, we get an md-linear
form w, on V'* by

wg(}’u’ cors Vids Vars <oy ,de) = ((p*g)(zli “evs Z,,,)-

If heR,, we interpret b as a symmetric e-linear form on V. Hence an element
=2 (g:®h) of T™"(RY)®, R, gives rise to a form

(O (V*)MJXVG - k,
and it is obvious that f is invariant under G if and only if w, is invariant. By the

fundamental theorem w, is a linear combination of products of factors [yy], (x, y).
The form w, is called the symbolic expression of f.

Now we must describe how to get the invariant f from its symbolic expression
;. This process is known as restitution. Denote for the moment the basis in V* by

ef=X, e =Y,
and write
Vi = i€t +1ijz€3.
Then
2 = Diak, .. ka2 Mitky - Nidka (€5, @ - BEL),

and the first step must be to replace every product ... 74, by one sole coeffi-
cient ny ., . If we write the elements of R, as

d

d
v] a, XY =31 ( a,er’ ™ e;”,

v

bl

and note that we are only interested in symmetric tensors z;, we see that the next
step is to replace Nk, .., by a;,, where v is the number of k;’s equal to 2. Let e, e,
be the basis in ¥ to which e}, e} is the dual basis. Write

x; = Ehe +ene,.
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In the expression for w;(y11, .-:s Yma» X15 ..., X,) We finally replace every product
&y, Cei, by X*~*Y*, where p is the number of i;’s equal to 2.

We can simplify the restitution process if we already from the beginning con-
sider symmetric tensors of the form

z;=90...0p

with d factors. Similarly, we note that instead of x,,...,x, we can con-
sider only one x, which appears e times in w,. By abuse of notation, we write
@ (Y15 s Ym» x) for

D (P15 oes V15 Vas voos Vs Xy 2eey X)

with each y; appearing d times and x appearing e times. Since each bracket [ ] and
(, ) contains two symbols (we call the x:s and y:s symbols), it is clear that md—e
must be even for any covariants to exist. Consequently, /"=0 if md is odd.

2. Some Examples

Example 1. Let fcI?. To get the symbolic expression for f we have to put
d y’s and d y,’s into %-2d=d brackets [] (there are no x:s involved here).
Since [y, y]=0, the only case we need consider is

@y = 1> J’2]d-
Hence

d . .
5 = (MuMae—Mela)’ = 2:=o (l] (— ' mir it ngs

and the restitution consists in replacing i 5}, by ay; and 773, ' by 4y, We

then obtain

d

i

d

i

]("‘ 1) ay; a5

[ Garmr (o) 5t

As an element of T2(R}),
d
r=35 (Y cvas-.
In particular, we have dim, I}=1.

Example 2. Let d be even, d=2q, and let fcI3. We obtain the symbolic
expression w, by putting d y,’s, d y,’s, and dyy’s into -3 .d=3q brackets [ ]. We
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need only consider the case

Wy = Dyl ysl?ya ya) =
= (11 Me2 —MzMo)? (M1 M3z — M12Msn)? (Mar az —Naa Na1)?
= (=1 37 k=0 ((f] (i]( )( DI g g = g gy T g T g,

In the restitution we replace ni; */ni}~/ by ay,,;-;, etc., whence

-j>

f= 2, 7, k=0 ( ] (3] [Z] (- 1)i+j+kaq+i—jaq—i+kaq+j-ka

as an element of T%(R). In particular, dim, I3=1 if d is even, and 0 if d is odd.

Example 3. To obtain w, when feI4*, we must put dy;’s, ...,d p4,,’s into
+ d(d+1) brackets. One possibility is
Wy = H1§i<j§d+1 [J’iJ"j] = H1§i<j§d+1 (a ﬂjz”'lizﬂjl),

which is the expansion of the Vandermonde determinant

d+1— j -1
det (nit1-7 nis )léi.j§d+1
whence

- — —~a(d -
Wp = Zoesy,, Seno)nif 10O g Mt ndtir o@D pgdEn -,
which restitutes to the standard polynomial

Sy = Zoesﬁl(sgn O')aa(n) 51y - Aoy *

In the last sum S,;.; acts on the set {0, 1, ...,d}. The invariants in the above ex-
amples are also discussed in [4], p. 207—208, and in [24], p. 9.

Example 4. Consider f¢Cy,. To obtain @, we must put dy,’s and d x’s into
d{,):s and + (1 .d—d)=0 brackets [ ]. Hence

Q= & 0t = (M litnaeé) = 2 (d] nianis LE L,

wherefore
f 2[0(][14 'ledz

L.e., the binary form itself. This element will play an important role later, and we
will denote it by 7 (this element appears in the commutative case too, see [21], p. 55).
In fact, we will show later that the covariant algebra C; in a certain sense is gen-
erated by 7y, a theorem that was proved by Gordan in the commutative case (see
[10], p. 48 and p. 110).
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Example 5. If feC\y,, then

@y = X Y% vay = (M &a+1128) Moy &y +1222)

= NN &+ (M Maa + Mo Na) €1 Ea+ Malaa &3
Thus

f=aX?+(aya,+a,a)) XY +alY?2.
Example 6. If fcC,,,, then

o = [p,yJ(x, y{x, o)
= (1§ M21 a2 — M1 MN1a n) &+ (11 n3e—1iani) & ée+ (M ania— N3at21722) &

and
f=(aa,—a,a) X*+(aya,— a,a)) XY +(a,a,— a,a3) Y 2.

Example 7. If feCyys, we get o, by putting 4y,:s, 4y,:s5, and 2 x:s into
2 (,):s, and §(4-2-2)=3 brackets [ ]. Hence
@y = [y172]%x, y){x, y2)
= (N1 M2 M3a— 3M1 12 i1 n3a + 31 32 nBa Mlee — Ma M2 €1
+ (i — 203 s Mo e + 210 o N Moo — etz G2

+ (1t mana— 3 nia i nda+ 3 niandy g — niendiNa) €2

which after restitution gives
Sf=(aya;—3a,a,+3a,a,—a,a,) Xt +(a,a,—2a, a,+2asa, —a,a)) XY
+(aya,—3a,a;+3a;a,—a,a,) Y%

One may note that the covariants in the last two examples abelianize to 0.

3. Two Remarks

As was noted earlier, the symmetric group S,, acts on C,,. by permutation
of the a;’s. Let o€S,, and f€Cy,,. It is clear that if

@, = [y ylP[y1y,]Pss...
then

Our = Yoy Vo) P2 Vo) Va@1Pe. .- -
Hence, if we consider S™(R}) as the subspace of symmetric tensors in T™(R}),
we see that the symbolic expressions for the elements of C,,, are precisely those
which are symmetric in‘the symbols y;.
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Let us finally record two identities which will be very useful later:
D) Dyad(x ) +[ranldx, yo) +1yey5l{x, 3y) = 0
i) Dyadyeysl +yeydlys v+ vl [y = 0.

The former is proved by direct computation, and then the latter follows by letting
&1y and &> —17y.

Some applications of the symbolic method
1. Some Results on the S-Algebra Structure of I; and Cy, d=1,2

Since G=SL(2, k) is reductive, it follows from [14] that the algebras [, and
C, are finitely generated as S-subalgebras of T(R}) and T(R})®, R, respectively.
In this section we are going to determine S-algebra generators of I, and C, for
d=1 and d=2, ie., (finitely many) invariants and covariants which together with
the ordinary algebra operations and permutations generate these algebras, and
thereby we will show the power of the symbolic method.

Proposition 1.1. [, is generated by a,a,—a,a, as an S-algebra.

Proof. Let feI™. For any invariants to exist, m must be even, m=2g, say.
To obtain the symbolic expression for f we must put one y;, ..., One y,, into
3+1.29=g brackets [ ]. One possibility is

@y = 62831829 ---[yzq-lyzq]s
and it is clear that all other possibilities are permutations of this one. Now
1 ye] = muntaa—matn,
which restitutes to a,a,—a,4,, whence w, restitutes to
f=(a,a,—a,a). Q.E.D.
Later we will prove more on the S-structure of I, (Proposition 2.1 below).

Proposition 1.2. C; is generated by a,a,—a,a, and y=a,X+a,Y as an
S-algebra.

Proof. Let f¢Cy,.. To obtain w, we must put one y;, ..., one y,, and e x’s
into 4 (m—e) brackets [] and e(,)’s. Hence m—e must be even, m—e=2g,
say. One possibility is

w_r = [.VIY2] A [ym—e—lym-e]<x, ym-e+1>“‘<x’ ym)’
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and this is obviously the only possibility modulo permutations. Noting that w,
restitutes to

(g, —aa)(a, X+a,Y)e,
the proposition is proved. Q.E.D.

Proposition 1.3. I, is generated by the noncommutative discriminant

4 = aya,—-2at+a,a,
and the standard polynomial

S3 = aoalaz—aoazal'*‘al 0200—01 aoa2+a2 aoal—agal ao
as an S-algebra.
Proposition 1.4. C, is generated by 4, s,
P =a,X*+2a, XY +a,Y?,
and
0 = (aga—ay,a0) X2+ (a,a,— 0,a)) XY +(a,a,~ 2, 4,) Y
as an S-algebra.

Before the proofs of these propositions, we need a lemma on symbolic ex-
pressions.

Lemma. Assume m=5. Let

@ =12l [y2ys] - V1 Yl (6 Y1)Xs Vs

@y = Yl s yal aysl - 1 Ymd (X ) (X5 Y
@z = (V3 YD1yl (Vi) - [Pme1 Ymd 6 Y1) (X5 V)
w3 = 1 Vsl [y a3l oo Vi1 Y (X0 20 (X5 Vs
@y = [y D1 sl 2 vsl - [Pme1 Y (%0 Y1) X5 V)
@5 = [V P [V sl Vs ¥sl o [Pme1 Y] (X0 92) X Y

s = [y P yad e ys] o Dme1 Yl %5 Y1) (s Yy
and
@ = (11721 ¥ ¥5) Vs 9 1Y) Vs Yl - [P o1 Y (%5 Y50 (X5 Ym)-
Then
20 = wy—wy + W3 — W5 — Wy + Wy — W4

Proof of the Lemma. All the symbolic expressions in the lemma contain a
common part, namely
Vs Vel .- [V -1 V(X5 Vs
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which we won’t write out in our computations below. We have
0+, — w3+ w;
= nyel - D yslx 2 + (01 Y2l 5y [Pa ys](x, ya) — s+ 005

= 1yl P 7 e ysl (2 vsl (s p0) + 01 721 %s ) — 03+ 05

= 1 Ye] 1 5] [Ps Yal [V 1%, p2) = 01 Pl (22 val (e s (%, y2) + 05
= P25l Ve ys)%s Py (1 72 s yal = 1 vs) 2 va]) + 05

==yl yad Ve yal (Y1 ys] <x, J’2> +HnyaP[yeyal s ysl (x, J’2>

= [y [yaysl{x, v ( =1yl [Yays)+ vl lys J’5])

VAV SAIS RIS AR

Here we have repeatedly used the identities on p. 140. With the same technique we
can prove that
-+ Wy — Wy + Wg
= 1yl eyl 2 ys] [y ys1<x, -

Hence
20+ w; — 03+ 05+ Wy — 04+ W4

= P12 2yl s ya) (71 51 {x, Yoy —[¥2 ys1 <%, y1))
= [yl 2 ys] s y4] [)"1)’4]<x, J’5> = Wy Q.E.D.

If we replace (x, p1){X, Ym) in @ by [y1V,),. (% 5) (X, Yy in @y by [yayal, ete.,
we get some new symbolic expressions, and the same computations as above show
that the same relation holds between these new expressions. Later when we have
introduced transvectants, this will be clear without any computations.

Proof of Prop. 1.3. The symbolic expressions for 4 and s; are

w4 = [Ny’
and

g, = [P1 ] [y2ys] 1 ¥s]-

Let A be the algebra generated by A and a, and operations with the symmetric
groups. We will first prove that I"C 4 for m=2, 3, 4.

m=2, The only possibility is w,.

m=3., The only possibility is o, -

m=4. Modulo permutations there are the possibilities

o, = [Ny [yaya]s and  wy = [y el [¥e ¥l s yal [¥1 y4l-
Clearly w,€A4. Since

B ARNIZS A ARSI AN
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we. have
2 [ 1:0[yeysl Vs yal [174]

=[n y:s]‘2 B2 A S RS A LS BB AR S iR

whence w,€4, and IS A. We are going to prove that IS4 with induction
over m. Suppose then that I¥*C A for k<m. Let us call a symbolic expression
of the type

ayiullys, Vigl .-+ [J’i,-l}’i,] Dayil

a cycle. If ocI can be written as a product of two or more non-trivial cycles,
then we are finished. Otherwise w equals

12l aysl o [Yim—1Vm] V1 V]

or a permutation of this cycle (here we may suppose that m=35). But by the remark
following the lemma we can write @ as a linear combination of «y, ..., wg. Now
oy, ..., Wg contain squares, and @, is a product of two cycles. By the induction
hypothesis, wc 4, and I"SA. Q.E.D.

Proof of Prop. 1.4. The symbolic expressions are

w4 = [ny)% Dy = 12212 ysl 0 yals
0, = (X, pp%  and @5 = [P pa] 06 (X, ve)-

Let A be the algebra generated by these elements and operations with the symmetric
groups. We will prove with induction over m that Come EA4 for all m and e.

If m=1, then the only possibility is y, and if m=2, then the only possibilities
are 4, 8, and y2. Suppose that Cy,SA for k<m, and let f¢C,,, for some e.
We may suppose that w, contains at least one scalar product {,), for otherwise
fis an element of I,, and this is generated by 4 and s,. We may also suppose that
o, doesn’t contain any squares [ ]2, {, )2, for then we are finished by the induction

hypothesis. Thus w, must be a product of cycles

iyl lyeysl .o k-1 md(x, Y1){%5 Vi)

and permutations of such cycles. If w, is a non-trivial product, then f€4 by induc-
tion. Otherwise k'equals m and

o = [yal . Wm 1 Yud 36 Y105 Yy

or a permutation of this cycle. By the lemma, then, w, is a linear combination of
@y ...y Wg. Since @y, ..., wg contain squares, and w, is a product of one element
of I, and one element of some C,,,, with m’<m, we must have Cp,E4. Q.E.D.

Thus it seems to be much more difficult to find explicit S-algebra generators
of I, and € than to find algebra generators of their commutative counterparts.
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This is at least partially due to the fact that the Hilbert series H(,, ) and H(C,, 1)
seem to give little or no direct information on the degrees of the generators (see
[4] and the last chapter below for some information on these Hilbert series).

2. More on the Structure of the Algebra I,

As has been noted earlier, the space of invariants /32 has an S,,-module struc-
ture, where S, acts by permuting the factors. We denote the irreducible S, -module
corresponding to the partition 4 of 2g by M*.

Proposition 2.1. As S, -modules, [2=M@?,

Proof. Let T be the tableau

2g—1
214)...] 2¢q

corresponding to the partition (g, q) of 2. Let further Cy(Ry) be the subgroup
of S, stabilizing the columns (the rows) of T. Then

(aga,—a,a,)? = er ((ao al)q))
where
er = 2 xcc, (sgn R)MQEK[S,).
e€Rp
Hence
112‘1 =k [Su] er((ao a1)q)-

We have an S, -morphism
k [qu] ér > I e

o — d(aya,)%),

which obviously is non-zero. Now ey is a primitive idempotent of k[S,,] corre-
sponding to projection onto the irreducible module M@ ? (see [11]). Thus the above
morphism is injective, and since it obviously is surjective, it is an isomorphism
of Sp,-modules. Hence [¥=<k[S,Jer=M@9, QE.D.

1 29
Corollary 2.2. dim, I?1= ( )
k4] q+l q

Proof. By [17), Ch.1, § 7 and § 6, Ex. 4, we have

dimk M(q' 9 =K(q‘q)’ (llt) = (2q) !/h ((q, q)),
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where k(1) is the product of the hook lengths of the partition A. Since

h((g. 9)) = (g+1)g(g—1)...2-g(g—1)...1

=(g+1(g"%
the corollary is proved. Q.E.D.

Hence, by a combinatorial coincidence (?), the dimensions of the invariant
spaces I equal the Catalan numbers. From [7], p. 53, it follows that

H({, 0= -5117(1 -y1-48).

This is also proved in [4] by other methods.

3. Gordan’s Theorem in the Noncommutative Case

Gordan, The King of Invariants, proved that the commutative algebra C,
can be generated by the element y (see above, p. 138) and a certain kind of mappings
CyXCy—~C,; called transvectants (Uberschiebungen in German). We are here going
to extend this theorem to the noncommutative case. It is easy to see that Gordan’s
own proof in [10] immediately carries over to our situation, wherefore the exposi-
tion here will be rather sketchy.

Before we begin proving the theorem, let us note that the symbolic expressions
have ““a life of their own”, we can manipulate such expressions whether or not
they can be interpreted as invariants or covariants.

First we will introduce the notion of polars ([10], § 2). Let

@ = {x, yy)™..{x, Y™
be a symbolic expression without brackets [ ]. Introduce a set of new symbols

Y1 -5 ylmp Yats -« J’2m,, erty yrm,

and define
@ = (X, P11+ {Xs Vimy)---{Xs Ve, )-
Let further » be a non-negative integer =m,+...+m,, and let x’ be a new variable.

Replace x in @ by x” in all possible ways and add the resulting symbolic expressions
(which now contain the symbol x’). Divide by the number of terms

m+...+m,
n

and finally replace yy, ..., Yim, DY V15 -os Vo1s <os Ypm, DY ¥,. The resulting symbolic
expression is denoted by w.», and is called the n’th x’-polar of w. If n>m;+...+m,,
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we define w,»=0. Note that if we replace x” by x in the nth x’-polar we recover w
(f n=m;+...+m,, of course). The definition seems complicated, but a few ex-
amples will make everything clear,

Example 1. If o=(x,y)", and n=r, then
e = (X, Y (x, ) "
Example 2. If o={x, y;)*(x,y,)%, then

s = 35 (B, Y)P(X%s Ya) (%, P2 +9(x" Y)2{x, Y {X's YoyXx, ¥a)

+34%7, yu (% y2X, p2)Y).

When o contains brackets [ ], we consider these as constants when we compute
polars, e.g., if w=[y;y,]{x, y,)% then

0.t = [y Y], y1)2x, Yo

Let us call n the order of the polar w,~.

Example 3. If @ is as in Example 2, then
@5n = (X' P16, YK 5 92 (X, Vo)
= T PPy (3=, ) e, i) (s ) 1)
+75 (5, 30 (%, y02 X Py — (s 112 (%, ) (X (X, )
= 5O PR 22y (5 vy (s i) (s y2) = (6, 1) X, )
+5 O ) ey X, w2 (Ce p (X, pa) = (XL Y1) (X p2))
= =5 D1yal{x, p)*, po)(x, po) [xx]
+3 D12l (X 3 (% p) (s p2)?Ixx']
= 5 [1ydx, y) (&, pad (= (7 3 (%, o)+ (%, y) (X5 ya)) [xx)
= 3 )5, y) s pylxx P,
where we have used the identity

Gy Y'Y= pY(x, ¥y = [y 1[xx7].
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Hence
<x,’ y1>2 <x’ J’1> <x,’ .V2>2 <xr YZ>
= Wy ——;' 122l y (X, o [Xx1?
= 00— (0 ) [P,

where @’ =[y, ps]* (X, p1){x, y2)-
This ecan be generalized:-

Lemma (see [10], p. 27). Let t be a term in the n’th x’-polar of the symbolic
expression w. Then we can write

t= 21 o Crlw) k[xx]*
where o, are new symbolic expressions and w,=w.
Sketch of proof. If w={x,y,)™...{x,y,)™, then a typical term in w.n is

t = (x, y)" X p ) (6 p ) T
where ky+...+k,=n. From the identity

6 Y, Y )= p)x, ) = vy T[xx],
it follows, if we add and subtract sufficiently many new terms, that the difference
between ¢ and another term in the polar w,~ contains a factor [xx’]. The other
factor is a term in a polar of order less than n of some symbolic expression. Now
induction on » completes the proof. Q.E.D.

Remark. In Gordan’s book on invariant theory [10], the “symbols” y,, y,, ...
are denoted by a,b, ..., and instead of (x,y), etc., Gordan writes a,, etc. The
brackets [y, y,] are written (ab).

Next suppose that we have two symbolic expressions

Wy = (x, J’1>m‘~-~<x: V)"

Wy = {x, z)"M...{x, 2,)">.

As before, introduce new symbols

Y115 <oes y1m1’ sees yrm,.9 2115 -eos zlnp AR ] anp’

and put
@y = <x9 }’11>-~-<x, yrm,.>’

d’)z = <x, le>-..<x, Zp"l?>'

Let 2 be a non-negative integer less than or equal to m=m+...+m, and
n=n+..+n,. Take yi, .., i€ {Vus s Vom b 215 > 24€ {2015 ""ZP"p} and form
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the new symbolic expression
[yizi] oo [yl'lzl'll ]Iyu;éy:‘ <x’ yl,l> qu;éz;‘ <x, Zl'j)’

Add all such expressions for all possible choices of y;, z;. Finally replace y,; by y;
for all j and z;; by z for all j and divide by the number of terms (';:] (Z] . The

resulting symbolic expression is called the K th transvectant of w, and w, and is
denoted by 1,(w,, w,).

If h>min (m, n), we let 1,(w,;, w,)=0.

As was the case with the polars, this definition seems complicated, and we
give a few examples to make things clear.

Example 4.
(e 0 €%, p)) = Dyl (e, " (x, yte ™, if b = min (ky, k).
In particular, , ((x, ol (x, .V2>h) =[yyl"
Example 5.
72(x, Y2 (%, po)s (X, Yt = % (B yal2{x, iy {x, Yoy + 3yl [y251{x, y1)?)

Example 6.
T1(<X, Y1) (X5 Po)s (X5 V) (Xs Y4>)

= % ([yl.}’3] (%, Yoy % Yoy + 1 7al %, ) (%, Pa)+ 2 9] (x5 1) (%5 Vo)
+yeyad{x, yi)(x, J’s))-

We consider the brackets [ ] as constants when we compute transvectants,

So far the transvectants are just formal functions on symbolic expressions.
Let fand g be elements of the algebra ;. Then 7,(w 1> @) is a symbolic expression,
which restitutes to a new element of C;. We denote this new covariant by 7,(f; g),
by a slight abuse of notation. Hence we have a method to generate new covariants.

Example 7. We proved above that the algebra C, is generated by the elements
¥, 0, 4, and s; as S-algebra, where

, = x, y0)%
o; = [y1y]{x, y){x, Va)s
wy = [y1ya]%

and
o5, = Nyl yal 225l
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We have
Tl(wy’ wy) = U’x}’z](xs y1><x9 yl.]’

fz(wy, wy) = [yl y2]2’
and

73(w,, @5) = [yl (1 Yl e ysls
wherefore 6=1,(7,7), 4=1,(y,7), and s,=1,(y, d).

It is clear from the definitions of polars and transvectants that there is a rela-
tionship between them. To see this more clearly, let @ be a symbolic expression
and form o, n. Replace x; by z, and x; by —z;, where z is a new symbol. Then
(*’ y) becomes [yz] and [xx’] becomes —(x, z), whence w,~ becomes t,(w, (x, z)*)
and (w.n)-[xx']* becomes =+rt,(w, (x, 2)**").

Example 7. If w={x, y,)*{x, y.)%, then

Wyt = 35 (3% Pi)C, 2)2Cx 2P +9(x )X p1)(x, P2 (X, D)

+3 <x9 .V1>3 <xs y2> <x’9 Y2>2)-
The substitution x[—>z,, xg—>—z, gives the expression

'11? (3 &, y) 2l{x, y2)*+9(x, yi)2nzl(x, y2)*[y22]
+3(x, Y1) (x, o) [y2]?),
which equals 7,({x, ¥, (x, yo)3, {x, 2)%).

Suppose y is a symbol in a symbolic expression w. Substitute y,~+xj, ys——X;.
Then w is transformed into 7.[xx’]*, where ¢ is a symbolic expression not con-
taining the factor [xx’] (but which might very well contain the symbol x’). This ¢
is a term in an x’-polar of some order of some symbolic expression w’. By the lemma
on terms in a polar, we can write

t = @it (w)gn-1[xx ]+ ... + (@) [xx']",
where o, does not contain the symbol x’.
Substituting back, we get
o =x1,(0, (x, p)"F) o1 (@, (x, pY ) £ 2 1o(0], (X, P)MHE),
where ', o}, ..., ®, do not contain the symbol y. With induction over the number
of symbols, we get the analogue of Gordan’s theorem in the noncommutative case:

Theorem 3.1. The algebra of noncommutative covariants C; is generated by
y€Ch4 and the transvectants 1.

Remark. One can define the transvectants by using the Clebsch—Gordan iso-
morphism
Ri@ R, = Ry1®Ryye-2®... O Ry
also. See [21], p. 57.
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4. An Algebra Structure on @ =0 T"(R}) and @g=0 I

The fundamental idea of the symbolic method is to treat the elements of the
tensor power T™(R}) as multilinear forms on R,. Here we will exploit this idea in
a slightly different direction.

Let f be an element of T™(R}), and let y,,...,y, be elements of V¥, ie.,

Yi=n,X+n,Y.

Then y{€R,, and fis determined by its values on elements of this type. This fol-
lows from the following

Lemma. Let I: R~k be a linear form, and suppose that I( y)=0 for all
yEV*. Then [=0.

Proof. Let ay, ..., a; be different elements of k. Then
d .
{(X+aY))= Z‘;=o (]) all(X¢-iYH) =0

for all i. But this is a system of linear equations in the unknown /(X d-iyJ), whose
determinant is det (a]), hence is non-zero. Q.E.D.
Now let fi¢ T’”(Rji), i=1,2, and put
(Si*f)O0H %, syt = [04% VD LOA, o Vi)
Define x‘;v_“',‘meT"'(Rj), 0=k;=d, by

d . d -
le.....k,,. [2. an (1] X4=iyi L, DG [z] Xd_'Y'] = g1
Then we get
O ok, ¥ X2 YT, Lyt

= Xz:,...,km (yi‘, LERYY )’:.') x‘li:....,lm (yg’, ceey y:’n’)
4 d, d-i i d, d —ivyi d i dl 4, —iyi
= X"l"~-'km(2i=o M1 e ; X47YS L, 2i=o Hm ~ Nme i X4y

—i i (d. - d. —ivi
'X;’:-...,l,,. [Z:"’:o ’7‘111 m (iz) X&Y't L, Z:;o ’7:-’1 i']fnz ( ig) X Y]

=k di—k, k. dg=1, 1 dp=1, 1
=M1 ‘MeeNm " Nmz i Al My, T AmE
o dirdy— (kL) Ryl dy+dy— (K +1,) Kk, +!]
= T e et T M g

_ dytdy d,+d, dy+d
= Yhgt by okt l, (V1 % eees Yt
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Here 0=k;=d, and 0=/,=d,. Hence we have proved that

dy dy _ Aitds
Ky ook ¥ Xty oyl = Xk by, ekl e

(Of course, this relation can also be taken as the definition of #.)

This shows that f; x f,€ T™ (R} , ;). Obviously % is commutative and associative,
so we have found a commutative algebra structure on @g=¢ TT(R}). We will
denote this algebra by 4,,.

It is graded, and by the relation above, it is generated by elements of degree 1,
i.e., by the elements in T™(R}). It is clear that G=SL(2, k) acts as a group of
homogeneous algebra automorphisms on 4,,. Hence * defines a commutative,
graded algebra structure on A%= @ =0 I, too.

In fact, the multiplication * looks very attractive on AS: let ﬁei,;':, i=1,2.
The symbolic expression Wy, for f; consists of % md; brackets [ ], filled with
d; y1:8, ..., d; yu:5, and we have wfi:fi(yg" ..., ¥%). Hence , ,, is obtained just
by writing Wy, and o, beside each other. For instance, if

D = [)ﬁh]diéigl
then

a)fl*f: = [)’1)’2]d‘+d’ Eidzl+dz.
Since 4,, is finitely generated, and G is reductive, the algebra of invariants 45 is

also finitely generated. Furthermore, the Hilbert series H(AZ,t) is rational. In
fact, it can be computed explicitly:

1
G — —_—
H(45,) = 1=
and if m=3, then

(3 1) = 57 Zozs<amm (1) C D Gumss )0
where ¢ is the Reynolds operator (see the introduction), and h,,(t)=(/(1—r2))"~*.
For a proof, see p. 167 below.
Example 1. The algebra 4, is generated by x3 o, %9,1> 71,0» a0d x3,;, whence
A, = k([x,y, z, u]/(xu—yz).

In symbolic notation the elements of the T2(R}):s can be written as [y, y.% and
so AS is generated by

1yl = x6,1—11,0-
As is proved in [24], the Hilbert series of AS has the form g, (#)/(1—¢%)™-%, where

g,(1) is a polynomial. One might ask if this means that A is generated by elements
of degree at most two. It seems to be rather difficult to prove or disprove this. The
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problem amounts to showing that a tableau of shape ((5md)?) and weight (d™)
can be written as the union (with the obvious definition of this concept) of tableaux
of shape ((3 m))%, weight (1™) (if m is even), and tableaux of shape (m?), weight (2™).
To see that this is equivalent to our problem, just identify [y; y;1(y;, y;)s oees
written so that i;<j, forallk, and i,=i,=..., j;=j,=..., with the tableau

b

N2

(see also [25]; there the symbolic expressions are written as tableaux).
Proposition 4.1. A,, is an integral domain.
Proof. Suppose that f;=0, but that f; *f,=0. This means that
L oo PRV o0 s YAE) =0
for all y,cV*. But
D15 veos Ym) == 1O s VR

is a polynomial function on V*@...@V* (m terms), whence the set of points
(P15 ---» Ym) such that f(»D,...,p%)=0 is a Zariski-open subset, hence itis a
dense subset. This implies that f,(y%, ..., y%) is zero on a dense subset, and so
f.=0. Q.E.D.

Proposition 4.2. The quotient field of AS has transcendence degree m—2 over k

(if m=3).

Proof. The transcendence degree equals the order of the pole 7=1 of H(AS,1).
Expand h,,(t) in a Laurent series about r=1:

(YT 8w A~ im-3)
bl = [TZTJ = oyt a—gee T

where
Aomegy = I:izl;l(l —m2h () =23, etc.
Hence

(m_z‘ ')m—s .Q—(m=2)
(Om-tj () = =G+

If m is odd this immediately gives

lim (1= " =*H(AZ, 1) = 22" Sowsarom () (- 17 (m =27,
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If m is even the pole #=—1 of h,(¢) leads to the pole t=1 of (¢,,2;1,)(¢). Hence

lim (1— =2 H (4G, ) = 2-2®D Sou;_pm ('}’) (= DF*Hm =22

By [21), p. 63, this is non-zero. Q.E.D.

Remark. This looks very much like the situation when one considers H(l,, t).
See [22].

5. The Cayley—Sylvester Theorem

In the commutative case, the Cayley—Sylvester thecrem states that
dimy, Cyne = 4 (3 (md—e), m, d)— 4 (5 (md—e)~1,m, d),

where A(a, b, ¢) is the number of partitions of a into b non-negative parts of size
=c. For a proof, see [21], Exercise 3.3.6 (1).
If we let A(a, b, ¢) denote the number of ordered partitions of a into b parts
of size =¢, then Brion ([5]) has proved that
dim, I = A(3 md, m, d)~ 4 (3 md—1,m,d).

Furthermore, Teranishi has proved ([24], p. 6) that dim, I also equals the number
of tableaux of shape ((§ md)?) and weight (@™, i..,

dim, I = K mymayny, @
where K is the Kostka matrix.
Here we will generalize these results to .. Let us first note that (g 2— l]
has the trace {'+E-'24. 4 & =h(¢ E7Y) on R,, where h denote the complete

symmetric functions. Hence the trace of (g 2— 1] on T™(R})®, R, is

hd(&a €~1)mhe(é’ é—l) = h(d"‘,e)(c’ é-l)’

where (d™, €) should be read (e,d™) if e>d. We also note that if A=(4;, 1) is
a partition, then

§;(€, &Y = (Ehhatlg-(a-had Dyg g1y,
and s5;(¢, £E~H)=0 if I(1)>2.
Proposition 5.1. As G-modules,

T™(R)® R, = & Ry,

=0
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where
o = K(l/z(md+e+l),1/2(md+e—l)),(d"‘,e)’

which should be interpreted as zero if % (md+e+1)4Z.
Proof. By the general representation theory of G, we can write
+1_g-(4D)
¢—¢t

for some non-negative integers ;. By the theory of symmetric functions, we have

ham (& E7Y) = Zizo

h(d"‘ e)(&aé ) - Z])]—md+eK) @m, e)').(é é )

(A)=2
Comparing these two expressions, the proposition is proved. Q.E.D.
Proposition 5.2,
dimy, Cyme = K/ mat ey, @mey = 4 (3 (md-+e), m, d)— 4 (3 (md—e)—1,m, d).

Proof. The first equality follows by taking /=0 in the foregoing proposition.
To prove the second we note that «y=dim, C,,,. is the difference between the coeffi-
cients of 1 and &2 in

Dzo (&I HET I L+ 8,
hence the difference between the coefficients of 1 and &2 in
(f d+ +f")m(f el .. +ée) — (2 2; o f(d 2i)+ .- +(d—-2i )) (5 el .. +£e)

In the first factor the coefficient of &/ equals the number of m-tuples (i, ..., 7,)
such that 0=i;, ...,i,=d and i,+...+i,=+ (md—j), whence

E Y480 = 3 A (S (md—j), m, d) Eiren,
This shows that
oy = 2:=01‘T(%(md+e)—i, m, d)—3°_, /‘f(% (md+e)—i—1,m, d)
= A(3(md+e),m, d)— A (% (md—e)—1,m, d). QED.

=0 °

The method of proof is taken from [4], p. 206.
Proposition 5.3. A k-basis for C,,. is symbolically given by

[yilyh] e [yillz(md—e) yfx/z(md—-)] <x’ yil/z(md~c)+l> eer <x’ yi:/z(md+e)>’

where i\=i,=..., i=j,=..., and i,<j, for k=1, ..., (md—e).
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Proof. Let us order the set of monomials a,a, ...a, of degree m lexicog-

graphically, i.e.,

Ym

Ay, -o- Gy, < av;...av:,,
if and only if the first index that separates the two monomials is less in a,, ... than
in ay.... Let B(k) be the number of j"s in the element in the proposition equal to k.
Then it is easy to see that the least monomial appearing in the expansion of this
element is

Q1) Bp(2) -+ p(m)
(it appears multiplied by x{). Hence different such elements have different least

terms, wherefore they must be linearly independent. If we identify these elemernts
with the tableaux

Ol | | fyama-ey | Brrama-o+1] -+ /2(md+ e)

f1 Jaf e jl/Z(md—e) m+1 m+1

we see that their number is precisely

K((1/2(md+e))=).(d'”.e) = dim, Cdmz’ QED

Remark. For e=0 this is a theorem by Teranishi ([24], p. 8).

The structure of /" as an S,,-module

As was noted in the introduction, the tensor space T™(R}) carries the structure
of a module over the symmetric group S,,, which acts by permutations of the factors.
This action commutes with the action of G=SL(2, k), whence the subspace of
G-invariants I™ is also an S,,-module. Here again it is more natural to consider
the object @, I™ than to study the algebra @, I", since the spaces IJ' for dif-
ferent m are modules over different symmetric groups. Hence we are led to study
a formal power series

Sa=o I Y€ R[[1]

where I is the S,,-character of I7" (the ring R was introduced in the introduction).
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1. The Decomposition of T™(R}) into Irreducible S,,-Modules

We let A=k[S,] be the group algebra.
Definition. For p=(ug, 1y, ..., ) N4*1, we let

I = po+p+...+ tas

analogously to the definition for partitions.
If |ul=m, we let

a, = ajeafr...afedcT™(RY).
If P is a finite-dimensional S,,-module, let

P= & Mph)

{Al=m

be its isotypic decomposition, i.e., Mp(4) is the sum of the submodules of P iso-
morphic to the irreducible module M* (see the introduction).

If pucN%*l, then we can rearrange the components of u to get a partition.
We denote this partition by f(u).

Since a, is an element of T™(R}), it generates a sub-S,,-module of T™(R}),
namely Aa,. We let its isotypic decomposition be

da, = 6? M, (2)
for the sake of simplicity.

Lemma 1.1. 4a,xindj~(l;)), where S,=S,X...XS,,, and 15 Iis the trivial
character on S, .

Proof . Obviously a, generates the trivial S,-module. Let ay, ..., 0, be a set
of representatives for S,,/S,. Then

ind?:(ls“) = Is, Rurs, 1k [Sal
is spanned by {a,®0;}. We have a surjection
ind§~(1s,) ~ 4a,
a,0,+0;4,:
Since dim, (ind§~(1s))=m!/ue! p!... ! =dim, Aa,, thelemma is proved. Q.E.D.

It now follows from [17], § 7, that if n(u) is the S,-character of Aa,, then
ch (n(w)=hy(,. But

hpgy = Z 2K pwasa = 21 KapuSa
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(here K’ denotes the transpose of the Kostka matrix X), whence
Aa, 2= @ (M*)Kasuo
A
as S,,-modules. Now let v be a partition of m with length =d+1. Then we let ¢, be
the number of p€ N4+ such that f(u)=v. It is easily seen that ¢,=(d+1)!/ [T;zo mi(v),

where m;(v) is the number of i’s in v (and m,(v)=d+1—1(v)). We can now de-
scribe the decomposition of T™(R}):

Proposition 1.2. T™(R})2 @ |zj=m (M*)2>%2+, where v runs through all parti-
tions of m of length =d+ 1.

Proof. Let the character of T™(R}) be 5. Then

n=2un
where p€ N%*! and |u|=m. Thus

ch(n) = Zuch(n(w) = Sy by = Zeuhy

where v runs through all partitions of m of length =d+1. Hence

ch(n) = Z).,v c,K;, s Q.E.D.

Lemma 1.3. In the decomposition
T"'(R:) = Vj.é MT"‘(R:)()‘)

the isotypic components Mm% (1) are sub-G-modules of T™(R3).

The proof is obvious.

Consider the binary form 3 g; (d] X4-'yl. Take g=(g 2—-1) in G. We have

i
o-(za(f) 1) = za(?) @ 1rGry

d) @—i) yd—igiyi (d) d+20 yd—iyi
= . —é—i t = P - Y .
24 [ JETEIXEY = e || X
Hence ag;—~{%*¥q,. If now ¢a,€ Aa, CT™(R}), then
g-(0a,) = a(g- a,) = g(E -t (—d+ Dt +dny a,) = (X (-4+m(ga,).

The character of M,(2) as a T-module (where T is the subgroup of G consisting
of all diagonal matrices; note that M,(2) is not a sub-G-module) is therefore

(dim, M, (2)) EE-a+20m = (dim, M,) 3, Ky E5 @200,
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Summing over u, we get the character of Mm% (%) as a G-module:
(dimy M?) 3, K, gy €2 44200 = (dimy, M*) K, (3 pny 2 CA+20m)
= (dlmle) Zv K}.v mv(cd, 54—2’ R ] 6—4)9

where in the first sum p¢NY*!, |u/=m, and in the second v is a partition of m
of length =d+ 1. In the third sum, v runs over all partitions of m (if Iv)=d+1, we
let my(&, ..., H=m,(&, ..., &% 0,...,0) with /(v)—d—1 zeros (and this is
zero)).

But now K is the transition matrix M (s, m), by definition, whence

Zv Klv m, = S8;.
Denote the G-character of Mm% (4) by x4 .(4). Summing up, we have proved:

Theorem 1.4. In the isotypic decomposition of T™(R}) as S,-module,

Tm(R:) = “F‘é Mrm(R:) (/1),

the isotypic components Mrmg%(%) are sub-G-modules with characters
Ya,m(A)(&) = (dimy M*) s, (&%, 8473, ..., £79).
Remark. By [17], p. 62, dim, M*=K 2am- Thus
Ziaf=m XamONE) = 21Ky amy 528 s &8 = ham (&, .., €79
= (&, ., EY)" = (P4 T

This is a complicated way to see that 7™(R}) has the character (x,;(i))” -as a
G-module.

Corollary 1.5. The character of S™(RY) as a G-module is h,(&, ..., E79).

Proof. The space S™(Rj;) consists of the symmetric tensors in 7™(Rj7), ie.,
S™(R})=T™(R})’. Now the trivial S,,-module corresponds to the partition (m),
so the G-character of S™(R}) is $u(&%, ..o EY)=hy (&, ..., E9). Q.E.D.

Corollary 1.6. The character of the antisymmetric part A™(R}) of T™(R}) as a
G-module is e, (&, ..., E79).

Proof. The antisymmetric par A™(R})=Mrm&%((1™)) corresponds to the sign
character of §,,, hence its G-character is sgm (&, ..., ™) =€ (&% .., &9, Q.E.D.
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2. The Decomposition of I™

We are now ready to describe the decomposition of the invariant space [T into
irreducible S,,-modules.
Let I" be the S,,-character of /7. Then

I = 3 \21=m a:(d, m) 3%,
where y* are the irreducible S,,-characters, and the coefficients can be written
a(d,m) = [(1-E9s5,(&, ..., &9,
since (dim, M*)s, (&%, ..., =% is the G-character of Mymz%(%). Now this integral

is not easy to evaluate directly. Instead we are going to study a formal power series

Za=o I P R[]
First a

Definition. If p=(u, pty, ..., 4,)EN", we put
lul = 2w, and n() =3 (-Du,

as for partitions.
Let us also say that pPcu® if p®P=u® for all i. In this case we define a
“generalized binomial coefficient”:

() - s ()

- izl .

uo =

When 4 is a partition, and pc4’, but not necessarily a partition, let

1—rx2

I j=a (1= 2)

2B +n(e))

f)fu (t) =

Theorem 2.1. We have
A v
Da=o I8 = S iam | Zia=m KV Zlu(':ZEIIZ) (#) (= D" (@mozy [£0) (t)] b4
si<@/2)ym

where {y*; [vl=m} are the irreducible characters on S,,. Hence the coefficient of ¥
is a rational function.

Proof. We will compute in the ring of symmetric functions A, i.e., we will
apply the characteristic map. By [17], Ch. 1, § 4, we have

Zazo h(T) = Fymo Spajem [ (1=E)53(8% .., E D53 () 8
= Zazo Ziat=m [ A=V B, .., Y m, () £,

where y is a new set of polynomial variables.
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Furthermore,

hl(éda Tety é_‘)
= -l iz ha (1, 8 .., &) = E‘llldﬂiglld‘j{tli] (<)

(I —52“'“‘1))(1 —fz("“’:‘l) (1 _{2(d+1))
(1-¢9(1—=¢Y...(1 =&

= &~ 14 Iiz1

In this product, the factor
(1 _ 52(d+ 1))
(1-¢3

appears as many times as there are ;s greater than or equal to 1, i.e., A] times, and
the factor
(- éz(u-z))

appears as many times as there are 1js =2, ie., A; times, etc., wherefore
hl(éds eroy é_d)
1 —£2d+D V4 g+ -+ \Y
] = lj= (———_]

=€-MIJHJ§1[_T:__62J_ é'l—é—j

= H-’51 (S g-j)—l; H}El 22“0 [li;) (-~ é(dﬂ)“; —2u)

= ngl(é]"f—j)—l; Zoé“jé;" (ll] (ll] (= Dprtpat gLy @+ -2

forallj, 1)\

=21 (51_5—1)“’1 2ucw (i,) (— 1)I#l EUE+D AR =2 uD+n(A) ~20()

where in the last sum g does not have to be a partition, just a sequence of integers.
Summing the geometric series, we get

PIFY Y (A &

\ §|l[—2|ul+n(l')—2n(n)

’ i
= [ E =N S [#) (= IR

Instead of summing over u, we sum over A’—p (the set-theoretic difference), and
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obtain

Zazo h;.(fd, vers ﬁ—d)ld

~ [AL+2 ] - 2(4) + 2n(x)

= A ()i =11 _62")-‘; DAY ();4) (= D= C 1— 144204

= Mies -85 Zpen (1) o0 S
= Jjz=1 HCA u ﬁu(_g(“[ 1
Hence

Sazo ch(IM

1 —_ eZix

=1 ( 1— ezijx);.;

A +2n(p)x

A’
Zuck (ﬂ) (D" =y 9%

=2|Zl=m m;l(y) fz"

Now let 7 be a real variable with O<¢<1, put z=¢€", and integrate around the
unit circle C:

Za=o0 ch(IJ™) #

ZIA+2n(w) -1

Zucw [H](_ )i PRy dz.

_ m;(y)
"lel=m 217”' fc II (1 221)).

Write, for the sake of simplicity, e,=exp (2ni/n). The integrand above has the
following poles in the unit disc:

Bhay-ape OH-20, 1 == (2] ~2]ul, u] < 54,
and the residue theorem gives

Dazoch(IM ¥

= Zli.l mmi.(y)z'uc ’ {(};‘)(— 1)‘“)(

laf=<1/214]

lell—2]ul (l—em 2el ik 27 /(AL — 2114
I =1 (=&} gy, /4 W) (14) —2)ul)

By the definition of the Reynolds operator, this equals

/(1A — k (2 Al —~2{a])
1241 2“‘“)£fﬂ‘i‘§|ﬁ’i“‘” £@Ua|+2n(u))/ (4] —2{a] ]

2/

Zial=m M:(¥) Zucl' ( ] (— 1w (Pm-2)4 fiE) (@)
{ul<(if2)m \H

If we take 1~—e~** in the numerator of the integrand instead, we get f;", in the

result. The theorem follows on noting that the transition matrix M (m, s) equals K2,

Q.E.D.
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3. Some Examples

Here we will explicitly compute =, I"1* for m=2,3, and 4. At the same
time, we will once more see how powerful the symbolic method is.

Example 3.1. Let m=2. Then

SazochT) = Zpuam) Zpes ) 00 1200

= M (P) (@2 fdy,0) (1) + My (V) (@3 fiy,0) (D

_ me(») + Man(y) S(a)(J’)—S(1z)()’)+ San(») — Sy (V) +1502,(p) )
o1z 1—t 1—2 1—t -2
Hence
(2) 4 4018
0o, q _ XUy
ngol}l - l_tz

This can be seen in another way by use of the symbolic method. In fact, symbolically
a basis element of /" has the form

[ 320
so if 1#6¢S,, then

o[y yalt = (=D [yl
If we interprete I} as a function on S,, this means that

IF()=1, and IF(o)=(-1)"
This gives

1 1
Zdéol-:iz(l)tdz'l—_‘___t’s and Zd;onz(a)td=m.

We now get (here {,) denotes the scalar product on the space of central functions
on a group)
Dazo 710 = J4z0 2 lal=2 TE e
! 202 2 (1) A gd
= 2lazo 2 |a[=2 'I'sztes,ra @ (Dt

= %lel=2 2res, Xz(T)(ZJEO Iri(v) Id) e

_1(1 1)(2)[1 1](11)]_M
_3[ = 1)t U T ) T T =
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Example 3.2. Let m=3. Then
A/
ngo Ch(I:is) td = Z“‘l=3 m;_(y) lelcl’l (H] (_ l)l‘ll (¢3—2]ﬂlﬂ,ﬂ)(t)'
ul=

For A=(3), the possible pci’ are u=(0,0,0), u=(1,0,0), u=(0,1,0), and
#=(0,0,1). For 1=(2,1) we may take u=(0,0), u=(1,0), and p=(0,1). Fi-
nally, for 1=(1%), we get u=(0), and u=(1).

Hence the coefficient of m)(y) is

(03 f13).0,0,0) (D — 0:1(f13), 1.0,0 F/13). (0.1,0) 13y, 0010

1_t2 1—12 2 4 ]
(p's[(1_’2)(1—’4)(1—1“)]_%((l—tz)(l—t“)(l—t“) (Er +t)]

[ 1414448 J e+
A=A -F)) A-mH(1-6

B 1 £ 1
T(A=--f (1-0-=" 1=

The coefficient of m,, 1,(y) is

(@3 f2,19,0,00 (D — 01 2f 2,19, 1,0y T2, 1.0 1) (D

= “’3[(1—:2);{12—:4)]_“’1 ((1 —zlz):(tl2 ) (2’2“4)) = ‘1—%4"

and the coefficient of m s (y) is finally

(@3 fasy, ) (D —3(@1 frusy, ) (D

_ [1—12] 3 (1-:2)_ 1
SO \TeE) T g meE) T 1=

The Kostka matrix is

K3=

SO -
O =
— ND et

and

-1 _
K3 et

SO =
QO
!
vt N s
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whence
1 1 1
Zazoch(IP) 1 = T=F Mo+ M, () + 77 Manm

_1 (5 =521, (M+5a8 M) + 50,1, (M) — 2503, (M) +(1+ 12)5(18)(}’))
1-2

- 53y () + 543 (¥)
1—¢ ’

and so

(3) 2., (13)
XX
Zamo Pt =S ——.

We note that the coefficient of ¥, is zero. The formula can also be proved using
the symbolic method. A basis element of I3, is

DZRANIZS AL AN

A )yl D ysl e yel? = (= Dy n vl e el
A 23y Dyl e sl = Dyl Dnyal? eyl

whence the value of I3, on an element of cycle type (2,1) is (—=1)% and on (3) it
is 1. Now the same method as in Example 3.1 can be applied.

and

Example 3.3. Let m=4. We leave out the computations, which are long,
and only give the result:

@4 (1410 46849
Suolie =2

(1-#(1-8)
We note that the coefficients of x> and x*'" are zero. Of course, the symbolic

method can be used to prove this formula also. Let us just record some results:
base elements of I} are

F, =y lFn vl ey lyeyals 0=s=d

(so sim, I#=d+1). This follows from Section 5 in the chapter with applications
of the symbolic method. Some computations give

A9E=F_,
129 =1y 35 (177 cE

(19@23)E =F,

(1234)F, =34 (d;s] -1 [2 J=o (}] - 1)15]'
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Let the value of I} on an element of cycle type v be If(v). Then the above for-

mulas give
() =d+1,

[;14((2’ 12)) = %—(l +(- l)d)
LHG. 1) = (— 1) S 1y (d;s)’
Ti(@9) = d+1,

If (@) = 3 (1+ (= ).

The same method as in Example 3.1 gives the result.

and

4. A functional equation

Write
Sz I = Zam B

where P,(t) are rational functions. As usual, we denote the conjugate of the parti-
tion 4 by 4’. Remember that there is an involution w on A defined by w(e,)=h,,
and corresponding to multiplication by ™ (the sign character) on R,,. Also note
that ¥ =™y,

Theorem 4.1.
Zit=en BAUN P =02 e Bt = (1™ 3 3y am B(OXY.

Proof. First of all, we have

e).(éd’ weey f_d) = 5-“”]]:';1 e).i(l’ 62’ LERE] 62")
=& L 20 [ e

52(d+2—1))(1 _52(d+2—2)) (1 _&2(d+2—1‘))
(1-&)(1—=¢Y...(1=&*)

= g-1Md [T £ 0~ (1-

14,2002 1 —g2d+2-n by
= e (T]

g+e—J_g-@+2-)) ]A;

_ zen(ar)—}A)d d+2-2)) 2
=¢ (4)—2) nglé( ) ,ngl( éf—é’-’

gl+2-i_g-(d+2—)) ]1}

=H151( GI—F7
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Here we have used the identity
’ )‘i
nW) = Zie (3)
(see [17], Ch.1, § 1). We now get

Zdéos).'(éds ceey é—d)s).(y) ld = 2'&[5:0 e&(éd’ ey é_d)ml(y)td

W@+2-J) _ g—(d+2=D\4
=2m=mm;.(J’)[Zd§on;1[é éj_fé_j ]lt"]

= 2 iy=m i) [ j=1 () Zdzo [2,, » (;](_ 1)s g(d+2—1)(13—2n,)] I

éll\ —2{n| —n(2)+2n{p)

= Zlﬁ.l:m mi.(y) Hjél (éj__c—j)-l} ZMC).’ [i] (_ I)I"l 1_t§|l|—2|u|

Cn(l )—2n(r)

= Spaen [ @ = S (1) M Sy ma0)
Proceeding as in the proof of Theorem 2.1, we get

Saza0(chI) e = 3 amo( [ (1-ED 50 (&4, ... £79) £52(5)

= Zenm) Znc () 0¥ @n-s1 8500,

where "
gi.(0) = ngllet— T LA+ ] =20) = 2D =2:00) £ (f),
o _ - 1-r —2({u] (1))
S,/ = ]]jgl(l—t‘ﬁi)"it u
= 7%2—?17_ RUA+RD) (=2l +aG) (YA = (= 1)1 2AA=2ID gt (1),
Ty (1—1%)%
wherefore
Ziten BADSO) = S Zpes () - D @ntn S0

= Sien i) Zper (4 COME DA P14 82,00

|u]<(1/2)m

= (D" iz o(ch(IM) 8 = (= D™ Sy3j=m P (D5:2(9)- QE.D.
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5. Some consequences of Theorems 14, 2.1, and 4.1

We denote by Rg the representation ring of G=SL(2, k), i.e., Rg is the free
abelian group on Ry, R,, R,, ..., with multiplication induced by the tensor product
over k (for the details on the structure of Rg, we refer to [1] and [2)).

Definition. Let 1 be a partition. The Schur module (corresponding to 1) is
defined by
S"(R:) = det (Sli_i+j(R:))1§i_j§m€RG,

where m=/(1). This definition should be compared with the relation

85 = det (hl‘_i+j)l§i'j§’"

between the s- and h-functions. We will prove below that the S*(R}) really are
modules (this fact also follows from Schur’s thesis, see [19], p. 43).

Proposition 5.1. a) The Schur modules S*(RY}) are modules.
b)
Mgy (3) = S*(RY)F30™

(i.e., K;qm copies of S*(R})) as G-modules.
©)

o Gimy (SRDOE = Zym (K0s Zpew () DM 0o SO,

|l <@/2)m

Proof. The (possibly virtual) G-character of S*(R}) is

det(hlg—i-i-j(éds seey g—d)) = s).(éd7 veey é—d)s

since §*"*J(R}) has the character h, _,, (&% ..., &%). Hence K, m copies of
S*(R%) has the same character as Mm@t (1) by Theorem 1.4, which proves a)
and b).

It follows that

azodim; (SA(R:)G) @
is the coefficient of y* in 3 I™#, and thus c) follows from Theorem 2.1. Q.E.D.

Proposition 5.2. If m=3, then the Hilbert series of the algebra AS is

1 m . A
H(Agut) =3t_20§j<(1/2)m(j)(— 1)J+1(pm—2j[(—l___tg') ]
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Proof. We have dimy I"=I[(1), where 1 is the identity element of S,,.
Hence

A%, D= Zpiom Zien® D Zycx (1) DM @nena 720070

lul<@/2)m

= 2iv=m 214 =m KV, v(l'")ZucA [)L,] (= D@ gy S (D)

|ni<@/2)m

= Dcm [(m)]( D@ —apu) Sy, ) (D)5

lul <(1/2)m

since x"(1)=K,qm, and J, (K1), K,qm=1 if A=(1") and zero otherwise.
Now let u9=(j)c(m). Then

1—x2 .
+
Jiamy, un () = _(—l—:t-z)"'— ,
and
. _ 1 1 m—2
Jamy, u» (O +famy, yo (1) = AR ’
whence

1045 0 = Zpcon () 0 (e i i )

1] <@/2)m

1 m 1 m—2
= o Soss<armm (,] 110 s, [(W) ] QED.

We note that by Example 1 in the chapter on the symbolic method, we have dim, 77=1
for all d, and so H(A4Z, f)=1/(1—¢). The formula in the proposition is of course
equivalent to

H(4S,1) = %20§j<(1/2)m (T) (= 1Y Qpoyy [(l__t;%ﬁ] >

which is also valid for m=2.
Finally we will give a new proof of Springer’s formula for the Hilbert series
of the commutative algebra I,, (see [1] and [22]).

Proposition 5.3. We have
H(l,, 1)
HU+D

= Zosj<qmm(— 1) - 21((1 A(1—0)...(—F£m=D)y1—-)(1—1).. (l_tzj))

and

H(I,, 1/1) = ()" "+ H(L,,, 1).
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Proof. The coefficient of ¥™ in JI7# is 3 dim, S"(R;)°#* by Proposi-
tion 5.1c. But by Hermite's reciprocity law,

dim; S™(R})¢ = dim, SY(R})®,
wherefore the coefficient of 3™ equals H(I,, ). Noting that the coefficients of
My (¥) and s, () are equal, we get

Bl ) = Zpecam () 0M@noap S0, )0

jul<@izym\ H
= Zosj<amm(= 1Y On-2;(Zu=; Sii.u) (@)
ac(im

1
= 20§j<(1/2)m - l)j(pm—Zj ((l —N(1-6)...(1—-£m) Zlu|=1

ro@™

t2(1+n(u))]

1 m—
= Z’Déj(u,z)m - l)jq’""“((l—r‘)...(l—t”‘) tle;(1, 1 ..., £ 1))]

= Zosi<amn 1 Ony ( (1 -z“)..l.(l e S [7] ('2)]

_ FU+D (1— ™)1 — £m=D) (1 2U+D)
"Z°§f<<1/2>"'(‘1)]“""'21'((1~t4)...(1—:2'")' (I=)(1=7)...(— =) )

| (U+1
= Zozi<aigm (1) <"'"—2f( A=/ ...A—F==D)(1—A)...(1— ) ]

The G-character of Mm% ((1™) (the antisymmetric part) equals

—(m—1
em(éd, vy 5-,1) = g~md gmm—1) [d;;I] (&) = é-m(d—(m-—l)) [(d (mm ))+m] @)
— 6—M(d—(m_1))hm(1’ 62, s éz(d—(m—l))) — h,..(é"‘("'”’, éd-(m—l)-—z’ e é—(d—(m-—l)))’

whence the coefficient of ¥@™ is /- times the coefficient of y™, i.e.,
Bamy(8) = 171 Ry (0).
By Theorem 4.1, we have
By (1/1) = "1 By (1/8) = " (= 1) £ By () = (= D" "1 Ry, (D).
Since H(l,, t)=P,,(?), this finishes the proof. QE.D.
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Some weak analogues of classical theorems
1. The Cayley—Sylvester theorem again
We have earlier seen a noncommutative analogue of the Cayley—Sylvester

theorem. We are now going to give an analogue in another direction. First a

Definition. When a=(ay, ..., a,)¢ N*, we say that the length, /(«), of « is n,
and we put

n(@=37_, (i—Da

(cf. [17] for the corresponding notion for partitions). When 4 is a partition, we let
B(2,d,j) be the number of distinct permutations « of 4 of length d+1 such that
n(x)=j (note that o may contain zeros), Hence B(4,d,j)=0 if I(1)=d+1.

Finally let a,(d, m) be the number of times M* appears in IT, considered as
an S,,-module.

Proposition 1.2. a,(d, m)=3\,=m K;.(B(1t, d, + md)—B(u, d, + md—1)).
Proof. We have
a(d,m) = [ (1-&9s5,(&", ... €79
by Theorem 1.4 in the foregoing chapter. But s;=2, K;,m,, and
Mm% o €74 = T (0 (E D,
where the sum is over all distinct permutations « of u. Hence

my (4, £ = Za g,
fa=&ym&, ..., &% = B(u, d, 3 md)—B(ud, 3 md~1}. QED.

and

Let, as usval, A(j, m,d) be the number of partitions of j into m non-negative
integers of size =d. If ac¢ N*!, let 0(x) denote the partition (0%, 1%, ..., d%+1),
Then |0(x)|=n(x) and /(8(x))=|«|. By mapping a—0(x), we see that

2|p|=mB(ﬂ’ d, f) = A(j, m, d).

Since y™ is the trivial S,,-character, we have
dimy I' = gy (d, m) = 312 (B (1 & 5 md) — B (. d, 3 md—1))
=4 (%— md, m, d]—A (-;-md—l, m, d],

since K,,=1 for all . This is the ordinary Cayley—Sylvester theorem.
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2. The Hermite reciprocity theorem

In the commutative case, the famous Hermite reciprocity theorem states that

dimk I‘;ﬂ = dimk Igl,
for all m and d.
In [1], Almkvist proves a generalized version of this:

S™(R}) = S‘(R})

as G-modules. Let us give a quick proof: the G-character of $™(R}) is ha (8 ..., E°9).
Now

et = = e[ @ = e [0 @ = e e,

and we are done. We note that the crucial step is the symmetry relation

nl [ n
vl |\n—r
between Gaussian polynomials.
There seems to be no simple analogue of Hermite’s theorem in the noncommu-
tative case. For example,

. 1 (2g —
dlmklzq = 'm[q ], but dlmklzlq = Q.

However, it is quite possible that there are other symmetry relations between our
G-modules. We will derive two such relations, one rather trivial and the other some-
what less obvious.

The S,,-decomposition of I is

Shat=m [ (1=ED5,(E% o E9A

In the ring A we have (see [17], Ch. 1, § 4)
23828 o E D5, (0) = Zamau(E, ., S IO).
Since h; corresponds to the character
7, = inds (1s,)

we have another decomposition of I™, namely

Sit=m [ A=EDm, (&, ..y €,
Let the coefficient of #, be b,;(d, m) (which may be negative) and put

b(d, m) = 3 |3j=mbi(d, m).

Then we have a very weak analogue of Hermite’s theorem:
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Proposition 2.1. b(d, m)=b(m, d). In fact, b(d, m)=dim, I7.
Proof.

b(d,m) = Zapem [ (1=Emy(E, s &9 = [(1=872) Sam(Ey s £
= [(1=& Y5 (& ., € = [U=E (&, ..., €9 = dim, I, Q.ED.
To consider the sum of the coefficients b,(d, m) is not as artificial as it may seem,
because the ordinary dimension dim, 7' equals the sum of the coefficients in the

decomposition of /7' into irreducible S,,-modules (since [ is a trivial S,,-module).
Of course, from this point of view it is more natural to consider the sum

a(d’ m) = ZIAI:M a).(d’ m)s

where a,(d, m) is the coefficient of y* in the decomposition of /™, but unfortunately,
a(d, m) does not follow the reciprocity law, e.g., a(2,1)=0, but a(1,2)=1 (see
the section on the algebra [;). We will consider the a(d, m)’s more in the next
section.

As was noted above, the Hermite reciprocity law hinges on a symmetry rela-
tion between Gaussian polynomials: [f] :[nfr]' Let us exploit this relation a

little more;

Lemma 2.2. ¢, (&% ..., &) =e;_+1(8, ..., %) (both sides should be inter-
preted as zero if m=>d+1).

Proof.
n(E ) = Gy (1, 8, 1) = g [ ] )

1
= (f_M(d'm+1) [dr“n‘ I] (éz) — é-m(d~m+l) [d.ii;_1+ 1] (62)
= 6d(d_m+l)ed—m+1(1’ 52, ceey ézd) = ed—m+1(§d1 ceey i—d)' Q'E'D'

The antisymmetric part Mymz%((1™)) with G-character e, (&, ..., £-%) can be
identified with the m’th exterior power A™(R}). Hence the lemma implies that

A™(R}) = A*~™+1(RY)
as G-modules, and

dimk ( Am (R:))G — dlmk (Ad——m+l(R:))G’

a A-Hermite theorem.
Furthermore, since

Dazodimy (A™(R)® 1! = m~H(1,, 1)
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by Section 3.5, we have by the commutative Cayley—Sylvester theorem,
dim, (A™(R})® = dim, I3-"+! = A (3 m(d— m+1), d—m+1, m)

—A(3md—m+1)—1,d—m+1,m).
Finally, we get

H((ARD), 1) = Zmzo (1= Den(E?, .o, E9m = [(1=E)) []]_ (1 4+E¥1)

1 pen . d
= 2 (d—2j)ix
nfo sin x]]j=0(1+e ) dx

(see also [1], p. 334).
Writing s, as a determinant in the e-functions, the lemma can be generalized.
If A is a partition of m of length =d+1, let 1 be the partition defined by

V= (d+1=2, d+1=Hyy oy d+1-25),

where I’=I(X) (=4). For instance, if 1=(3,22 1), and d=4, then 1 is the
shaded area in the diagram below, i.e., 2=(3, 2, 12).

Proposition 2.3. s5,(&, ..., £~ =5;(¢% ..., 79, ie.,

S*(R) = S*(RY)
as G-modules. (Note that |I|=1"(d+1)—||=2d+1)—m.)
Proof. By [17}, Ch. 1, § 3, we have
5,(8%, ..., E79) = det (el;_,.ﬂ.(é", oo ED<i s
As was noted above, this can be written

det (ed+1_1:+i_j(fdg ceey f—d)).
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Now d+1-—2]=1},~i+1, whence
528 o0y &) = det(er, . _@oipnr@—ran(Eh o E9)
= det(eg_;4;(&% s E79) = 51(8%, ., 7). QE.D.
Example 2.1. If J=(1™), then AZ=(19""+%), and

s(l"‘)(fd{---a é—d) = S(l"'"”l)(éds LERY} f_d)’

by the proposition.
If A=(m), then 1=(m?), and

S(m)(éd, ceey é—d) = S(md)(gd, ceey f_d) = é_m“S(md)(l, 52’ veey 6211)

—md® gmd?—md 1-g2e+idi-h —md 1§49
=¢{me H}iﬂi’fu —pa—rmmy = ¢ Ty
md 1__62(m+1) 1_62(m+2) 1_62(m+d)
= i e

= e[ @ = s e,

We finish this section with a remark on the functions s,(&%, ..., £~9), and we freely
use the notation of [17], p. 65. We have

Sl(éda sees f—d) = (s),os(d))(f’ 6—1)7
where o denotes plethysm. On the one hand, we can write

l+1_€—(l+l)
D (SN ) =21 “I—T:EZT—’

and on the other

(Szos(d))(fs &= 2|o|=m aﬁ(a)sg(f, M.
But if 0=(o:, 0v), then

58, 7Y =

601_92+1_ 5—(01—az+1)
(¢

Since ;=0 for all /it follows that af,=0 for all ¢ with /(g)=2 (this is a very
special case of the discussion in the appendix to Ch.I in Macdonald’s book [17).

We also conclude that if md is even, then p,—g, is also even, whence a,=0
if 1 is odd. Conversely, if md is odd, then «,=0 if /is even (which once again shows
that no invariants exist in this case).
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We have an integral formula for the af ,):s:

&y = _71;[:" sin x sin (/4 1) xs,(e*”, ..., e~ ") dx

where [=p,— @,.
For more information on the coefficients a2, see, e.g., [11], [16], [17], and [18].

Finally, we cannot resist giving yet another formulation of the classical Hermite
theorem:

(s(m)os(d))(f, f"l) = (S(J)OS(m))(f, &,
(hmoh)(€, £71) = (hgoh,)(€, &Y.

or

3. An interesting power Series

Let as above a(d, m) be the number of irreducible components in the S,,-
decomposition of /7. As was noted above, this is in a certain sense a generalization
of the dimension dim, I™ in the commutative case. In fact, this dimension is the
number of elements that together with addition and multiplication by scalars gen-
erate /™. In the noncommutative case we have another operation beside these two,
namely permutation of the factors. The numbers a(d, m) are at least upper limits
for the number of elements that generate 7™ together with addition; multiplication
by scalars, and operations with the symmetric group S,,. Inspired by this observa-
tion, let us consider the series -

H(ids H= Zmzo a(d, m) *,

Theorem 1.4 in the foregoing chapter gives us

a(d, m) = 3 pjem [ 1=E) 5 (&, s £,

whence
Zmzoaldy m) 1" = (1= 3z (S pag=m 5: (&% - EY)1"

= [(1=&) s (& . &) = [(1-8) Ti5,(e2% s 879
=[-8 [T, Q=83 [[ozicjma(1 - EC701)1,

by the beautiful formula in [17], Ch. 1 § 5, Ex. 4.
This. proves

Proposition 3.1.

1 pae (1—e¥*) dx
H(id’ t) - —2_7Ef° H0§j§d (1 __e(d—z,t)ix t) H0§j<k§d (1 —eid=I=hix 12) ’
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In particular, H(l;,t) is rational (see Proposition 3.3 below). This formula resem-
bles Springer’s integral formula for the Hilbert series of I (see [22]) — the dif-
ference is the very unpleasant second factor in the denominator.

Example 3.1. One can compute

1
1-2)(1-B)(1-1%"

A, =—15

e’

17(729 t) = (

and, with some effort,

10 12 14 16 24
A, 0 = 1428430450124 34141278+ ¢

A=A (1—rr(-rp(1-AH1-m)

We have a reciprocity relation:
Proposition 3.2.
Al 1) =(— 1)@%4“)'19(7,,, 1).

Proof. The series

Zl S).(tid’ cery té_d)

obviously converges for O<rt<1. Write

1 (1-2%dz
8e0 = 57 [ ra—7mp fa—7arom

[+

We consider the poles of the integrand corresponding to the factors in the denom-
inator with d—2j<0 and d—j—k<0. If t>1 so that H(I;, 1/t) converges,
then, noting that the products in the denominator are symmetric in z, z72,

1 (1—z2%) dz
ﬁ(id, 1/H) = orY fZH(I_Zd—zjt—1)H(I_ZZ(d—.i-—")rZ)

C
(1-z%)dz
z[[(1—-¥ J[J(1-22@-T-hg) *

1
— - td+ltzd(d+1)/2(__ 1)d+1+d(d+1)/2
2ni é[

Here the poles corresponding to d—2j<0, d—j—k<0 lie outside C, and the result
follows if we note that the sum of the residues of a rational function is 0. Q.E.D.

Denote by c(d, m) the number of irreducible components in the S, -decomposi-
tion of T™(R%). Then c(d, m) is the value of >, 5;(&%, ..., =% for ¢=1, whence

1
I?(T(R;t ’ t) = Zam Sl(tfd, ceey té_d)|§=1 = (l ——t)‘”’l(l _tz)(1/2)4(4+1) *

The H-series considered here are Hilbert series in the usual sense, since we have
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Proposition 3.3.
H(T(RY, f) = H(S(R; @ A*R3), 1)

A, ) = H(S(R;®A*R})%, 1)
where we have given the elements of A2R} the degree 2.

Proof. This is essentially obvious. One way to see it is to identify S(R} @ A*R})
with S(R}) ®, S(A%R}) and then note that

Zmao Tr(S™(RD, £)") = [osjs(1=E-41

Zmzo T (sm(AzR:), 8" = [losj<x=a (1-g2a-i-b=1
£Eo

where g is the element (0 C_l of G (since the eigenvalues of g as an endomor-
phism of S™(A2R}) are £-J-B, j<k). Q.E.D.

and

Example 3.2. As a k-algebra, S(R;® A*R})® is generated by

aya,—az, ay(agA @) —ay(ayA a)+ay(ay A ay),
and
4(ay A a)(ay A ay))—(ag A a,)

This case is especially simple since R}=A%R} as G-modules; an isomorphism is
given by
Ay A Gy~ ay

oA Gy — 24,
al/\az'—’ az.

We will finish this section with a short discussion of finite groups. Let V be a finite-
dimensional vector space, and let G be a finite subgroup of GL(V). Denote by
¢, the number of irreducible components in the S,,-decomposition of 7™(V)°. Put

HTW), ) = 5 mzoCut™
Then we have a nice analogue of Molien’s theorem:

Proposition 3.4.

1 1
ﬁ(T(V)G, t) = -I_GT2,€G det(l—tg)det(l_tz/lzg) .

Proof. Let the eigenvalues of gcGL(V) be ¢y, ..., 0,. As in the proof of
Theorem 1.4 in the foregoing chapter, we see that Mpm,(4) is stable under GL(V'),
and that the trace of g on this space is dim, M*.s,(¢,, ..., 0,). Hence

1
Cm = lTlmen ZﬂEGSA(Ql(g)’ cens Qn(g))~
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Multiplying by /™ and summing over m gives

1 1
TGTZ“G'IL(HQ;(g)t) [i<;(1—-0:(8)o;(®) )
Remark. Let V have dimension 2, and let G be a finite subgroup of SL(2, k)

(i’e., a finite cyelic group, a dihedral group, or a binary polyhedral group). Then
the proposition gives

A(TW)s, ) = Q.E.D.

HTW)S, 1) = .i.l-—-H(S(V)G, 9.

—12

Some results on covariants

We have earlier defined
Cime = (T™(RD S, R,)°
Cim = (T™(R) @, R)°
C,=(T(R)®, R)".

The G-character of T™(R})®, R, is y,(E)"x.(£) (see the introduction). For any
invariants to exist in this space, -;—(md—e) must be a non-negative integer, as
we saw in the chapter on the symbolic method. We note the following, which will
be used later:

(Ema+2 4 p-Cnd+D__DyiE_ -1 if md is even,
2jpma-eyen Xe(§) = {(émd+2+§-—(md+2)_(é+§—1))/(£__6—1)2 if md is odd.

1. The Hilbert series of C;

When defining the Hilbert series H(C,, t) we use the grading in the m-index, i.e.,
H(Cd, t) - ZM_Z_O dimk Cdm tm-
Since there are only finitely many e:s involved in

@ Cdme = Cdm,

we see that dim, C,,, is finite, and the series above is well-defined.

Theorem 1.1.

H(C,, »= ; et A=z D) (A +(d—2)n% 2+ ... —dn; %)
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where ¢(d)=1 if dis odd and 2 if d is even, and ny, ...,ny are the distinct roots of
2294282 4 1—17129=0 which lie in the unit disc for small t (equivalently,
which lie in C[[£'"]] ).

(This is not surprising, the theorem bears the same relationship to the formula
for H(I;,t) obtained by Almkvist, Dicks and Formanek in [4] as the Hilbert series
H(Cy,t) does to H(I,, 1), see, e.g., [1].)

Proof. We will consider ¢ as a real variable with O<t<(d+1)7%.
(i) d even. We compute:

S0 1O (Ze 1) 1" = o

ﬁd“—é—(”l) ]"' f'"d+2+5—(""’+2)—2

=& E<T
Now
1 ,2n . . . e(md+2)ix+e—(md+2)ix
- ing dix (d—2)ix --dixym _ _ dx
nfo sin® x(e™*+e +...+e ) @)
1 27 . . . _ ix
=_27_{‘/‘0 (ed.x+m+e—dzx)m(e(ma+2)u+e (md+2)ix) Jx — (),
and so
1 pen . e(d+1)ix_e—(d+1)ix )m (_2)
= 2 . _ . — ™| dx
H(Cds t) p fO S X[ngo[ e _g-ix (ezx_e-—:x)z
1 pon dx 1 dz
T 20 1—(%+ .. xe i T 2mit fc iz (T Dy

Applying the residue theorem proves the theorem in this case.
(ii) d odd. We compute:

> mz0 XaE™ (S 1/20ma-eyen L ()™

émd+2+§—(md’+2)_2 . m 2_5_5—1
G U 2meaa 1O ey

= ngo Xd(é)m

The first sum was considered above; the second equals

éd+1_€—(d+1) 1

(E—-¢&MHr2-¢-¢Y 1 L Zari_g-@+n Y2
)
E—¢t
whence its contribution to H(C;, ¢} is (we use the symmetry in &, 1)
2 2 . 1 1
—Tf (l“e'x) @+ L)ix _ ,—(d+Lix (d+1)ix __ ,—(d+1)ix dx
2n(2i)2J o 1_° Toe p 1_,_e - e_.x y
ei* — g ix eix i

= (-3) U®O—I(=1).
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By residue calculus, I(¢) equals

1 d 1—7’]
—TZJ'=1 dni+...—dnj’

If n is a root of the equation z¥+..4+1—¢"12¢=0, then (—n)*+..+1=
N+ +1l=1pf=(—1"1)(-1n)% since d is odd. Hence

_ 1 : 141,
1-9=(-3) 20 T =

1 1) <4
(-3 ao-1-0) = (-7) =5, P E——r

and

Adding this to the expression obtained in (i), we get the desired result. Q.E.D.

Example 1.1. We can compute

2
H(G, 0= 1-2t+y1—4
H(Cpr 1) = e

VI=3)(1+09

2. Cyn as an S,,-module

By permutation of the factors in T™(R}) we define an S, -module structure
on T"(R})® R, ie., also on Cj,. We let the S, -character be I]"(C). There are
analogues of Theorems 2.1 and 4.1 in the chapter on the S,,-structure of I™:

Theorem 2.1.

Saze I (O)?

= 2vi=m [Zm=m (K39 Sucw (l’] (= D™ gy (—l—f—‘t’:—((:.)—))] P

Bl <@/2)m \H

where fi,(t) and (m) have the same meaning as before. Furthermore, if this expres-
Sion is written

2|v|=m Qv(t)xvs
2|v|=m 0,(/0x" = (- nme 2|vl=m Qv(f)xv'.

The proof is a copy of the proofs of the results for I7.

then
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Example 2.1. With some effort, we can compute

@ gyan
a2 O = W=00=n"

i (OO L1+ t4 24 B0+ LA+
S (O = (A-n(1-&(1-68 )

As before, we get two corollaries:

Corollary 2.2. Let F,(C, 1)=1=0 (dim, C;,)¢*. Then

1 m
Fm(c9 t) = T 20§]<(1/2)m (7) ('_ l)j(Pm‘Zj [ (l _ts(m))(l _12)m-—1 ) ’

and Fy(C, 1/8)=(—1)"2F,(C, t).

Example 2.2.
1
RED ==
E({C = _1
B (1-p2
T+1+¢2
BED = =

Corollary 2.3 (Springer [22], Almkvist[1]). The Hilbert series of the com-

mutative algebra C,, is
H(C,, 1)

pgu+n
= — 1)
= 2osj<cmn(=1) "”"'”f((1—z=<m)(1—z4)...(1—zz<m~n)(1—12)...(1—zﬂ))‘

Furthermore, H(C,,, 1/0)=(— D" "1 H(C,,, ?).
Proof. Just take the coefficient of ™. Q.E.D.
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