
Noncommutative classical invariant theory 

Torbj6rn  T a m b o u r  

Abstract. In this thesis, we consider some aspects of noncommutative classical invariant theory, 
i.e., noncommutative invariants of the classical group SL(2, k). We develop a symbolic method 
for invariants and covariants, and we use the method to compule some invariant algebras. The 
subspace ar~ of the noncommutative invariant algebra J'~ consisting of homogeneous elements of 
degree m has the structure of a module over the symmetric group S,,. We find the explicit decomposi- 
tion into irreducible modules. As a consequence, we obtain the Hilbert series of the commutative 
classical invariant algebras. The Cayley---Sylvester theorem and the Hermite reciprocity law are 
studied in some detail. We consider a new power series //(I'd, t) whose coefficients are the number 
of irreducible S,,-modules in the decomposition of J'~, and show that it is rational. Finally, we 
develop some analogues of all this for covariants. 

Abstract 

In  this thesis, we consider noncommuta t ive  invariants o f  the classical g roup  

SL(2 ,  k). We develop a symbolic method,  and with the help o f  this method  we 
compute  some invariant algebras. The  invariant algebras are stable under  permuta-  

t ions o f  the factors in homogeneous  elements, and we decompose the homogeneous  
subspaces into irreducible modules  over the symmetr ic  group.  We  study the C a y l e y - -  

Sylvester theorem and the Hermite  reciprocity law in some detail, and  we introduce 

a "fa lse"  Hilbert  series, whose coefficients are no t  dimensions, bu t  the number  

o f  irreducible components  in the decomposi t ion into irreducible modules over the 

symmetr ic  groups.  Finally, we consider classical covariants.  
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Foreword 

In  th is  thesis ,  I wi l l  d iscuss  s o m e  aspec t s  o f  t he  n o n c o m m u t a t i v e  i n v a r i a n t  

t h e o r y  o f  t he  c lass ica l  g r o u p  S L ( 2 ,  k) .  T h i s  sub jec t  was  sugges ted  to  m e  by m y  

t eacher ,  D r .  G e r t  A l m k v i s t ,  d u r i n g  a series o f  seminar s  on  i n v a r i a n t  t h e o r y  h e l d  

by  h im.  I w o u l d  l ike  to  t h a n k  h i m  for  m a n y  s t imu la t i ng  d i scuss ions  a n d  m u c h  in- 

v a l u a b l e  adv ice .  

L u n d ,  in F e b r u a r y  1987. 
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Introduction and preliminaries 

Class ica l  i n v a r i a n t  t h e o r y  is c o n c e r n e d  w i t h  t h e  i nva r i an t s  o f  t h e  g r o u p  S L ( 2 ,  k) ,  

w h e r e  k is an  a lgebra ica l ly  d o s e d  field o f  c h a r a c t e r i s t i c  0. T h i s  g r o u p  wil l  a lways  be  

d e n o t e d  by  G in  t h e  sequel .  
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The most classical part of the subject treats commutative invariants. The founda- 
tions of this theory were laid by Cayley and Sylvester in the 1840's, and it was further 
developed by, among others, Aronhold, Clebsch, Gordan, and Hilbert. In later 
years, noncommutative invariants have attracted some interest, see, e.g., [3], [4], 
[91, [12], [13], [15], [24]. 

In this thesis, we will discuss some aspects of the theory of noncommutative 
invariants and covariants. We will develop a symbolic method for noncommutative 
invariants, and it will be seen that this method is not essentially different from its 
commutative counterpart. In fact, had the 19th century invariant theorists con- 
sidered noncommutative invariants, they would have developed the method in this 
case, too. In the commutative case, Gordan proved that the algebra of invariants 
if finitely generated (the famous Endlichkeitssatz, which was extended to SL(n, k) 
by Hilbert). Unfortunately, this is not true in the noncommutative case. But we 
have something that is almost as good: the algebra of noncommutative invariants 
is finitely generated if we allow permutations of the factors in homogeneous poly- 
nomials. This has been proved by Koryukin [14]. Hence, it should be interesting 
to study the invariant algebras taking into account this new structure (which is 
degenerate in the commutative case). We will consider some aspects of this after 
we have developed the symbolic method. 

Let us start by reviewing the representation theory of the group SL(2, k) 
and of the symmetric groups Sm, since this theory and the theory of symmetric 
functions will be extensively used throughout our discussion. 

Fundamentals on the representation theory of SL(2, k) 

The group G=SL(2, k) is reductive, hence every finite-dimensional, rational 
G-module is completely reducible. There is precisely one irreducible G-module R~ 
of dimension d+ 1 for every integer d->0. This module can be described as fol- 
lows: let V be the standard G-module with basis e 1, ez, and let e~=X, e~ = Y be 
the dual basis in V* (the dual space). On V* G acts by 

where 

Then 

g-X. X = aX+ bY 
g-1. y cX+ dY 

R. = s ' ( v * ) ,  
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the dth symmetric power of V*, i.e., 

Ra ={aoXa+al (dl xa-lY+...+aayd; a~Ek}. 

Hence 
s(z*)  = (9 Sd(v *) = | R~ _~ k [ X , r ] ,  

d_~O d_~O 

the polynomial algebra in X, Y. An expression of the t)pe 

ao Xa+al(1 ~ X a-1 y+... +aaY d 

is called a binary form of degree d. For the details and the proofs of all this, we refer 
to [21]. We denote the G-character of R d by Xa. q-he sul:group 

0 

plays an important role in the theory, and to simplify notation, we write 

It is easily seen that 

Xd(~) = ~d~._~d--2~_..._~_~--d = ~d+l  ~ - ( d + l )  

The algebra of noncommutative polynomials in the coefficients a~ will be identified 
with the tensor algebra 

T(R•) = �9 Tm(R~), 
m~O 

and the commutative algebra is identified with 

S(R~) = | S'(R~). 
m_~0 

It is convenient to regard Sm(R~) as the subspace of symmetric tensors in Tm(R~). 
The group G acts on these algebras, and we denote the invariant algebras by 

T(R~') ~  = �9 T~', and S(R~)~ Id = 0 I~'. 
m~O m_~O 

Another object that we are going to study is the algebra of (noncommutative) co- 
variants ~d. It is defined by 

C~ = (T(R~) e~ R) ~, 

where R=k[X, Y]. Its commutative counterpart is 

Ca = (S(R~) e~ R F. 
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These two algebras are bi-graded, 

Ca= ~ ~me, and C d =  ~ Came, 
m,e~O m,e~_O 

where 
~dme = (Tm(R[)| ~, and Ca.,. = (S~(R~)| ~, 

respectively. 
When A= Om~O A m is a graded k-algebra, we denote its Hilbcrt series (some- 

times called Poincard series) by H(A, t), i.e. 

H(A,  t) = ~m~_o (dimk Am) t m 

(provided that dimk Am< 0% of course). This series is an element of the formal 
power series ring Z[[t]],  but we will sometimes treat t as a real or complex variable. 

A useful device when dealing with Hilbert series is the Reynolds operator: 
consider the field extension C(t")~C(t),  which is Galois with Galois group gen- 
erated by t~-*exp (2ni]n)t. If fEC( t ) ,  we define the Reynolds operator ~p. by 

(q~ f)(g,) = 1 z~=xf(exp (2kni/n) t). 

Since the right-hand side is fixed by the Galois group, it is clear that it lies in C(t"). 
If  f is represented by a power series z ~ a J ' ,  r has the effect of killing all terms 
ak~ such that n:(k, whence 

( e . f ) ( O  = Zk~_0 a.k t ~. 

When defining the Hilbert series of the covariant algebras, we use the grading in 
the first component, i.e., 

H(~a, 0 = Zr,_~0 (dimk Q,,,) ~,  

where Cd,,=Oe~_o r (it will later be seen that dimk ddm<~o). The Hilbert 
seriesl of I a and C d were studied in the 19th century, and it is well-known that they 
are rational. Suppose M is a finite-dimensional, rational G-module with character Xn. 
Write 

We can write 
~1+1_ ~-(1+1) 

ZM (~) : XL~O ~, ~ _ ~-1  , 

where the ~ are non-negative integers, and only finitely many are non-zero. 
The set of G-invariants of M is the set 

M ~ = {rnCM; g .  m = m for all g6G}, 
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and we have 

since R~ and 
Writing 

dim~ M ~ = co, 

R~=O for d=~l. 

:1+:_ : - .+1 )  = ~z+~ l - z+ . . .+~ - l ,  
~ - r  

we see that eo is the difference between the coefficients of 1 and ~2 (or ~-2) in Zu(~)- 
It is convenient to let 

f" z m   -11 - . z  
denote the "coefficient of 1" map (see [4]). In particular, we have 

= = ~ f ( 2 _ ~ _ r 1 6 2  ~o= f (1-r f (1-r162 -~ 
If we put ~=e ix, then 

whence 

~1+1__~--(1+1) sin ( l+  l)x 

_ ~-1 sin x 

1 2 ~  . 

= ~  fo~ sm2x)~u(e'Odx" Ot o 

Hence f is an integral in the usual sense. We will use f and the analytical counter- 
part interchangeably. 

Symmetric functions and symmetric groups 

Here we will only give the most basic definitions, and we refer to Macdonald's 
book [17] for a full treatment of this very useful theory. 

The symmetric group on n letters will be denoted by Sn and the ring of sym- 
metric functions in n variables Z[x~ ..... x,] s~ by A~. By A we denote the ring of 
symmetric functions in countably many variables (see [17] for the definition of A). 
A Z-basis for A is usually indexed by partitions 2. The bases that will appear here 
are: the monomial symmetric functions ma, the complete symmetric functions ha, 
the elementary symmetric functions ea, and the Schur functions sa. 

We denote the transition matrix between the bases sa and mx by K, and this 
matrix is called the Kostka matrix. Its elements are also indexed by partitions, 
K=(Ka,), and Kay, is the nurnb~r of tableaux of shape 2 and weight/t. The transi- 
tion matrices between the other bases can be found in [17], p. 56. There is an involu- 
tion o~ on the ring A given by 

co(e,) = h,. 
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Its effect on the Schur functions is especially important; it is given by 

oJ(s~) = s~., 

where ),' is the conjugate partition of  ;t. 
We denote by R. (not to be confused with Rd, the irreducible G-module of  

dimension d +  1; we still insist on using Macdonald's notation) the Z-module of  
generalized characters on S. ,  and we let 

R =  | R~. 
n_~o 

The module R has a ring structure, where the multiplication is defined by the induc- 
tion product: if fC R.,  g~Rm, then their induction product is 

f . g  = indsS'~<]., ( f •  

The rings A and R are isomorphic, and the isomorphism is given by the charac- 
teristic map ch: R--.A. The elements X x of  R. defined by ch(xa)=sa (where 
121=n) are the irreducible characters of S. .  Then )(") is the trivial character, and 
X ~ is the sign character. The involution co on A corresponds to multiplication by 
Z 0") on R. ,  i.e., 

X ~' = Z(1") Z a. 

We let M a be the irreducible S.-module with character Z a. 

Gaussian polynomials 

The Gaussian polynomials 

Obviously 

(or q-binomial coeff ic ients)[n]  

(1 - q")(1 - q , - x ) . . .  (1 - q , - , + l )  

(1 - q ) ( 1  -- q~)... (1 - q ' )  

There are two generating functions: 

, (q)  t', //~=0"-1 ( l + q  t) = ~--~ r=0 ~ t r J  
and 

q '  '1 / / i=o (1 t) -1 = X~*=o (q) t'. 

are defined by 
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The Gaussian polynomials are related to the symmetric functions by 

and 

h . ( 1 .  q . . . . .  = 

as can be seen from the generating functions. 
For  more information on these polynomials, see [17], and [1] for more about 

their use in  invariant theory. 

S-Algebras 

Consider the free associative algebra 

A = k (xx . . . . .  x,) = O A,,, 
m_~0 

where A,, is the subspace consisting of  homogeneous polynomials of degree m. 
The symmetric group S,, acts on A,, by permutation of the factors. 

A subalgebra or ideal may or may not be closed under this action, e.g.; the 
subalgebra k(xlx2) is not closed, since it does not contain X2Xl. Let us call a closed 
subalgebra (or ideal) an S-subalgebra (S-ideal). Often we will simply write S-alge- 
bra, when it is clear what the "big" algebra is. 

Let us also say that an S-subalgebra B of k(xl  . . . . .  x,) is finitely generated 
as an S-subalgebra if there is a finite set {f~ . . . . .  f~}%B such that B is the smallest 
S-algebra containing {f~ . . . . .  f~}. If  B is finitely generated as S-algebra, it does 
not have to be finitely generated a s  an algebra. For more information on S-alge- 
bras, see Koryukin 'spaper [14]. We now concentrate o n t h e  tensor algebra T(R'~)~-- 
k (a0 . . . . .  a4). By the definition of  the G-action, it is clear that the actions of G and 
the symmetric groups commute. Hence the invariant algebras in are S-subalgebras, 
and the i~:s are Sin-modules. Furthermore, if we let the symmetric group S,, 
act only on the first factor in T"(R'~)| Re, it is clear that the same holds for 
~a and ~e,,e- 

Finally, let us note that I~' is the maximal trivial sub-S,-module of lff'. 
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The symbolic method 

The symbolic method in the commutative classical invariant theory was devel- 
oped by Aronhold, Clebsch, and Gordan in the 1860"s. In [24], Teranishi describes 
a symbolic method for non-commutative invariants. Here we will develop the sym- 
bolic method for non-commutative classical invariants, and also for non-commutative 
classical covariants along the lines of Dieudonn6--Carrell in [8]. Our description of 
the method will show that there is not really any difference between the commutative 
and the non-commutative cases. 

1. The Method 

Let V be the s tandard  SL(n, k)-module with basis el, ..., e,.  

Definition. We define a multilinear function V"-*k, denoted by (xl . . . . .  x , ) ~  
[x 1 . . . . .  x,] by 

[xl . . . . .  x,] = det (~u), 

where x i = ~ .= x  ~je j .  We define a function (y~ . . . . .  y , ) ~ [ y t  . . . . .  y,] from (V*)" 
to k analogously. (These are sometimes called brackets.) Finally we define the 
scalar product (x,y) o f x  and y, where x~V, yCV*, by (x,y)=y(x). This is a 
function VXV*~k .  Clearly the bracket functions and the scalar product func- 
tion are SL(n, k)-invariant. In fact, if gCGL(n, k), then, informally, 

g" [X~, .... x,] = (det g) [x~ . . . . .  x.], 

g-[Yl . . . . .  y,] = (det g)-~[yl ..... y.], 

g.  (x, y) = (x, y). 

One of the cornerstones of classical invariant theory is the 

Fundamental Theorem. Let f :  VPX(V*)q~k be a multilinear form invariant 
under SL(n, k). Then f i s a  linear combination of  products of factors of the types 

i) functions (Xl . . . .  , x . )~ [x l  . . . . .  x,] from V" to k, 
ii) functions (y~ .... ,y.)~-*[y~ ..... y,] from (V*)" to k, 

ii) functions (x, y)~(x,  y) from V• to k. 
For the proof, we refer to [8]. 

By the formula 

(y~ |  | y,,) (xl . . . . .  x,.) = (xx, Yl)..- (xm, ym), 

xi~ V, yiC V*, we identify the tensor space T m (V*)with the.space of m-linear forms 
on V. The with symmetric power S"(V*) then corresponds tO the subspace con- 
sisting of  symmetric m-linear forms. 
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We now restrict our attention to the classical case 
defined 

n=2 .  We have earlier 

I f  gET'(R'~), 

= S d ( r ' * ) ,  

C .e = (r'(R )ek R , ) ~  
and 

]~m = (~a,n0. 

then g is an m-linear form on Ra. Let 

~p: Ts (V  *) ~ Sa(V *) 

be the projection. Then we get an m-linear form ~p*g on Ts(V  *) by 

( o*g)(zl . . . .  , z . )  = g ( c p z l  . . . .  , 

If  we only consider decomposable tensors zl=Ya | |  we get an rod-linear 
form cog on V* by 

coa(Yn . . . . .  Yla, Y2z, ..., Y,,a) = (~p*g)(zl . . . . .  Zm). 

If  h6R e, we interpret h as a symmetric e-linear form on V. Hence an element 
f = , ~ ( g i |  of T"(R'~)| k R e gives rise to a form 

coS" ( v * ) m d x V e  "~ k, 

and it is obvious that f is invariant under G if and only if cos is invariant. By the 
fundamental theorem co/is a linear combination of products of  factors [yy'], (x, y). 
The form co/is called the symbolic expression o f f .  

Now we must describe how to get the invariant f from its symbolic expression 
co/. This process is known as restitution. Denote for the moment the basis in V* by 

e ~ = X ,  e ; = Y ,  
and write 

~ e ' * ~ '  e* Y i j  "ll.il 1 I ' l l  j2 2" 
Then 

and the first step must be to replace every product t/~k~... ~/~dk, by one sole coeffi- 
cient rhh.. .k~. If  we write the elements of  Rj as 

a ("v) ~ ( d ) ~ ~ 1 7 6  ~ , = z  a,,X'r-~'Y" = ,~v=l v ,',=1 =2 , 

and note that we are only interested in symmetric tensors z~, we see that the next 
step is to replace rh~ ~''" ~, by a~,, where v is the number of kj's equal to 2. Let e x, e., 
be the basis in V to which e~, e~ is the dual basis. Write 

X i = ~i l e l  + ~i2e2.  
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In the expression for ~ f ( Y 1 1  . . . . .  J",n~l, Xx . . . .  , X~) we finally replace every product 
~x~t"" ~,i, by X ~-~ Y", where/z is the number of  ij's equal to 2. 

We can simplify the restitution process if we already from the beginning con- 
sider symmetric tensors of  the form 

zi = Yi | | 

with d factors. Similarly, we note that instead of  xl,  . . . ,x ,  we can con- 
sider only one x, which appears e times in cos. By abuse of  notation, we write 
%-(yx . . . . .  Ym, x) for 

coj.(yx . . . . .  Yl, Y~ .. . . .  ym, x ..... x) 

with each y~ appearing d times and x appearing e times. Since each bracket [ ] and 
( , )  contains two symbols (we call the x:s and y:s symbols), it is clear that m d - e  
must be even for any covariants to exist. Consequently, i~ '=0 if md is odd. 

2. Some Examples 

Example 1. Let f~i~.  To get the symbolic expression for f we have to put 
1 2 d = d  brackets [ ]  (there are no x:s involved here). d yl 's and d yz's into ~-. 

Since [y, y ]=0 ,  the only case we need consider is 

~os = [Yl, Y~]~. 
Hence 

co, (rhl~h~-- ~h~ the) d d (d} = "--- , ~ i = 0  (-- 1V'~'l-l"l~i"a-l) '111 'tlZ't~l 'tZZ , 

and the restitution consists in replacing 'tu-d-~-~q~2 by au and rhxrtz, -~ -J-~ by au-~.  We 
then obtain 

f [ ~ ( d l a u X d - i Y ' ,  z~{d la2 iXd- iY ' l=  ~':=0 [d)  ( -  1)ial, a2,_,. 

As an element of  T2(R~), 

= ~ i = o  ( -  l)laia~-~" 

In particular, we have dimk ]~ = 1. 

Example2. Let d be even, d=2q, and let f~]~. We obtain the symbolic 
, 1 expression o)j, by putting d y~ s, d y2's, and dy3"s into u  3. d =  3q brackets [ ]. We 
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need  only considei" the Case 

09j, -- [Yx Y2] q [Yx Ya] q[y2 Y3] q = 

= (r/llt/2~- t/lz t/21)q (r/11 t/a~- nl~r/al)q (r/~t r/az- t/2~ r/a1) q 

= ( 1) 21, j ,k=O ( _ _ l ' ~ i + j + k . q - i + j . q + i - j ~ , q + l - - k . q - i + t ~ q - j + k . q + j - - k  "/  ~ 1 1 1  q12 1/21 zf22 r/31 t132 " 

In the restitution we replace 'tll~q'i4rj~q'l-i--J'/12 by alq+i_j, etc., whence 

f =z~,'./.k=o(ql(q)(qk)(--1)'+/+ka,+,-jaq-,+kaq+j-k, 

as an element of  T3(R~). In particular, dimk i 3 = 1 if d is even, and 0 if d is odd. 

Example 3. To obtain o) I when "a+l fE1 d , we must put dyl"s ..... dYd+ is into 
d(d+ 1) brackets. One possibility is --ff 

(.Of = ~l~--i<j~_dq-1 [YiYj] = //a~_,</~a+l ( / ~ i l n j 2 - n i 2 n j l ) ,  

which is the expansion of  the Vandermonde determinant 

d + l - j  y - 1  det (r/a ~/i2 )l~--i,j~_d+l 
whence 

N '  / s ~ n  o.~ ~d+ 1 -  a(1) ~a (1)-1 ~d+l-G(d+l)~a(d+l)--I  (.Of = ~.atrESd+X \ ~ I till q12 "'" IId+ll qd+12 , 

which restitutes to the standard polynomial 

s, = ~es~+~  (sgn a) a~(o) a~l)...a~(a). 

In the last sum Sd+~ acts on the set {0, 1, ..., d}. The invariants in the above ex- 
amples are also discussed in [4], p. 207 208, and in [24], p. 9. 

Example 4. Consider f~ ~d~a" To obtain o)y we must put d yl's and d x's into 
1 ( i . d - d ) = 0  brackets [ ] .  Hence d(,):s  and -~ 

O.)f ( x ,  y l )  d (?~11 ~1-31- ~12 ~2) d d ( d ) 

wherefore 

i.e., the binary form itself. This element will play an important role later, and we 
will denote it by 7 (this element appears in the commutative case too, see [21], p. 55). 
In fact, we will show later that the covariant algebra ~d in a certain sense is gen- 
erated by 7, a theorem that was proved by  Gordan in the commutative case (see 
[10], p, 48 and p. 110). 
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E x a m p l e S .  If  f ~ 1 2 2 ,  then 

09~ = (x, Yl) (x, y~) = (qn ~1 + qi~ ~ )  (q~ ~1 + qz2 ~2) 

= nXl  l + +  21) + 
Thus 

f = a2o X 2 + (ao al + a~ ao) X Y +  a~ yz .  

Example  6. If  f~  ~222, then 

COy = [yl r 2  (x, yl)  (x, 
2 2 2 2 2 2 2 .~_ 2 2 2 

= (?]11 ?]21 ?]22 - -  ?]11 ?]12 ?] 21) ~1 -~- (?]11 ?]29~ - -  ?]12 ?~21) ~1 ~$ (?]111712 ?]22 - -  ?]12 ?]9.11722) ~2  

and 
f = (ao al - al ao) X 2 § (ao a z -  a2 ao) X Y  + (al a ~ -  a2 a0 Y 2. 

E x a m p l e 7 .  If  fE~422, we get ~of by putting 4y1:s,  4y~:s ,  and 2 x : s  into 
2 ( , ) : s ,  and 1 ( 4 . 2 - 2 ) - - 3  brackets [ ] .  Hence 

O~y = [yly213(x, yx) (x ,  Y2) 

4 3 3 2 2 2 2 3 3 4 2 
= (?]1171217122 - -  3 ?]11 ?]12 ?]21 ?]22 "}- 37111 ?]12 7121 ?]22 - -  7711 ?]12 ?]21) ~1 

4 4 3 3 3 3 4 4 
(/']11 ?]22 - -  2/711 ?]12 ?]21 ?]22 ~- 27111 ?]12 1721 ?]22 - -  ?]12 ?]21) ~1 ~2 

3 4 3 2 t 2  3 Z 2 2 4 Z 2 
-[- (?]11 ?]12/'/22 ~ ?]11 ]12 r/217122 ~- 37111 r/12 r]21 ?]22 - -  ?]12 ?]21 ?]22) ~2 ,  

which after restitution gives 

f = (ao a z -  3 al a2 + 3 a2 al - an ao) X 2 + (ao a ~ -  2al a3 + 2 a3 al - a~ ao) X Y  

+ (a l  a a -  3 a~ a3 + 3 a3 a2 - a~ ax) Y 2. 

One may note that the covariants in the last two examples abelianize to O. 

3. Two Remarks  

As was noted earlier, the symmetric group S,. acts on Ed,,e by permutation 
of  the ails. Let a~ S,, and f~ Cd,,e. It is clear that if 

o~ s = [Yl Y2I pI' [Yl Y a]".  . . , 
then 

co~f = [y~(~) y,~2)]Vl, [Y,~I) Y,(3)] pl' . . . .  

Hence, if we consider S" (R~)  as the subspace of  symmetric tensors in T " ( R ~ ) ,  
we see that the symbolic expressions for the elements of  Calm, are precisely those 
which are symmetric in  the symbols Yi. 
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Let us finally record two identities which will be very useful later: 

i) [Y~yz](x, ya)+[yayd(x, y~)+[y,.ya](x, y~) = 0 

ii) [ ) l yd  [Y~ Ya] + [yzy4] [Ya yd + [Ya y4] [y~ y~] = 0. 

The former is proved by direct computation, and then the latter follows by letting 
~1~-~/42 and ~2~-+-~?41. 

Some applications of the symbolic method 

1. Some Results on the S-Algebra Structure of  1 a and dd, d= 1, 2 

Since G=SL(2, k) is reductive, it follows from [14] that the algebras T a and 
~j  are finitely generated as S-subalgebras of  T(R~) and T(R~)| R, respectively. 
In this section we are going to determine S-algebra generators of  1j and d j  for 
d =  1 and d=2 ,  i.e., (finitely many) invariants and covariants which together with 
the ordinary algebra operations and permutations generate these algebras, and 
thereby we will show the power of  the symbolic method. 

Proposition 1.1. il is generated by aoal-a~a o as an S-algebra. 

Proof. Let fEI~.  For  any invariants to exist, m must be even, m=2q ,  say. 
To obtain the symbolic expression for f we must put one Yl . . . .  , one y~  into 
1 
~-. 1 . 2 q = q  brackets [ ]. One possibility is 

cof = [Yl Y2] Eva)4]... [y~-  x y~], 

and it is clear that all other possibilities are permutations of this one. Now 

which restitutes to aoax-axao, whence cos restitutes to 

f = (a0 a~ - a~ a0) ~. Q.E.D. 

Later we will prove more on the S-structure of  l~ (Proposition 2.1 below). 

Proposition l.2. ~x is generated by aoal-a~ao and y=aoX+alY as an 
S-algebra. 

Proof. Let f 6  ~Ime- TO obtain o9 a, we must put one y~ . . . . .  one YI, and e x's 
1 (m-e )  brackets [ ]  and e ( , ) ' s .  Hence m - e  must be even, m - e = 2 q ,  into ~- 

say. One possibility is 

cos = [Ylyzl ... tYro-e-lYre-el(x, Ym-,+ ~)"" (X, Ym), 
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and this is obviously the only possibility modulo permutations. Noting that col 
restitutes to 

(ao ax -- at ao)q(aoX + a tY)  e, 
the proposition is proved. Q.E.D. 

Proposition 1.3. 12 is generated by the noncommutative discriminant 

A = aoa2-2a~+aza  o 
and the standard polynomial 

ss = ao at a~ - ao a~ at + at a2 ao - at ao a2 + a2 ao at - a2 at ao 

as an S-algebra. 

Proposition 1.4. C2 is generated by A, s3, 

y = a o X 2 + 2 a x X Y + a ~ Y  ~, 
and 

t5 = (to a t -  at to) X ~ + (ao az - az ao) X Y  + (a a a z - a2 at) Y z 

as an S-algebra. 

Before the proofs of these propositions, we need a lemma on symbolic ex- 
pressions. 

Lemma. Assume m>- 5. Let  

co = [YlYz] [YzYa]... [Ym-lYm]( X, Y t ) (  X, Ym), 

COt = [Yt yz]Z [Y3 Y4] [Y4 YS]"" [Ym-t Ym] (X, Y3) (2C, Ym), 

COs = [Ys Y4] 2 [Yt Y~] [Y2 YS] " " [Ys- t Ym] ( X, y~) ( X, y,~), 

CaZ = [YtYa]Z[Y~Y,][Y, Y6] "'" tYro-tYrol(X, y2)(X, Ym), 

ca4 = [YzY,] 2 [Yt Y3] [Ya Y~]." [Y,,-t Ym] (X, y~} (x, Ym}, 

co5 = [Yt Y412 [Yz Y31 [Y3 Ys] " " [Ym--1 Ym] { X, Y2) ( X, Ym} , 

CO6 = [Yz Y3] 2 [Yt Y,] [Y4 YS] "" [Ym-x Ym] Of, Yl) ~X, Ym) 
and 

coo = [Yl Y~] [Yz Ya] [Y3 Y,] [Y~ Y,] tY5 Yd . . .  [Y,~-~ Y,~] (x, y~) (x, Ym). 
Then 

2(0 = Cao--Cat-I-Ca3--cos--Cazq-Ca4--co6. 

Proof  o f  the Lemma. All the symbolic expressions in the lernma contain a 
common part, namely 

Lv yd ... [ y ._ t y s l ( x ,  y .} ,  
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which we won't  write out in our computations below. We have 

= [21 Y2] "'" [Y4 Y5] (X, Yl> -~ [21 Y2] 2 [Y3 Y4] [Y4 Y5] (X, Y3) -- ('03 "~- (-05 

= [Y, Y2] [Yz Y,] [Y, Y~] ([Yz Ya] <x, y,) + [y, y~] (x, Ya)) -- (03 + a~5 
X o = [Yt Y~] [Yz Y3] [Y3 Y4] [Yt YS] ( , Y2) -- [Yl Y3]- [Y2 Y4] [Yt YS] (X, y~) -}- 0) 5 

= [YZ Y3] [Y4 YS] (X, Y2) ([Yl Y2] [Y3 Y,] -- [YI Y3] [Y2 Y4]) -I- (0 5 

= -- [Yl Ya] [Yl Y,] [Y2 Y3] [Y, Ys] (x, Yz) + [Yl y,]e [Y2 Yz] [Ya Ys] (X, Y2) 

= [yl y,] [y~ y3] (x, y~) ( -  [yl y3] [y4 ys] -~- [yz y4] [y3 Ys]) 
= [YlY,] [Y2 Ya] [Yz Ys] [Ya Y,] (x, Y2). 

Here we have repeatedly used the identities on p. 140. With the same technique we 
can prove that 

(0 -t- (02--  (04 + (0,6 

= [yl y,] [y~y~] [y~y~] [y, y3] (x, yl). 
Hence 

2(0 + (0x- o93 + (05 + (02- (04 + (06 

= [YlY,] [Y2Y3] [Ya Y4] ([Yl Y~] ~x, Y2~-IYzYs] (x, Yl)) 

= [YlY2] [Y2Y3] [Y3Y,] [yly,](x, Ys) = (00 Q,E.D. 

If  we replace (x, yl)(x,  ym) in (0 by [YlYm], (x, ya)(X, ym) in (or by [Y3Ym], etc., 
we get some new symbolic expressions, and the same computations as above show 
that the same relation holds between these new expressions. Later when we have 
introduced transvectants, this will be clear without any computations. 

Proof of  Prop. 1.3. The symbolic expressions for A and sa are 

(on = [YtY2] 2, 
and 

(0s, = [YlYz] [Y2 Ya] [YlY3]- 

Let A be the algebra generated by A and a3 and operations with the symmetric 
groups. We will first prove that i~ '~A for m=2 ,  3, 4. 

m=2 .  The only possibility is ~a.  
m=3 .  The only possibility is (0~. 
m=4 .  Modulo permutations there are the possibilities 

(01 = [YlY~] 2 [YzY,] ~, and (02 = [Y~Y2] [Y2Y~] [Y~Y,] [YxY,]. 
Clearly to16A. Since 

LFlYa] [Y3Y4] + [YlY4] [Y~Y3] = [YxYa] [YzY4], 
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we have 
2. [yly~] [y2y3] [y3y,] [yly, l 

= [y~ya]2[yzy4]Z--[yxy,,]2[y3y4]Z--[yly4]2[y2ya] 2, 

whence 0926.4 , and i ~ . 4 .  We are going to prove that i ~ , 4  with induction 
over m. Suppose then that ]k=c`4 for k<m.  Let us call a symbolic expression 
of the type 

[Yix Y j  [Yi~ Yi,] .,, [Yi,_x Yi,] [Yi, Yi~] 

a cycle. I f  r can be written as a product  of  two or more non-trivial cycles, 
then we are finished. Otherwise co equals 

[Yl Y2] [YzYa] -.. [Ym-~ Y,.] [YXYm] 

or a permutation of  this cycle (here we may suppose that m_->5). But by the remark 
following the lemma we can write co as a linear combination of  coo . . . . .  oJ e. Now 
o91 . . . .  , coe contain squares, and o9 o is a product  o f  two cycles. By the induction 
hypothesis, coEA, and I~'C=A. Q.E.D. 

Proof o f  Prop. 1.4. The symbolic expressions are 

coa = [YlY~] 2, cos, = [YlY.,] [Y2Y3] [YaYa], 

cot = (x, Yl)2, and co, = [Yl Y2] (x, Yl) (x, Y2). 

Let A be the algebra generated by these elements and operations with the symmetric 
groups. We will prove with induction over m that Cz,.eC=A for all m and e. 

I f  rn= 1, then the only possibility is 7, and if m = 2 ,  then the only possibilities 
are A, 6, and 7 2. Suppose t h a t  E~eC=A for k<rn, and let fE(~.~  for some e. 
We may suppose that coy contains at least one scalar product ( , ) ,  for otherwise 
f is an element of  I2, and this is generated by A and s3. We may also suppose that 
col doesn't contain any squares [ ]2, ( , )2 ,  for then we are finished by the induction 
hypothesis. Thus co s must be a product  of  cycles 

[Yx Y2] [Y2 Y3] ... [Yk-~ Yd (X, y~) (X, Yk) 

and permutations of  such Cycles. I f  coy is a non-trivial product, then fEA by induc- 
tion. Otherwise k equals m and 

col = [YlY2] ... [y,,,_:ty,,,](x, yx)(x, y , )  

or a permutation of  this cycle. By the lemma, then~ ogl is a linear combination of  
coo, .-., toe. Since 091, ..., co8 contain squares, and coo is a product  of  one element 
of /~  and one element of  some ~ . ~  with m'<m,  we must have ~ , ~ A .  Q.E.D. 

Thus it seems to be much more difficult to find explicit S-algebra generators 
of  id and Cd than to find" algebra generators of  their commutative counterparts. 
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This is at least partially due to the fact that the Hilbert series H(]'~, t) and H(Ca, t) 
seem to give little or no direct information on the degrees of the generators (see 
[4] and the last chapter below for some information on these Hilbert series). 

2. More on the Structure of  the Algebra 171 

As has been noted earlier, the space of invariants ix ~ has an S~-module struc- 
ture, where S~ acts by permuting the factors. We denote the irreducible S~-module 
corresponding to the partition 2 of 2q by M ~. 

Proposition 2.1. As Sza-rnodules, ]~_~ M (q'q). 

Proof. Let T be the tableau 

1131 12q-i I 
-5-1 I-L-I--Tq i 

corresponding to the partition (q, q) of 2q. Let further Cr(Rr)  be the subgroup 
of S~ stabilizing the columns (the rows) of 7". Then 

(a0 ax -  al a0) = e r ( ( a o  al)q), 
where 

er = Z ,~cT  (sgn n) n~6k [S~]. 
QERT 

Hence 
= kE&leT((aoa l )* ) .  

We have an S~-morphism 
k [Szq] er --" Ix ~ 

a ~ a (ao al)'), 

which obviously is non-zero. Now er is a primitive idempotent of k[S~] corre- 
sponding to projection onto the irreducible module M ta'~) (see [11]). Thus the above 
morphism is injective, and since it obviously is surjective, it is an isomorphism 
of  S~-modules. Hence l~_k[S.~]er~_M c~'~. Q.E.D. 

Corollary 2.2. dim s J'x ~ = 
q + l  

Proof. By [17], Ch. I, w 7 and w 6, Ex. 4, we have 

dimkM cq,~ =Ktq,a~.cl,o ~ = (2q)!/h((q, q)), 
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where h(2) is the product of the hook lengths of the partition 2. Since 

h((q, q)) = (q+ 1)q(q-  1)...2. q ( q -  1)... 1 

= (q+ 1)(q!) ~, 
the corollary is proved. Q.E.D. 

Hence, by a combinatorial coincidence (?), the dimensions of the invariant 
spaces i ~  equal the Catalan numbers. From [7], p. 53, it follows that 

a(7~, t) = ~--Zr(1 - Z~-4t~). 

This is also proved in [4] by other methods. 

3. Gordan's Theorem in the Noncommutative Case 

Gordan, The King of Invariants, proved that the commutative algebra Cd 
can be generated by the element y (see above, p. 138) and a certain kind of mappings 
C~• called transvectants (~Jberschiebungen in German). We are here going 
to extend this theorem to the noncommutative case. It is easy to see that Gordan's 
own proof in [10] immediately carries over to our situation, wherefore the exposi- 
tion here will be rather sketchy. 

Before we begin proving the theorem, let us note that the symbolic expressions 
have "a life of their own", we can manipulate such expressions whether or not 
they can be interpreted as invariants or covariants. 

First we will introduce the notion ofpolars ([I0], w 2). Let 

, o  = (x, y l ) ' , . . .  (x, y , ) ' ,  

be a symbolic expression without brackets [ ]. Introduce a set of new symbols 

Yxx, .... Yxmx, Y~I . . . . .  Y~m~, "", Y,m, 
and define 

= (x, yla).. .  (x, y , , , ) . . . (x ,  y , , . ) .  

Let further n be a non-negative integer =<rex+ ... +m,,  and let x" be a new variable. 
Replace x in ~3 by x' in all possible ways and add the resulting symbolic expressions 
(which now contain the symbol x'). Divide by the number of terms 

(mx +.n .+  m,) 

and finally replace Yl, . . . . .  Ylm, b y  Yl . . . . .  YrX . . . . .  Yrm, by y,. The resulting symbolic 
expression is denoted by cox,-, and is called the n'th x'-polar of~o. If n>m~+ ... +m, ,  
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we define tox," =0.  Note that if we replace x' by x in the nth x'-polar we recover to 
(if n~_ml+...+m,, of course). The definition seems complicated, but a few ex- 
amples will make everything clear. 

Example1. If ta=(x,y)' ,  and n~_r, then 

�9 . y ) , - . .  tox'" = (x ,  y) (x, 

Example 2. If to=(x, yl)s(x, y2) 3, then 

---- 1 (3 (x', yl) a (x r Y2) (x, y~)2 + 9 (x', yl) 2 (x, Yl) (x', y~)~(x, ya) tox,~ .~- 

+ a (x', y~) (x, pl) ~ (x', y~)~). 

W h e n  to c o m a i n s  brackets  [ ], we  consider these as constants  when  we  c o m p u t e  
polars, e.g., if co = [YlY.~] (x, yx) a, then 

tox" = [Yl Y~] (x', Yl)' (x, Yl). 

Let us call n the order of the polar COx,.. 

Example 3, If to is as in Example 2, then 

coX,,- (x', yl) ~ (x, Yl)(x', yz)~ (x, Y2) 

= ~- ( (X ' ,  y l )  a (X ' ,  y~)  (X, y~)~ - -  (X ' ,  y l )  2 ( X ,  Y l )  ( X ' ,  y2) 2 (x, y~)) 

((x', Yl)(x, yl) 2 (x', y2) a -  (x', yl) 2 (x, Yl)(x', y2) 2 (x, Y2)) + 6  

1 p = ~- <x, Yl>' <x', Y2> <x, Y2) (<X', Yl> <x, Y2>-- <x, Yl> (x', Y2>) 

1 , 2 P + ~- (x ,  Yl) (x,)'1) (x', Y2) ((x, Yx) (x ,  y.~) -- (x', Yl) (x, y~)) 

= --~ [yl y~] (x', yl) ~ (x', y~) (x, y~) [xx'] 

1 X p + ~ [yly~] ( , yl)  (x, yl) (x',  y2) ~ [xx'] 

X p X p = ~ [Yl Y2] (x', Yl) ( , Y2) ( -  ( , Yl) (x, y~) + (x, YI) (x', y~)) [xx'] 

1 �9 = -~ [y~y~] (x ,  yl) (x', y~)[xx'] ~, 

where we have used the identity 

(x, y) (x', y ' ) -  (x', y) (x, y ')  = [yy'] [xx']. 
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Hence 
(x', yl) 2 (x, Yl) (x', yz)2 (x, Y2) 

1 2 = w x , , - T  [Yly2] (X', yx) (x', Y2)[xx'p 

1 �9 = c o x , , - T  2) [xx'p, 

where oY=[yly~] ~ (x, yx) (x, Y2). 
This can be generalized: 

Lemma (see [10], p. 27). Let t be a term in the n' th x'-polar o f  the symbolic 
expression w. Then we can write 

t = ~k=o Ck(a~k)~" k [xx'] "'k 

where co k are new symbolic expressions and co, = w. 

Sketch o f  proof, If  o9=(x, yl)m,... (x, y,) m., then a typical term in ~ox, n is 

t = (x, yl)m,-k,(x ", yl)kl... (X, y,)",--k,(x', y ,)k,  

where k~+. . .+k ,=n .  From the identity 

(x, y)(x ' ,  y ' ) - - (x ' ,  y)(x ,  y') = [yy'] Cxx'], 

it follows, if we add and subtract sufficiently many new terms, that the difference 
between t and another term in the polar ~o~.- contains a factor [xx']. The other 
factor is a term in a polar of order less than n of some symbolic expression. Now 
induction on n completes the proof. Q.E.D. 

Remark. In Gordan's book on invariant theory [10], the "symbols" Yl, Y2, --. 
are denoted by a, b . . . . .  and instead of (x, y), etc., Gordan writes a~, etc. The 
brackets [Y~Y2] are written (ab). 

Next suppose that we have two symbolic expressions 

091 = (x, yl)ml... (X, y,)m 

,o3 = (x, z,)",... (x, z,)",. 

AS before, introduce new symbols 

Y l l ~  �9 " '~  Y l m l ~  - " ~  Yrmr~ Z l l ~  "" " Zlnl~ ""~ gpnp~ 
and put 

(51 = ~x, Yn). . .  (x, Y,m.), 
= (x, (x, z , , ) .  

Let h be a non-negative integer less than or equal to m=m~+. . .+m~ and 
n=nx+.. .  +%. Take ya . . . . .  Yh~ {Yn . . . . .  Y,m,}, Z~ . . . . .  ZhE {Zu, -.., Zp,,} and form 



148 Torbj~Srn Tambour 

the new symbolic expression 

[ y ~ ]  ... [y~ z~] IIy,j~yL (x, y,j) H~,j~z'~ (x, z,~). 

Add all such expressions for all possible choices of y~, z k. Finally replace Yij by yt 

for a l l jandz i j  b y z i f o r a U j a n d  divide by the number  or terms ( h ) ( h ) "  The 

resulting symbolic expression is called the h'th transvectant of cox and to s and is 
denoted by Th(r COz). 

If  h > m i n  (m, n), we let %(o~1, o~.,)=0. 
As was the case with the polars, this definition seems complicated, and we 

give a few examples to make things clear. 

Example 4. 

Th((X, yl)k,, (X, y~)k,) ~_ [yiyz]h(X, yt)kt-h(X, y~)k,--h, if h ~-- min(kx, ks). 

In particular, rh((X, y~)h, (X, y2) h) =[y~y~]h. 

Example 5. 

xz ((x, yl)a (x, Y2), (x, ya) ~) = ~- (3 [y~ ya] ~ (x, y~) (x, y.,) + 3 [y~ Yal [Y2 Ya] (x, yl)2). 

Example 6. 
�9 1((x, yl)(x,  y~), (x, y~)(x, y,)) 

= ~- ([Y~ y3] (x, y2) (x, y4) + [y~ yd  (x, y~) (x, y3) + Lv~ ya] (x, y~) (x, y4) 

+[y2y4] (x, y~) (x, y3)). 

We consider the brackets [ ] as constants when we compute transvectants. 
So far the transveetants are just formal functions on symbolic expressions. 

L e t f a n d  g be elements of the algebra ~a. Then zh (~o s,  w~) is a symbolic expression, 
which restitutes to a new element of Ca. We denote this new covariant by z~(f, g), 
by a slight abuse of  notation. Hence we have a method to generate new covariants. 

Example 7. We proved above that  the algebra ~'~ is generated by the elements 
y, c5, A, and sz as S-algebra, where 

and 

,o~ -- (x, y~)~, 

to,l = [yxy2] 2, 

o~, = [y~ Y2] [Y~ Ya] [Y2Y3]. 
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We have 
xl (t,~, t%) = [y~ yd (x, y~) (x, yd, 

"c..(w~, to~) = [yx y~] ~, 
and 

x2(t%, to~) = [Y~Y2] [Y~Ya] [Y~Y3], 
wherefore 6=x~(?, y), A =z2(y, y), and s3=x2(y, 6). 

It is clear from the definitions of polars and transveetants that there is a rela- 
tionship between them. To see this more clearly, let co be a symbolic expression 
and form o~,,n. Replace x~ by z~ and x~ by -z~,  where z is a new symbol. Then 
(x', y) becomes [yz] and [xx'] becomes - ( x ,  z), whence wx,- becomes r,(w, (x, z) *) 
and (cox,~). [xx'l k becomes +rn(w, (x, z)~+n). 

Example 7. If ~o = (x, y~)3 (x, y~)3, then 

o~,,, = ~ (3 (x, yx) (x', yx)2 (x, y~)a + 9 (x, yl) ~ (x', y~) (x, y~)~ (x, y,) 

+3 (x, y~)a (x, Y2)(x', y~)2). 

The substitution x~-~z2, x~-~-z~ gives the expression 
I (3 (x, y~) [y~z] 2 (x, y~)3 + 9 (x, y~)2 [y~z] (x, y~)2 [y~z] 

+3 (x, y~)3 (x, y~)[y,,z]~), 

which equals x~((x, yl)3(x, y~)~, (x, z)2). 
Suppose y is a symbol in a symbolic expression to. Substitute y ~ x : ,  y~-~ -x~.  

Then co is transformed into t. [xx'] k, where t is a symbolic expression not con- 
raining the factor [xx'] (but which might very well contain the symbol x'). This t 
is a term in an x'-polar of some order of some symbolic expression w'. By the lemma 
on terms in a polar, we can write 

�9 �9 / �9 �9 n t = o~,,,. + (wl)~,.-~ [xx ] + . . .  + (w.) [xx ] ,  

where w: does not contain the symbol x'. 
Substituting back, we get 

,o  = + ~ o ( , o ' ,  (x, y).+~)~-~,_~(,~, (x, y).+~)+... + ~0(~o;, (x, y).+~), 
where w', w~ . . . . .  co" do not contain the symbol y. With induction over the number 
of symbols, we get the analogue of Gordan's theorem in the noncommutative case: 

Theorem 3.1. The algebra of noncommutatire r ~ is generated by 
YE ~ and the transrectants %. 

Remark. One can define the transvectants by using the Clebsch----Gordan iso- 
morphism 

Ra| R , ~- Ra+,~ Ra+~_~@... ~ RI~_~I 
also. See [21], p. 57. 
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4. An Algebra Structure on Od~-O Tm(R~) and Od~-o I~' 

The fundamental idea of  the symbolic method is to treat the elements of  the 
tensor power Tm(R~) as multilinear forms on R d. Here we will exploit this idea in 
a slightly different direction. 

Let f be an element of  Tm(R~), and let Yl . . . .  ,Ym be elements of  V*, i.e., 

y~ = q,,X+r/i2Y. 

Then y ~ R  a, and f i s  determined by its values on elements of  this type. This fol- 
lows from the following 

Lemma. Let l: Rd--k be a linear form, and suppose that l (yd)=o  for all 
yE V*. Then l=0 .  

Proof. Let a0 . . . .  , a d be different elements of  k. Then 

l ( (X+a,y)a)  d (~) = ~ j = o  a{ I(Xd-JY J) = 0 

for all i. But this is a system of  linear equations in the unknown I(X d-J Y J), whose 
determinant is det (a/), hence is non-zero. Q.E.D. 

T m R* Now let f~6 ( a , ) ,  i =  1, 2, and put 

(ft  *fz)(Y~l l+d' . . . . .  Yaml+a~) = A  (.Vfx' . . . . .  Yasa)fz(Yfx' . . . . .  Yam')- 

Define 7~ ..... kms O~k i~d ,  by 

Then we get 

(xk~, , .  . .  ~,+d, .... k.,* Xt, ..... t,.)[Yl . . . . .  ydm~+a') 

dl d t dlx d ! ~ d I d t 
: •kl. . . . . .  k m (Yx . . . . .  Ym) Zt ...... t,, [Yx . . . . .  Ym) 

= Xk .... . .  k a [ ~ . j i :  0 1711 ? ] 1 2  X d t - i r l  . . . . .  ~ : 0  ?]ral ? I r a 2  X d , - t Y i  

�9 . . , .  Z , = o n ~ i - ' n ~  x ~ , - ' Y '  . . . . .  Z~'=onm~ n . ,  x d'- 'Y' 

~dl--kt  , k l  dl--k m k m d2--1 j 1 ! dz--I m I m 
= ' / 1 l  ~/12 . . .  ~ m l  ~m2 q l l  q 1 2 . . ,  ffm I ~ m 2  

~dl-rd2--(kl+ll)~kl+ll  dl+dI--(kmq-lm) km+l m 
: '~ q l l  q 1 2  " ' "  ? ] m l  I /m2 

dl +dl i'~,dt +ds dl +dzx 
= ~ k l + l  1 . . . . .  k in+Ira ~.rl , ..., Ym ). 
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Here O<=ki<=dl and O<-li<-d2. Hence we have proved that 

d I d 2 dl  + dll 
~ k  I . . . . .  k m ~ ~( t  1 . . . . .  l m ~ ~ k t + l  I . . . . .  k m + l  m "  

(Of course, this relation can also be taken as the definition of * .) 
This shows thatfx*f2E T"(R~I+d,). Obviously �9 is commutative and associative, 

so we have found a commutative algebra structure on Od~-O T=(R~) �9 We will 
denote this algebra by A m . 

It is graded, and by the relation above, it is generated by elements of degree 1, 
i.e., by the elements in TIn(R*). It is clear that G=SL(2 ,  k) acts as a group of  
homogeneous algebra automorphisms on Am. Hence �9 defines a commutative, 
graded algebra structure on A m -  Od~-O Iff', too. 

In fact, the multiplication �9 looks very attractive on A~: let f~[~, ,  i=1 ,2 .  
1 mdi brackets [] ,  filled with The symbolic expression COy, for f consists o f - ~  

d~ yx:s . . . . .  di ym:S, and we have COs =f i (y  d, . . . . .  y~). Hence COsl*s, is obtained just 
by writing o9r and COy, beside each other. For instance, if 

COy, = [Yl y,ld iC i3, 
then 

O~s~.s~ = [ylY~] d~+d' E i~+d~. 

Since A,, is finitely generated, and G is reductive, the algebra of invariants A~ is 
also finitely generated. Furthermore, the Hilbert series H(A~, t) is rational. In 
fact, it can be computed explicitly: 

1 
H(A~z, t) - 1 - t  ' 

and if m_->3, then 

1 (m) j+a 
= ( -  1) (~o,,_zjhm)(t), n(A~, t) -~? Zo_j<om. j 

where q~ is the Reynolds operator (see the introduction), and h, , ( t )=(t / (1- t2))  m-2. 
For a proof, see p. 167 below. 

Example 1. The algebra A2 is generated by ~ 1 "~ Zo,0, Zo, a, Z~,o, and Z~,x, whence 

A.~ ~ k[x, y, z, u] / (xu-yz) .  

In symbolic notation the elements of the T2(R~):s can be written as [y~y~d, and 
so A~ is generated by 

[YlY2] ~ 1 = XO, l - - X l , o  �9 

As is proved in [24], the Hilbert series of A~ has the form g, ,( t ) / (1-t2)  "-2, where 
g,.(t) is a polynomial. One might ask if this means that A~ is generated by elements 
of  degree at most two. It seems to be rather difficult to prove or disprove this. The 
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problem amounts to showing that a tableau of shape ((~ rod) 2) and weight (d ' )  
can be written as the union (with the obvious definition of  this concept) of tableaux 
of  shape ((-~ m)) 2, weight ( l ' )  (if m is even), and tableaux of shape (m2), weight (2"). 
To see that this is equivalent to our problem, just identify [Y~,YJ,][Yi, Yh] . . . . .  
written so that ik<jk for all k, and iz<-& <<- .... j;<-j~<- . . . .  with the tableau 

I, L I L  l Tl-Si 
(see also [25]; there the symbolic expressions are written as tableaux). 

Proposition 4.1. ,4, is an integral domain. 

Proof. Suppose that fx~0 ,  but that f ~ . f z = 0 .  This means that 

for all yiEV*. But 

A ( H  1 . . . .  , y ~ # ) A ( H '  . . . . .  y'.,.) = 0 

(y, . . . . .  y . )  ~ f ~  (~1 . . . . .  y~#) 

is a polynomial function on V*@...@V* (m terms), whence the set of  points 
(Yt, .-.,Y,) such that fx(Y~', .... y~,)~0 is a Zariski-open subset, hence it is a 
dense subset. This implies that f~(y~, . . . . .  y~) is zero on a dense subset, and so 
j~=0.  Q.E.D. 

Proposition 4.2. The quotient field of  A~ has transcendence degree m - 2  over k 
( i f  m>-3). 

Proof. The transcendence degree equals the order of  the pole t--- 1 of H(A~, t). 
Expand h,(t)  in a Laurent series about t =  1: 

t )m-2 a_(m_2 ) -~ a_(m_a ) 
hm(t) = i-i---S~ ) = ( l_t)m_z (i_~)~--s_z F . . . .  

where 
a-{,-2) = { i m ( l - t ~ - 2 h , ( t )  = 2 -(m-2), etc. 

Hence 
( m _  2 , / ) - - a .  2 - ( - - 2 )  

((Pm-2jhr~)(t) = (1 - l )  m-~' I'- . . . .  

If  m is odd this immediately gives 

1)J+l(m--2j) "-s. 
~ j J  
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I fm is even the pole t=  - 1 ofhm(t) leads to the pole t=  1 of(cp,,-zjhm)(t). Hence 

~im(1-t)'-~H(A~m,t)= 2.2-('-1)Zo~,<(1/s)m(j)(-1)J+l(m-2j)'-s. 

By [21], p. 63, this is non-zero. Q.E.D. 

Remark. This looks very much like the situation when one considers H(I~, t). 
See [22]. 

5. The Cayley--Syhester Theorem 

In the commutative case, the Cayley--Sylvester theorem states that 

dimkCdm~ = A ( ~ ( m d - e ) , m , d ) - A ( ~ ( m d - e ) - l , m , d ) ,  

where A (a, b, c) is the number of partitions of a into b non-negative parts of size 
<=c. For a proof, see [21], Exercise 3.3.6 (1). 

If we let A(a, b, c) denote the number of ordered partitions of a into b parts 
of size -<_c, then Brion ([5]) has proved that 

dimk T~" = .~(1 md, m, d ) - X ( ~ md-  l, m, d ) . 

Furthermore, Teranishi has proved ([24], p. 6) that dimk i~" also equals the number 
of tableaux of shape ((-~ md) 2) and weight (d') ,  i.e., 

dimk i~ = K(((:12).,a),), (d"), 

where K is the Kostka matrix. 

has the trace ~_l+~_t+2+.,. +~Z=hl(~, ~-1) on Rz, where h denote the complete 

symmetric functions. Hence the trace of [~0 ~-1/  on T'(RD| is 

where (d m, e) should be read (e, d m) if e>d. We also note that if 2=(21, 22) is 
a partition, then 

s~(~, ~-~) = ( ~ - ~ , + ~ -  ~-(~,- ~,+~))/(~- ~-~). 

and s~(~, 4-1)=0 if l(2)>2. 

Proposition 5.1../Is G-modules, 

Tm(R'~)| R, ~- �9 RT', 
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where 
*tl = K( l /2 ( rad+e+l ) , l / 2 ( rad+e- l ) ) , (dm.e ) ,  

1 ( m d + e + l ) r  which should be interpreted as zero i f  

Proof. By the general representation theory of G, we can write 

~1+1 ~--(I+1) 
h : . e ) ( ~ ,  C -1) = Zt_~0 *tz ~-~-1 

for some non-negative integers *t~. By the theory of symmetric functions, we have 

hca,.,o(C, ~-x) = ZI).I =md+eK:.,(am,e)'X(~' C-X)" 
I(X) ~_ 2 

Comparing these two expressions, the proposition is proved. Q.E.D. 

Proposition 5.2. 

dimk (~d,,e = K((ll2(rad+e))'),(a".e) = "~ ('~ ( m d +  e), m, d) - X (~ ( m d - e ) -  1, m, d ) .  

Proof. The first equality follows by taking l = 0  in the foregoing proposition. 
To prove the second we note that *t0 = dimk Cd,,e is the difference between the coeffi- 
cients of  1 and C 2 in 

Z,z_~0 *tt (~ -z+  ~-z+2 + .--+ Ct), 

hence the difference between the coefficients of 1 and C 2 in 

(C -d+'''+Cd)m(C -e+' '"  + ~ )  = (Z~:0d ... d ~C~-~.)+...+(d-~.~) (C-~+. . .  + C0. 
Zim=0 

In the first factor the coefficient of C j equals the number of  m-tuples (i~ . . . . .  l",,) 
such that O<-i~, . , i~<-d and i~+ �9 1 . . . . .  +lm=-r ( rod- j ) ,  whence 

(C-d 2y ... .~_ Cd)ra(c-e Av ... Qy Ce) = Z i.j 2~ ( l ( , n d - j ) ,  m, d)  Cj+e--21 

This shows that 

*to = 2 [ = o . 4  ( � 8 8  m, d ) - Z ~ = 0 . 4 ( { ( m d + e ) - i - 1 ,  m, d) 

= . , 4 ( a ( m d + e ) , m , d ) - A ( - ~ ( m d - e ) - l , m , d ) .  Q.E.D. 

The method of proof is taken from [4], p. 206. 

Proposition 5.3. A k-basis for  ~a~,, is symbolically gi~'en by 

[YixYix] "" [Yixno.,,a_,,, Y/,/t,,.a-,,1 (X, Yi~/tt~d-,O +~) ''" (X, Yl,/,,,.,~+ ~ 

�9 x (rod-e) .  where ll <- i~ <- . . . .  Jl <=J~ <=..., and i k <Jk for  k = 1 . . . . .  -~ 
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Proof. Let us order the set of monomials ava~.. .a,m 
graphically, i.e., 

a ~ . . .  av,, < a ~ . . .  a r  

of degree m lexicog- 

if and only if the first index that separates the two monomials is less in avl.., than 
in av~ . . . .  Let ]3 (k) be the number o f j ' s  in the element in the proposition equal to k. 
Then it is easy to see that the least monomial appearing in the expansion of this 
element is 

a#(1) a~<~) ... aao~ ) 

(it appears multiplied by ~) .  Hence different such elements have different least 
terms, wherefore they must be linearly independent. If we identify these elements 
with the tableaux 

i~ i2 ... } il/2(md-e) ix/2(md-~)+l ... il/2(md+r l 
-'~l---~2~..[Jll2(md_e) m + l  . ~ . ~ [  

we see that their number is precisely 

K{(1/2(md+e))~),(dm.e) = dimk ~dme" 

Remark. For e = 0  this is a theorem by Teranishi ([24], p. 8). 

Q:E.D 

The structure of iff' as an Sin-module 

As was noted in the introduction, the tensor space T'~(R~) carries the structure 
of a module over the symmetric group Sm, which acts by permutations of the factors. 
This action commutes with the action of G=SL(2 ,  k), whence the subspace of 
G-invariants i~' is also an Sm-module. Here again it is more natural to consider 
the object @a i~' than to study the algebra Oa i~', since the spaces i~' for dif- 
ferent m are modules over different symmetric groups. Hence We are led to study 
a formal power series 

r." 

where ~ is the Sin-character of i~' (the ring R was introduced in the introduction). 
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1. The Decomposition of  Tm(R~) into Irreducible S,,-Modules 

We let .4 =k[Sm] be the group algebra. 

Definition. For /~=(~, /z l  . . . . .  /I~)EN d+l, we let 

I/tl = / t o+ / l l+ . . .+ / z4 ,  

analogously to the definition for partitions. 
I f  I#l=m, we let 

ao ~ tl//0~Ol ~ o  ~ . . .  at'd~7 m(RD. 

I f  P is a finite-dimensional Sin-module, let 

P =  ~[~ Me(A) 
Ixl =,. 

be its isotypic decomposition, i.e., Me(2 ) is the sum of  the submodules of  P iso- 
morphic to the irreducible module M a (see the introduction). 

If  /~6N d+x, then we can rearrange the components of  # to get a partition. 
We denote this partition by f(/~). 

Since a o is an element of  T=(R~), it generates a sub-S.,-module of  Tm(R~), 
namely Aa o. We let its isotypic decomposition be 

Aa o --- ~ go(A) 

for the sake of  simplicity. 

Lemma 1.1. Aao~_ind~.~(ls,,), where So=S~ • •  and ls ,  is the trivial 
character on S o. 

Proof. Obviously a o generates the trivial So-module. Let ax . . . . .  a, be a set 
of  representatives for S=/S  o. Then 

"n $,n I ds, (ls~) = ls,@k[s,]k [Sin] 

is spanned by {a~ | We have a surjection 

indsS~,(ls,) -~ Aa o 

ao| l ~-~ oia o. 

Since dimk (indS,~(ls))=m!/l:o! lh! ... I~d! =dimk Aa o, the lemma is proved. Q.E.D. 

It now follows from [17], w 7, that if r/(/~) is the Sin-character of  Aa o, then 
ch (q(/t))=h$~a). But 

h.t'~o) = 2 4  (K')/~o)a sa = Z a  K~:oO sa 
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(here K' denotes the transpose of the Kostka matrix K), whence 

Aa~ ~ @ (M~)'c.,c., 
A 

as Sin-modules. Now let v be a partition o fm with length ~ d +  1. Then we let c, be 
the number of/zEN d+x such thatf(#)=v.  It is easily seen that c , = ( d +  1)!//-/i~o ml(v), 
where mi(v) is the number of i 's in v (and mo(v)=d+l-l(v)) .  We can now de- 
scribe the decomposition of Tm(R~): 

P r o p o s i t i o n  1.2. T m (R~) ~ ~ 141 = ra (M a),~, c, ~ , ,  where v runs through all parti- 
tions of  m of  length <=d+ 1. 

Proof. Let the character of T'(R~) be ~7. Then 

,I = Z . , 7 ( # )  

where /~6N d+l and Ipl=m. Thus 

chO1) = Z ,  ch(~l(p)) = Z~  by(u) = Z ,  c,h, 

where v runs through all partitions of m of length <_-d+ 1. Hence 

ch (rl) = ~ z. ~ c, Kx, sx Q.E.D. 

Lemma 1.3. In the decomposition 

T ' (R~)=  �9 Mr,-(R*~)(2) 
I,q =m 

the isotypic components Mr,,(z~)(~) are sub-G-modules of  T'~(R~). 

The proof is obvious. 

Cons ider theb inary formz~a , (d )x ' - 'Y  '. Take g=(0~ ~ - 1 )  in G. Wehave 

g . [ ,~a , (d )  xd- 'Y '}  = z~ a , (d l (g .X)d- ' (g .Y) '  

: Z a , [ d ) ~ - t a - o X d - i : ' Y ' = z ~ a i ( d l ~ - " + 2 ' X ' - ' Y  '. 

Hence a~-~-d+2ia~. If now aa,6AauC:Tm(R~), then 

The character of M~(2) as a T-module (where T is the subgroup of G consisting 
of all diagonal matrices; note that M~(2) is not a sub-G-module) is therefore 

(dim k M~,(2)) r = (dim k Ma ) z~, K~f(~)~Z (a+,o~,. 
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Summing over/t ,  we get the character of  Mr,- (R~*) (2) as a G-module: 

(dim k M ~) ~ K~I(~) ~,r (-d+2o , ,  = (dim k M ~) K~v ( ~ ,  =s(v) C "r (-d+21)"') 

= (dimkM;t ) .~K~m,(C a, C a-2, ..., i-d), 

where in the  first sum pEN a+l, I/~l=m, and in the second v is a partition of m 
Of length =<d+ 1. In the third sum, v runs over all partitions of m (if l(v) > d §  1, we 
let m~(r a . . . .  ,C-a)=mv(~ J . . . . .  C -a, 0 . . . . .  0) with l ( v ) - d - 1  zeros (and this is 
zero)). 

But now K is the transition matrix M(s,  m), by definition, whence 

Z ,  K ,m, = 

Denote the G-character of Mrm(n*)(2) by Za, m(2). Summing up, we have proved: 

Theorem 1.4. In the isotypic decomposition of  Tm(R~) as S~-module, 

T'(R~) = �9 Mr,,(a~)(2), 
141=m 

the isotypic components MT,-(R~)().) are sub-G-modules with characters 

Zd,,,(2)(C) = (dimk M~)s~(C d, ~a-~ . . . .  , C-a). 

Remark. By [17], p. 62, dimk MX=Ka, o,,). Thus 

ZI~I=~ z~,.O.)(~) = Z ~  K~.(~-~s~(~ ~ . . . . .  C -~) = h~-~(~ a . . . . .  r  

=,(hl(~a . . . .  , ~--a))ra = (~a+Ca-2 + ... + C-d),, 

This is a complicated way to see that Tm(R~) has the character (;~a(C)) m a s  a 
G-module. 

Corollary 1.5. The character o f  Sm(R~) as a G-module is hm(r a . . . . .  C-a). 

Proof. The space S~(R~) consists of  the symmetric tensors in Tm(R~), i.e., 
m * _ _  m * S m S ( R a ) - T  (Ra) . Now the trivial Sin-module corresponds to the partition (m), 

so the G-character of S '(R~) is S(m)(~ a . . . . .  ~-d)=hm(~ a, ..., c-d). Q.E.D. 

Corollary 1.6. The character o f  the antisymmetric part Am(R~) o f  T~(R~) as a 
G-module is em(~ a . . . . .  ~-d). 

Proof. The antisymmetric par A (Rd)--Mr,(R,)((1)) corresponds to the sign 
character of Sin' hence its:G-character is s(x,)(~ d, ..., C-a)=e~,(~ d . . . . .  l-d). Q.E.D. 
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2. The Decomposition o f  i~  

We are now ready to describe the decomposition of  the invariant space i~' into 
irreducible S,,-modules. 

Let F~ m be the S,,-character of  7~'. Then 

F~ m ~- ~ l A l = r n  ax(d, m)x  ~, 

where Z ~ are the irreducible Sin-characters , and the coefficients can be written 

az(d, m) = f . . . .  , i -a) ,  

since (dimk Ml)s).(~ a . . . . .  ~-a) is the G-character of Mr~(n*,~(2). Now this integral 
is not easy to evaluate directly. Instead we are going to study a formal power series 

Za~_o Ff' t"ER [it]]. 
First a 

Definition. If  p=(/l~, li 2 . . . . .  p~)E N",  we put 

I ~ I = Z ~ ,  and n ( p ) = Z ( i - 1 ) p ~ ,  

as for partitions. 

Let us also say that p ( ~ c #  (2~ if p}~)=<p~2) for all i. In this case we define a 
"generalized binomial coefficient": 

When ~ is a partition, and pc)~',  but not necessarily a partition, let 

1 - - t  •  
t2(lul+n(~)) 

f g . ( t )  = lrf J~-I (1 -- t2J)i'J 

Theorem 2.1. We have 

Za~_or2'ta=Zt..=m[Y~,~l=,.(K-i)~.,Y~.c,: ['V] (- 1)'"1 @m_21.t f~A (t)) Z" 
l u i< (112)m \ ~ ] 

where {)~v; Ivl--m} are the irreducible characters on Sin. Hence the coeOTcient o f  f f  
is a rational function. 

Proof. We will compute in the ring of  symmetric functions A, i.e., we will 
apply the characteristic map. By [17], Ch. 1, w 4, we have 

X a  ~_ o ch (Fd ~ ) t a = Z a  ~_o g li t = ,, f (1 - 42) sa (~a . . . .  , ~-  a) sa (y) t" 

= Z. _o =m f ( 1  ha(~ a . . . . .  ~ -a )  mz(y) t a, 

where y is a new set of  polynomial variables. 
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Fur thermore ,  
h~(~ ~ ..... ~-0 

[d+;q(e ) 
= ~ - I X l ~ / / ~  x ha , (1 ,  ~, . . . . .  ~ju) = r  t a, .I 

= ~-I~tl'~ H,_~ ~ 

In this product ,  the factor  

(I  - {2(4 + x,)) ( I - ~ ~(~ + x , -  ~ ) . . .  ( 1 - r + n )  

(1 - ~") (1 _ ~ a ) . . .  (1 - ~z'h) 

(1 _~ua+l) )  
(1 -r 

appears as many times as there are 2~s greater  than or  equal to 1, i.e., ;t~ times, and 
the factor  

(1 - ~(~ + 2)) 

(1 _ ~ 2 . ~ )  

appears as many  times as there are 2 i s =>2, i .e . ,  ).2 times, etc., wherefore 

ha(~d . . . . .  ~-a) 

l-~2<d+j))6 /-/'1-~1 (~d+:_~-<,+j, 1,~; 
=~-IMd/'/J-~X( l--~2J = ~J_~-J 

fo ~n j k#]) 

2' = II.I.X (~J--~-J)-;~',~,uc;," ( itl (--1)l~l ~(a+X)tlX'-zlt'll+nt;")-~n(u), 

where in the last sum It does not  have to be a part i t ion,  just  a sequence o f  integers. 
Summing the geometric series, we get 

Z~o h~(G ..., ~-~) 

= HI_~ (r Z ~ '  ('~)(-1)1~' 
~lXl-~ I111 +n(z')-~(~) 

Instead o f  summing over It, we sum over 2 " - #  (the set-theoretic difference), and 
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obtain 
Z~_o  h~(~' . . . .  , r 

= r  l)j~l//~_~x (l  - r ~ . ~ a ,  (_  l~la - I . I  " 

=//'d_~x (1 :~zj~-~; ~-, -, ( -  1)l,I 

Hence 
~lal-zl.t~ t 

~',~o ch(G ~) d 

=Zl~t:= 2 ~ f ~  ll~,(l_e~,~ga; Z.~" (-1)l.I d(lal_,l~j)x t dx. 

Now let t be a real variable with 
unit circle C: 

Write, for the sake of  simplicity, 
following poles in the unit disc: 

~llXl_ 9. It, i / U ( i , q - 2  Itq), 

and the residue theorem gives 

Za~_o ch(Fd') ta 

0 < t < l ,  put z=d x, and integrate around the 

Z.~o ch(r:) d 

m~(,) l - z  z , (~) z lal+•(")-' 
2hi fc z.c ' (-1)*., zl.l_Zl.l_t dz. 

e .=exp  (2ni/n). The integrand above has the 

= ~'lal =m m~(y) ~'uc~' (-- 1) I~d X 
Ip[<ll21~l /a 

�9 ~-1~1-2]~1 ( l  - ~  . ~ / ( l ~ l _ ~ l ~ l ) ~ ( l ~ l •  t (~( l~l+~n(u))) i (  a - ~  ~ ) X 
- - ~  ~ ) ~I~.1-7~i/~i �9 ,,. - - | .  

By the definition of the Reynolds operator, this equals 

~'l~l = .  rex(y)~'~c~, ( ~ )  (-- 1)1~1 (cP.-, lul f ~ . )  (t)- 
1#1 < (l/2)m 

I f  we take 1 - e  - ~  in the numerator of  the integrand instead, we get fa-~, in the 
result. The theorem follows on noting that the transition matrix M(m, s) equals K - L  

Q.E.D. 
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3. Some Examples 

Here we will explicitly compute  Zd-~0 F~ 'tn for  m = 2 ,  3, and 4. At  the same 
time, we will once more  see how powerful  the symbolic method  is. 

Example3.1. Let  m = 2 .  Then  

~d~_o eh(F~) ta -= ~l~l=2 m;.(Y) ~u=;e ()~) (-1)lul(~~ fff, u)(t) 
lul <x 

= m ~  (y) (~P2 f~+~, 0) (t) + m~t ~ (y) (~p, f~+.~), 0) (t) 

((1 l - t 2  ~ ( l - t 2  ) 
rn<2)(Y) ~Oz - - t ' - ~  "-- t 4) J + m(1 .~)(y) qgz I, (1 -- t2) ~ ) 

m~z)(y) m(l~)(y) s~2)(y)- so,)(y) s~l,)(Y) s~2)(Y)+ tsci~(Y) 
- -  l _ t 2  t- 1 - - t  = l - - t  2 + 1---------T- 1 - - t "  

Hence 

~a~_o F2 I d _ Z(z) + tz (~') 
1 - t 2 

This can be seen in another way by use of the symbolic method. In fact, symbolically 

a basis element o f  iff' has the form 

[yly ] d, 
so if  I ~ a E S ~ ,  then 

tr [yxy2] a = ( -  1) d [yl y2] d. 

I f  we interprete Ff  as a funct ion on $2, this means that  

Ff (1)  = 1, and F~Z(o) = ( -  1) d. 
This gives 

1 1 
Zn_~0/'2(1) t n = ~ and z~n~0 Fd~(a) td = 

1 - - t '  l + t "  

We now get (here ( , )  denotes the scalar p roduc t  on the space o f  central functions 
on a group)  

Z. _o t" = Z / 

l 2 2 a 

_ _  1 ).  2 

1 1 Z ~ ~+tZ 
=--2  + Z~z)+ 1 t l + t  g ~  = 1 - t  2 
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Example  3.2. Let m = 3 .  Then  

~'lat=a ma(Y)~'ucx,  (2~) (_  1),ul(q~3_21ulf~.~)(/)" Za~_och(Fd")d 
lull1 

For  1=(3) ,  the possible / t c 2 '  are / t=  (0, 0, 0), p = ( 1 , 0 ,  0), p = ( 0 ,  I, 0), and  
p = ( 0 ,  0, 1). Fo r  2=(2 ,  1) we may take p = ( 0 ,  0), p = ( 1 ,  0), and  /~=(0, 1). Fi- 
nally, for 2 = ( H ) ,  we get p= (0 ) ,  and  p=(1 ) .  

Hence  the coefficient o f  m(~)(y) is 

(~Pa f(z).(o, o, o)) (t) - ~Pl(f(z). (1. o, o) +f(3)(o. 1, o> +f(a). (o, o. 1)) (t) 

1 - -  t 2 f 1 - -  t 2 + t4 + t6)) 
= q~3[ (I  - tz)(1 ---#)(I  - #) ) - t  6) --qg~ ((1 -- t2) (]'---Z'#) (1 (t2 

( 
= q~z " ( l _ t t Z ) ( l _ t 6 ) )  ( l _ # ) ( l _ t  6) 

1 t 2 1 
= ( l _ t 2 ) ( l _ : )  ( l - t~ ) (1 - -~  4) = l_t------- T .  

The  coefficient of  m(2,1)(y) is 

(~03 f(2,1), (0, 0)) (t) --  ~01 (2f( 2,1), (1, 0) -~-f(2.1). (0 1)) (t) 

( 1 - - #  ) ( l - - t  2 ) 1 
= ~Pa "(1 -- # ) ' ~ - -  t*)J -~ol (1 - tz) 2 (1 - t 4) (2#+/4)  = 1 -- t 4 ' 

and  the coefficient of  m(x,)(y ) is finally 

(93 f(1,). (o)) (t) - 3 (9~ f(1,), (1))(t) 

, ~ ! (  1 - t  2 ~ [' l - t  2 ) = 1 

q'3tO-t  3j-aq'  1-t " 
The  Kos tka  matr ix is 

and  

K 3 =  1 , 
0 

K s  1 -  , 
0 
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whence 

~d~-o ch(F~) d ~ mo)(y) 1 1 = + ~ m(2A)(Y) +-f'Z'-ff re(is)t,) 

1 1 ~--" ~ (3'(3) (Y) --'$'(,,1) (Y) + S(a z) (y)  + 3'(2,1 ) (y)  -- 2-7(11) (Y) "~ ( -{- t2) S(la) (Y)) 

and so 

= s(3~(y)+ t2s(x,)(Y) 
1 - #  

I -- 14 " 

We note that the coefficient of Z(2.1) is zero. The formula can also be proved using 
the symbolic method. A basis element of i~ is 

[Yl Y da[Yl ya]"[Y=Y3] q 
and 

(1 2 ) [yx y,]'[yl ya]a[y, ya] a = (-1)q[yly2la[yly,]'[y~ya] a, 

(1 2 3)[yxyJ'[ylya]q[y=ya] ' = [ylyz]qLvlya]q[y, y3] a, 

whence the value of ~ on an element of cycle type (2, 1) is ( -  1) a, and on (3) it 
is 1. Now the same method as in Example 3.1 can be applied. 

Example 3.3. Let m=4.  We leave out the computations, which are long, 
and only give the result: 

X (4) + t(1 + t) X r~') + t a Z (1') 
2 d ~ ~  = (l-t~)(l-10 

We note that the coefficients of X (3'1) and X (2'1') are zero. Of course, the symbolic 
method can be used to prove this formula also. Let us just record some results: 
base elements of i~ are 

F= = [ylyz]'[yaya]a-=Lv, y4]J-'[yay4] ", 0 ~_ s ~_ d 

(so sim~ i ~ = d + l ) .  This follows from Section 5 in the chapter with applications 
of the symbolic method, Some computations give 

(1 4)F= = Fd_ = 

d d - , ( d  s)  
(I 2 4)F, = ( -  1) 2 ,=0  ~. ( -  1)'F~ 

(1 4)(2 3)F, = F, 

) / (1 2 3 4)F= = ~Y,~-o d~.s (_ l) 2.~=o j ( -  1)JFj . 
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Let the value of  F~ on an element of cycle type v be F~(v). 
mulas give 

r / ( ( l ' ) )  = d +  1, 

F}((2, 12)) = ~-(1 + ( - 1 ) ' )  

F~((3, 1 ) )=  ( - 1 )  e "t(ll2)el(-l~*(dTs ) 

Fd'((22)) = d +  1, 
and 

rl((4)) : ~(1 +(-  0d). 

The same method as in Example 3.1 gives the result. 
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T h e n  the  a b o v e  for- 

4. A functional equation 

Write 
Z~_o r? / = Zl~l=. e~(Ox ~ 

where P~(t) are rational functions. As usual, we denote the conjugate of  the parti- 
tion 2 by ;t'. Remember that there is an involution co on A defined by co(e,)=h,, 
and corresponding to multiplication by X (*") (the sign character) on R=. Also note 
that X ~' =Xw")X ~. 

Theorem 4.1.  

~al2l=ra ez(1/t))~ "t : ( -  1) mr2 ~ ,  [,q=m PA'(t)z z : (-- 1) rot2 ZlaJ  =m e2(o~ a'" 

Proof. First of  all, we have 

e~(~e . . . . .  i -d)  = r ea,( 1, ~ . . . . .  ~e) 

= , -  la te / / i ra  ~a,(~,-a' [ d~  1] ( , 9  

= ~-Ixl e Ht~_x Cx,(x,-1) (1 - -  ~ 2 ( d + 2 - 1 ) ) ( 1  - -  ~ 2 ( d + 2 - - 2 ) ) . . .  (1 -- ~r 
(1 - -  CZ)(l --  ~ ' ) . , .  (1 --  r 

= r a~w)/L-~, (1 
i - - ~  ) 
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Here  we have  used the identity 

(see [17], Ch. I, w 1). We now get 

X,~_o s~.(~" . . . . .  ~ -" ) s~O,)  t" = 2;,_~o e~(~" . . . . .  ~ - " ) m ~ ( y ) r  ~ 
I,q=m 

,~l~t=mm>.(y)(,~d~_O (~(d+2-j)__~-(a+2-J),~, la I 

= ~ ' . j = o  ~/~j~ 

(~1  0~'-21"1-'(~')+~'(") 

= Z l ~ l = = / / i _ ~ l ( ~ J _ ~ - / ) - a i Z , c , .  (--1)l~l ~lai-21~l--t m~(y). 

Proceeding as in the proof  of  Theorem 2.1, we get 

where 

Now 

~d~oOg(ch(Fdm))td= X,~o(f(1--r177162 ... . .  r :s,(y) 

= Zlal=mm~.(y) Z~ca. (A'la)(- l)lul(q)m-Zl~lg~a.~)(t), 

g~.#(t) = 
1 - - I  + 8  

/-/j_~l (1 - t2J)a~ 

| - -  t 2 t-2(Ittl+n(~)) fs 
//j_~l (1 - t-zJ)a'~ 

l - -  t 2 t2tlal+.t~'Dt-2qul+.(u))(_ 1)lal = (-- 1) TM t2Hal-21~Dgf, u(t), 

wherefore 

[~'} (-- l)]Itl(fPm-2lplf~,p)(1/t) ,~l;,l=m Pa(I/t)sa(y) = 2 1 2 1 = m  m ~ ( y ) , ~ . = a ,  /~ 
/~ <(l/2)m - - 

= ~tal=m m a ( y ) Z u c a .  (~)(-1)l"l(-l)lalt2(~P=-.,I,igL,)(t) 
lUI <(XlZ)m 

= (-1)mt2Zd~oOg(ch(F~'))td = (--1)=t2Zl~l==Pa,(t)s~(y ). Q.E.D. 
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5. Some consequences of  Theorems 1.4, 2.1, and 4.1 

We denote by RG the representation ring of  G=SL(2, k), i.e., R~ is the free 
abelian group on Ro, Rx, R2 . . . .  , with multiplication induced by the tensor product 
over k (for the details on the structure of RG, we refer to [1] and [2]). 

Definition. Let 2 be a partition. The Schur module (corresponding to 2) is 
defined by 

S~( R~) = det ( SZ,-~+ J ( R~))~,.j~_m~ R~, 

where m=>l(2). This definition should be compared with the relation 

sx = det (ha,_~+j)l~i.j~_m 

between the s- and h-functions. We will prove below that the Sa(R~) really are 
modules (this fact also follows from Schur's thesis, see [19], p. 43). 

Proposition 5.1. a) The Schur modules SX(R~) are modules. 
b) 

Mr,.(R* ) (2) ~ S~(R~) KaO") 

(i.e., Kau,. ) copies of  Sa(R~)) as G-modules. 
c) 

.~a_~0dimk(S'l(Rff)G)t n = Z i , l = m ( K - ' ) . a • , c r  fvl](-1) '"IC, ,_, , , ,y , ,~,)( t) .  
lul ~:(l/2)rn \ ,b/ l  

Proof. The (possibly virtual) G-character of  S~(R~) is 

det (ha,_,+~(~ d . . . . .  ~-d)) = sa(~a . . . . .  ~-d), 

since S a,-~+y (R~') has the character ha,_i+j(~ d . . . . .  ~-a). Hence Km.~ ) copies of  
S~(R~) has the same character as Mr.-tR]~()0 by Theorem 1.4, which proves a) 
and b). 

It follows that 

Zd_~O dimk ( S~( R~ ) G) t n 

is the coefficient of  X a in Z F~ t d, and thus c) follows from Theorem 2.1. Q.E.D. 

Proposition 5.2. I f  m~3,  then the Hilbert series of the algebra d~ is 

H(A~, t) = - ~ -  z~oaj,:(1/2)m (-1)J+lfDm-2j ~ �9 
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Proof. We have dimkTff=Fff(1), where 1 is the identity element of Sin. 
Hence 

H(Aa=, t ) =  ~alvl=m~lal=m(K-a)~v ~ucz" (2~}(--1)lul(~~ 
]#[ <(l/2)m 

= Z [ v  I =m Z I 2 I  =m (K-1)~.v gv(1 m) Z.uC2" [/It] (-- 1)lul (qOm_ 21~, I f~u)(t) 
I~', <(l/2)m k/-'/l 

= Zu~(m> [(m)] (_ 1)1.t (~o.,_elul f(x~=) .)(t), 
lul<(ll2)ra ~. /.t : 

since ff(1)=Kv(1,. ) and ~ , ( K - 0 ~ v K ~ ( : ) = I  if 2=(I")  and zero otherwise. 
Now let #(J)=( j )c(m).  Then 

and 

whence 

1 - t  • 
t 2j, j~ i -~ ) , . - ,w  - ( 1 -  :)----~ 

1 ( 1 
f~l~)..,,, (t) + fE- ) , . , , ,  (t) = - ~ C - f - s T  ) . 

H(A~G, t)= ~ Zu=(.)((~)} (- I) 'u ' (qgm- 21,1 (j~X+~),, +~X-"),,)) (t) 
lul <(x/z)m 

= 2--TZo~_j<o/2),, (- 1 I+i . I =-2 Q.E.D. 

We note that by Example 1 in the chapter on the symbolic method, we have dim k 2'ff = 1 
for all d, and so H(A~, t )=  1/(1-t) .  The formula in the proposition is of course 
equivalent to 

, (:) ( ) = 1 1  . ~__ H(A~, 0 yXo_~j<(1/2)~ ( - )  q',~-2~ 0_ : ) ,~ -1  , 

which is also valid for m=2.  
Finally we will give a new proof of Springer's formula for the Hilbert series 

of the commutative algebra Im (see [1] and [22]). 

P r o p o s i t i o n  5 . 3 .  W e  have 

H(Im, t) 
tj(J + 1) 

= Zo~-i<O/,)m(--1)'q~,,-2j ( (1 -  t4)(l__te)...(l__tz(m-j))(l__tZ)(l__ti)...(l__fl}) 
and 

H(I,,  1/t) = (-  1)'tin+all(Ira, t). 
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1'roof. The coefficient o f  Z (") in .~/'ff'd d is z~dimk S=(R~)~t a by Proposi- 
tion 5.1c. But by Hermite's reciprocity law, 

dimk Sm ( R~) ~ = dimk Sa ( R*m) G, 

wherefore the coefficient of X (m) equals H(Im, t). Noting that the coefficients of  
m(m)(y) and S(m)(y ) are equal, we get 

H(/m, t ) =  Z~.~(<I(,~2) m ( ( I ; ) ) ( _  1)l,l(q~m_21.l f(~),,)(/) 

= 2 o _ ~  < ~/~). ( -  I ) '  ~,,._ ~ (2'I .I  =, f~*.,~. ~)(t) 
/Jc(l") 

1, ( : ) ~ l . l = J  t2(j+n(v)) =~,O~--j<(X/2)m(-- )~Om-2j (l__t4)(l__f). . .( l__fm) .cO") 

j 1 f(m- x))~ = ~,  0~--j<O/~)m (-- 1) q~,._ =j ( (1 -- t 4) ..-(1 -- f " )  t~e~ (1, t ~ . . . . .  ) 

1 
= .~0-~./<(l/~)m (-- 1)]qgm-2j (1 - - /4) . . . (1  --t  era) 

J [ t j( j  + x) 
= Z0--~y<(~/,)m (-- 1) q~m_~j ['(1 -- tS..--~ --fro) 

fJ d(J+ l) [ j ] (t2)) 

(1 - t ~ )  ( I - f ( "  - 1))... (1 - t ul  + 1)) 

t](j + I) 
= ~O~j<(t/2)m(--1)Y~ra-2j('(l__14)...(l__12(m_j))(l__,2)...(l__120)" 

The G-character of  Mr,.tR~)((I=)) (the antisymmetric part) equals 

e,,,(~d ..... ~-d) = ~j-,,,,~ ~''( -)[ll'd+m 1] (~j~) = ~:-=(d-(m-1)) [(d-(m~n 1))+ m] (~=) 

= ~-=(n-(.,-l))hm(1 ' 42 . . . . .  ~ud-(m-a))) = hm(~J-Cm-a), ~n-(=-z)-~ . . . . .  ~-(d-(=-l))), 

whence the coefficient of Z (x") is t " -x  times the coefficient of  Z ~176 i.e., 

By Theorem 4.1, we have 

4 . ) ( i / t )  = t= - '~x .~ ( l /O  = t ' - x ( -  1)= fP~.,)(t) = ( -  1 ) ' t '+ 'P . . , ( t ) .  

Since H(I,. ,  t )=Pe . ) (0 ,  this finishes the proof. Q.E.D. 
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Some weak analogues of classical theorems 

1. The Cayley--Syhester theorem again 

We have earlier seen a noncommutative analogue of  the Cayley--Sylvester 
theorem. We are now going to give an analogue in another direction. First a 

Definition. When :c=(az . . . . .  a,)~N", we say that the length, l(~), of  ~ is n, 
and we put 

n n(~) = z~,=l  ( i -  1) ~ 

(cf. [17] for the corresponding notion for partitions). When 2 is a partition, we let 
B(2, d , j )  be the number of  distinct permutations a of  2 of  length d +  1 such that 
n (~)= j  (note that ~ may contain zeros). Hence B(2, d , j ) = 0  if l ( 2 ) > d +  1. 

Finally let an(d, m) be the number of times M ~ appears in i~, considered as 
an Sin-module. 

1 rnd)-B(It, d, 1 rod-1)). Proposition 1.2. a~(d, m)= ~t,1= m K~(B(p, d, -~ -~ 

Proof. We have 

ax(d, m) = f (1-~-~)s~(r  ~ ..... r  

by Theorem 1.4 in the foregoing chapter. But s x = Z z  Kazmz, and 

m,(~d . . . . .  ~-a) = Z ~  (r (~d-z)~, ... (~-a),,+,, 

where the sum is over all distinct permutations a of / t .  Hence 

m~(~a . . . . .  ~-J) = ~ ,  ~.d-~(~), 
and 

f ( l - r 1 6 2  d ..... r  Q.E.D. 

Let, as usual, A ( j , m , d )  be the number of  partitions o f j  into m non-negative 
integers of  size ~d .  If  aEN d+l, let O(a) denote the partition (0 ~,, 1 ~,  ..., d~§ 
Then 10(a)l=n(a) and l(O(a))<=lotl. By mapping a,--~0(a), we see that 

z~l , l= .  B(/~, d, j )  = A(j ,  m, d). 

Since Z (-) is the trivial S,.-character, we have 

dimk I~ = a(m)(d,m) = ~l~l=.(B(la, d , -~md)-B( la ,  d,-~ m d - l ) }  

= A (2~ md, m, d ) - A  (-~ m d - l , m ,  d}, 

since K(,,)~,= 1 for all/~. This is the ordinary Cayley--Sylvester theorem. 
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2. The Hermite reciprocity theorem 

In the commutative case, the famous Hermite reciprocity theorem states that 

dimk/2' = dimk I~, 
for all rn and d. 

In [1], Almkvist proves a generalized version of  this: 

S"(R~) ~ Sd(R*,,) 

as G-modules. Let us give a quick proof:  the G-character of  S"(R~) is hm(~ d . . . . .  l -d) .  
Now 

. . . . .  = . . . .  

and we are done. We note that the crucial step is the symmetry relation 

[71-[n  l 
between Gaussian polynomials. 

There seems to be no simple analogue of  Hermite's theorem in the noncommu- 
tative case. For  example, 

d i m k [ ~ q - - 1 - - ~ (  2 q ) q + l  , but d i m k / ~ = 0 .  

However, it is quite possible that there are other symmetry relations between our 
G-modules. We will derive two such relations, one rather trivial and the other some- 
what less obvious. 

The Sin-decomposition of  7~ is 

Z l a l = m f ( 1 - ~ - 2 ) s ~ ( ~  ~ . . . . .  ~-")Z ~. 

In the ring A we have (see [17], Ch. I, w 4) 

Z ~  sa(~ d . . . . .  ~-a)sz(Y) = ~ m,~(~ a .. . . .  ~-a)h;,(Y) �9 

Since hz corresponds to the character 

t/x = indsS] �9 (ls~) 

we have another decomposition of  7~', namely 

Z i.i =. f (1- ~-2) rn~ (~ d . . . . .  ~-n)q a . 

Let the coefficient of  q~ be be(d, m) (which may be negative) and put 

b(d, m) = ~lal=mb~(d, m). 

Then we have a very weak analogue of  Hermite's theorem: 
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Proposition 2.1. b(d, m)=b(m,  d). In fact, b(d, m)=dim k I~'. 

Proof. 

bCd, m) = X ~ ~  f (l-C-')m~(~ ' . . . .  , C -~) = f (1 -4  -~) X~ m~(~ ~ . . . . .  ~-") 

= f ( 1 - r  . . . . .  r  = f ( 1 - e - ~ ) h . ( e  . . . . .  C-") = dimk/2'. Q.E.D. 

To consider the sum of the coefficients bz(d, m) is not as artificial as it may seem, 
because the ordinary dimension dimk I~' equals the sum of  the coefficients in the 
decomposition of  1~' into irreducible Sm-modules (since I~' is a trivial S.,-module). 
Of course, from this point of  view it is more natural to consider the sum 

a(d, m) = Zlal  =.~ a~(d, m), 

where aa (d, m) is the coefficient of X ~ in the decomposition o f  [~', but unfortunately, 
a(d, m) does not follow the reciprocity law, e.g., a(2, 1)=0, but a( l ,  2)=1 (see 
the section on the algebra ll). We will consider the a(d, m)'s more in the next 
section. 

As was noted above, the Hermite reciprocity law hinges on a symmetry rela- 

[;1 [ I us e ,loit ro'a"on a tion between Gaussian polynomials: n-n r " 

little more: 

Lemma 2.2. e,~(4 a . . . . .  C-d)=ea_,,+l(4 d . . . . .  C -d) (both sides should be inter- 
preted as zero if m > d +  1). 

Proof. 

e,.(~ 4 . . . . .  C-n) = 4 -"e , . (1 ,  4' . . . . .  r  ~-mn4.,(.,-x,[a+'' 1](4, ) "  

=r247176 1](r ) 
= 4a(d-,.+l)ea_,,,+l(1, ~2 . . . . .  429 = e c t - m + Z ( ~  cl . . . . .  ~ - 9 -  Q.E.D. 

The antisymmetric part Mrr.tR~)((l")) with G-character em(~ a . . . . .  ~-a) can be 
identified with the m'th exterior power Ar"(R~). Hence the lemma implies that 

as G-modules, and 
A"(R~) =" Aa-m+l(R~) 

dimg (I"(R~)) a = dimk (Aa-"+'(R'~)) ~, 

a A-Hermite theorem. 
Furthermore, since 

X,_ao dimk (A'(R~)) ~ td = e - a l l ( l , . ,  t) 
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by Section 3.5, we have by the commutative Cayley--Sylvester theorem, 

dim,(Am(R[))G ,~;m ,a-m+1 (~m(d-m+ . . . . . .  kin = A 1), d - m + l ,  m) 

- A ( { m ( d - m + l ) - l , d - m + l , m ) .  

Finally, we get 

H((A(R~)) ~, t) = Z , ~ o  (1 -r162 . . . . .  ~-d)tm = f ( 1  - r  (1 + ea- 'J t)  

1 f ~  sinZ x / /~=0 (1 +#a-~l)'~t) dx 
= ~ " d 0  

(see also [1], p. 334). 
Writing sa as a determinant in the e-functions, the lemma can be generalized. 

If  2 is a partition of  m of length -<_d+ 1, let 2 be the partition defined by 

~' = (d +  1-2 ; , ,  d +  1-2;,_x . . . . .  d +  1 -2 ; ) ,  

where l'=l()~') (=)~1). For instance, if 2=(3,  2 ~, 1), and d=4 ,  then ~[ is the 
shaded area in the diagram below, i.e., 2=(3,  2, 12). 

II 
IL41 

i 

Proposition 2.3. sa(~ a . . . . .  ~-d)=s~(~a . . . . .  l -a) ,  i.e., 

as G-modules. (Note that I~1 = l'(d+ 1 ) -  12"1 = 21 (d+ 1 ) -  m.) 

Proof. By [17], Ch. 1, w 3, we have 

sa(~ a . . . . .  i -a) = det (eal_i+s(~ a . . . . .  ~-a))l_<i,j_< v . 

As was noted above, this can be written 

det (ed+l_,l~+t_d(~ a . . . . .  ~ -d) ) .  
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Now ' "' " d +  1 - 2 i  =2  v - l +  1, whence 

s~(i n . . . . .  i -n) = det (ex~,_,+~ _ (r-i+l)+(r-j+a)(i n . . . . .  i -d))  

= det (e~7_i+j(i  d . . . . .  i - d ) )  = Sx(~d . . . . .  r  Q.E.D. 

E x a m p l e 2 . 1 .  If  2=(lm), then ,~=(ln-m+l), and 

s(1.~ (~d . . . . .  ~-d)  = S ~ . - . §  . . . . .  ~--d), 

by the proposition. 
I f  2=(m),  then ~=(ma), and 

S(m)(~d . . . . .  l - d )  : S( .d)( id . . . . .  ~--d) : ~--mdZS(md)(1, i2 . . . . .  ~2d) 

1 - - ~  2 ( d + l + j - i )  : ~-md II- 1 - ~  2(i+j) 
i--md2~md2-md H l ~ i ~ d  1 __~2(d--i-t-m--j+ l) 1 __ ~2(i+j--1) 

l~j~_m 

= ~-md 1-- i  2~m+x) 1-- i  2~m+2) 1--~2~m+d) 

= ~ - m d [ d - d m ]  (i2) : S(d)(~ra , . . . .  i - m ) .  

We finish this section with a remark on the functions s~(~ d . . . . .  i - d ) ,  and we freely 
use the notation of  [17], p. 65. We have 

s~( i  ~ . . . . .  ~-~)  = (s~os(~)(~,  I - 1 ) ,  

where o denotes plethysm. On the one hand, we can write 

~/+1__~--(1+1) 
s~(i  d . . . . .  l -d) = Y~, ~t ~ _  ~-~ , 

and on the other 

(S,,IOS(d)) ( i ,  ~--1) = , ~  101 = m a~(d)SO ( i ,  r 

But if 0=(Q~, 02), then 

~0~-02+1_ ~-(0~-02+1) 
s~(~, f -x)  = ~ _ r  

Since et=>0 for all l it follows that ~(a)=>0 for all 0 with l (~ )~2  (this is a very 
special case of  the discussion in the appendix to Ch. I in Macdonald's book [17). 

We also conclude that if m d  is even, then O~-Oz is also even, whence a~=0 
if  I is odd. Conversely, if m d  is odd, then cq = 0 if l is even (which once again shows 
that no invariants exist in this case). 
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We have an integral formula for the ~ ~,~:s: 

aS(d) = ~'1 f~o sin x sin (I+ 1)xsz(e d~ . . . .  . e-ai~ ') dx 

where l=  Qx- O~. 
For more information on the coefficients a~c,0, see, e.g., [11], [16], [17], and [18]. 
Finally, we cannot resist giving yet another formulation of the classical Hermite 

theorem: 
(S~m)OS(~))(~, r = (s( :s( . ) )(~,  C-D, 

01" 
(hmoha)(~, ~-1) =. (haohm)(~, ~-,). 

3. An interesting power series 

Let as above a(d, m) be the number of irreducible components in the S,~- 
decomposition of ]~'. As was noted above, this is in a certain sense a generalization 
of the dimension dimk 1~' in the commutative case. In fact, this dimension is the 
number of elements that together with addition and multiplication by scalars gen- 
erate I~'. In the noncommutative case we have another operation beside these two, 
namely permutation of the factors. The numbers a(d, m) are at least upper limits 
for the number of elements~that generate iff' together with addition, multiplication 
by scalars, and operations with the symmetric group Sin. Inspired by this observa- 
tion, let us c0nsider the series 

t7([a, O = ~,~_o a(d, m) g ~, 

Theorem 1.4 in the foregoing chapter gives us 

a(d, m) = ZlXl =.fo-r162 r 
whence 

Z._~o a(d, m) : = f (1 - r Z._~o ( Z  t~)=. s,(r . . . . .  r  

= f (l - ~ )  Z~  s~ (~,  .... ~-~) t ~  = f C1 - r Z~  s~ (tr d . . . . .  t~-+) 

= f c 1 -  r g~=0 ( l -  +~-~'0-' llo~<j~_~ (1- r 

by the beautiful formula in [17], Ch, I w 5, Ex. 4. 
This, proves 

Proposition 3.1. 

/~(I~, t) = i f  ~ ( I - : ' ~ )  d.~ 
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In particular, //(14, t) is rational (see Proposition 3.3 below). This formula resem- 
bles Springer's integral formula for the Hilbert series of  Ij (see [22]) - -  the dif- 
ference is the very unpleasant second factor in the denominator. 

Example 3.1. One can compute 

1 H(I, . ,  t) = 1 
//()'1, 0 = l_t2, (l_t2)(i_#)(l_#), 

and, with some effort, 

//(7 3, t) = l +2ts+3tl~ 4 
(1 - t 2) (1 -- t4) 2 ( 1 -- #)2 (1 -- t s) (1 -- #o)" 

We have a reciprocity relation: 

Proposi t ion 3.2. 

Proof. The series 

//(17d, 1/t) = ( -  1)(~t(d+l)'//(Td, t). 

Z ~ s ~ ( t ~  ~ . . . . .  t~-O 

obviously converges for O < t <  1. Write 

1 / (1-z2)dz 
~7(1~, 0 = ~ z / / 0 - z ~ - 2 ~ 0 / / ( l - : ~ - ~ - ~ : )  " 

We consider the poles of  the integrand corresponding to the factors in the denom- 
inator with d - 2 j < 0  and d-j-k<O. If t > l  so that / /(ld, 1/t) converges, 
then, noting that the products in the denominator are symmetric in z, z -1, 

/ /(ld, 1 / t )=  1 / (l-z~)dz 
z l f  (1--Z~-2Jt-O l f  (1--ZUd-~-k)t-2) 

1 ld+ll2d(d+l)12(_ 1)a+l+a4+a)/~ / (1 - z  ~) dz 
= 2hi z / / ( 1  - z d - 2 j  [ ) / / ( 1  - z 2 (d- j -k )  t 2)  " 

Here the poles corresponding to d-2j<O, d- j -k<O lie outside C, and the result 
follows if we note that the sum of the residues of  a rational function is 0. Q.E.D. 

Denote by c(d, m) the number of  irreducible components in the Sin-decomposi- 
tion of  Tm(R~). Then c(d, m) is the value of  Z~  s~(~ d . . . . .  l -a) for ~= 1, whence 

1 
//(T(R~), t) = Z a l l 2  s2( t~ d . . . . .  / ~ - d ) [ ~ = l  = ( l  - -  t ) d + l ( 1  - -  t2) (ll2)d(d+l)" 

The/ / -ser ies  considered here are Hilbert series in the usual sense, since we have 
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Proposition 3.3. 
IT(T(R~), t) = H(S(R~ @A~ R'~), t) 

IT(la, t) = H(S(R~ ~A*R~) ~, t) 

where we have given the elements of  A2R~ the degree 2. 

Proof. This is essentially obvious. One way to see it is to identify S(R~ (3 A2R~) 
with S(R~) Qk S(A~R~) and then note that 

Zm~_o Tr(S'(R~), g) t ' )  =/ /o: . j~_,(1 - ~ ' - ' l O - x  
and 

Zm~_o T~ (sm(A ' RD, g) :~  = IIo~_l.~_, (1 - ~(,-~-~):)-1 

wheregis theelement  (~0~-1) of G(sincetheeigenvaluesofgasanendomor-  

phism of  Sm(A~R~) are ~2(d-j-k), j<k) .  Q.E.D. 

Example 3.2. As a k-algebra, S(R~ @ A~R~) ~ is generated by 

ao az -  a~, a~(ao A al)-- al(ao ^ a~) + ao(ax ̂  a~), 
and 

4(a0 A at)(a 1 A aa)--(a o A az) ~. 

* ~ A2R * as G-modules; an isomorphism is This case is especially simple since R~ = 
given by 

ao A al ,-~ a o 

a0 ^ aa ~-* 2a1 

a t a a z ~-* a 2. 

We will finish this section with a short discussion of  finite groups. Let V be a finite- 
dimensional vector space, and let G be a finite subgroup of  GL(V). Denote by 
Cm the number of  irreducible components in the Sin-decomposition of  T"(V) ~. Put 

ii(T(V)% t) = Z , ~ o  c,  : .  

Then we have a nice analogue of  Molien's theorem: 

Proposition 3.4. 

1 I 
i l (T(V) ~, t) = q-~ Z ,  Eo det (X - tg) det (1 - t2A~g) " 

Proof. Let the eigenvalues of  g~GL(V) be 0t . . . .  , 0 , .  As in the proof  o f  
Theorem 1.4 in the foregoing chapter, we see that M r ,  oo(2 ) is stable under GL(V), 
and that the trace of  g on this space is dim k M ~ -sx(01 . . . . .  e,). Hence 

1 
Cm ---- Td-T Z E s (Q1Cg) . . . . .  Q,(g)). 
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Multiplying by t ~ and summing over m gives 

1 1 
17(T(V) G, t) = - ~ , e ~ l [ , ( . i _ _ . o , ( g ) t  _ lii<j(l._di(g)oj(g)tz~. Q.E.D. 

Remark. Let V have dimension 2, and let G be a finite subgroup of SL(2, k) 
(i.e., a finite cyctic group, a dihedral group, or a binary polyhedral group). Then 
the proposition gives 

-~q(r(v) ~, t) = ~ H(S(V) ~, O. 

Some results on covariants 

We have earlier defined 

Cd,,,e = (T"(R~)| Re) G 
Ca,,, = (T ' (  R~)| R) G 

C. = (T ( R~) | R) ~. 

TheG-character  Of Tm(R~)| Re is 7.a(~)mx~(~) (see the introduction). For any 
(rod-e) must be a non-negative integer, as invariants to exist in this space, 

we saw in the chapter on the symbolic method. We note the following, which will 
be used later: 

~(~"a+2 +~-("a+2)-2)/(~-~-l)2 if md is even, 
Z1/2(md--e)ENXe(~)  ~- [(~md+2.~_~--(mn+s if md is odd. 

1. The Hilbert series of Ca 

When defining the Hilbert series H(Cd, t) we use the grading in the m-index, i.e., 

H(C,.  t) = Z..~_o dimk Cd. t'. 

Since there are only finitely many e:s involved in 

e e . m e = e d m ,  
e 

we see that dim k Cdm is  finite, and the series above is well-defined. 

Theorem 1.1. 

1 d l--n~ 
n(C,, 0 =-7Z~=I (1-,~("~)(d,~+(a-2)n~-'u S 
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where e (d) = 1 i f  d is odd and 2 i f  d is even, and i l l  . . . . .  tld are the distinct roots o f  
Z2d+Z2d--"+...+l--t--lzd=O which lie in the unit disc for small t (equivalently, 
which lie in C [[f/~]]). 

(This is not surprising, the theorem bears the same relationship to the formula 
for H(in, t) obtained by Almkvist, Dicks and Formanek in [4] as the Hilbert series 
H(Cd, t) does to H(1 d, t), see, e.g., [1].) 

Proof. We will consider t as a real variable with 0 < t < ( d + l )  - t .  
(i) d even. We compute:  

( ~d+l ~--Cd+l) lm ~rad+2_~_~--Cmd+2)__ 2 

Now 

1 f2~ (elX_e_iX) 2 dx 
"n--, 0 sin2 x(ediX-t-e(d-2)ix q-"" q-e-dix)ra e(rac1+2)ix q- e--(md+2)ix 

- -  4~1 (e dix 4-... + e--dix)m(etrnd+~)iX+e--(md+2)ix) dx = O, 

and so 

H(~a, t) = ~- j  o sinZ x .~m=>o e,~_e_,~ (ei~_e-i~,)~ 

1 f2,~ d x  1 dz 
= 2 ~ d o  1--(eeiX+...+e-dix)t -- 2~it fr t--IZ--(Zd+I+zd--I-~-...+z--(d--1)) " 

2-~-~-~ e". 
(~-~-~)~ 

Applying the residue theorem proves the theorem in this case. 
(ii) d odd. We compute: 

= Xm~OZd(~) m ~ md+2-~-~-(md+2)-2 
(r162 t ' +  Zm~ Zd(~)m 

The first sum was considered above; the second equals 

{ d + l  __ ~--(d+l) I 
(~-~-~)-~(2- {-~-~) t. ~_~-1 1--('{d+~ r ' 

whence its contribution to H(d~d, t) is (we use the symmetry in 4, 4 -1) 

2 ~ [ 
2~(2i) 2 f 2  ( 1 - e  ix) 1 1 e(d+l)ix e_(d+l)i x ~ e(d+l)iX e_(d+l)i x 

1 - e~X e_iX t 1 -~ eiX e_iX 

= (_1) ( , ( , )_  ,)). 

dx 
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By residue calculus, I(t) equals 

1 j 1 - r / j  
" 

If  q is a root of the equation z~a+.. .+l-t-azd=O, 
rl~d +... + 1 =t-bld =(--t-1)(--rl) d, since d is odd. Hence 

then ( -  t/) u + . . .  + 1 = 

and 

1 d l + r / j  ~ ,  
1(- t )  = (--7)~'-/=1 dq~-(-~.-.:drli 

r/j d (--~) (I(t)--I(--t)) = ( - + ) e , = x  drl~ + .:7--dq 7 

Adding this to the expression obtained in (i), we get the desired result. Q.E.D. 

Example 1.1. We can compute 

n(C , t)= 
1 - 2 t + l / 1 - 4 t  2 

H(E~, t) = 
V(t- 300 + 0 

2. Cem as an Sin-module 

By permutation of the factors in T"(R~) we define an S,~-module structure 
on Tm(R~)| R, i.e., also on Ed,~. We let the Sin-character be Fff(d). There are 
analogues of Theorems 2.1 and 4.1 in the chapter on the S=-structure of i~': 

T h e o r e m  2.1 .  
Zd~_o FJ' (if) td 

( f~u(t) )) , 
= Z,,,=,,  Z.x,=,(K_X)x, Zucx. f2]. ' . ( _ l ) l , l q 3 m _ z l , l t ~ j j x ,  

i#1 <(l/2)ra x/x," 

where fz~u(t) and e(m) have the same meaning as before. Furthermore. i f  this expres- 
sion is written 

Z I,I=, a .  ( t) z', 
then 

,~lvl=ra Q,(1/t)ff = ( -  1)=t ~ ,~l*l  =m Q,(t);(". 

The proof is a copy of the proofs of the results for i~'. 
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Example 2.1. With some effort, we can compute  

Zd~_o r . ' (C)l  ~ = z(~) + tz(l') 
( l - - O ( 1 - - t  2) ' 

.~da_o/~d (~) l  d = (1 + ta)X o) + t(1 + t+ t 2 + tz)Z (2' ~) + t2(1 + t2)X (m 
( l - t ) ( 1  - t2)(1 - ~ ' )  

As before, we get two corollaries:  

Corollary 2,2. Let Fm(~, t)=z~d---0 (dimk ~dm)fl. Then 

1 j t m 

and Fro(C, I / t ) = ( -  1)mt~Fm(C, t). 

Example 2.2. 
1 

F~(C 0 = l - t  

F2(C, t) = 
(l  - t ) ~  

l + t + t  2 
F~(~', t) = 

( 1  - -  t ) ~ ( l  - -  t 2) " 

Corollary 2.3 (Springer [22], Almkvist  [I]). The Hilbert series of the com- 
mutative algebra Cm is 

H(C,,, 0 

lj(j+ 1) 

Zo~j<(l/2)m(-1)Jq~m-2j ( ' ( 1 -  l~(m')( l-  14).. .(1--19('-J ')(l--12).. .(l--121) I" 

Furthermore, H(Cm, l / t ) - - ( -  1)rot m+l H(Cm, t). 

Proof. Just take the coefficient o f  Z ( ').  Q.E.D.  
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