Extreme operator-valued continuous maps

R. Grzaślewicz

Abstract. Let $\mathcal{L}(H)$ denote the space of operators on a Hilbert space H. We show that the extreme points of the unit ball of the space of continuous functions $C(K, \mathcal{L}(H))$ (K-compact Hausdorff) are precisely the functions with extremal values. We show also that these extreme points are (a) strongly exposed if and only if $\dim H < \infty$ and $\operatorname{Card} K < \infty$, (b) exposed if and only if H is separable and K carries a strictly positive measure.

1. Introduction

Let C(K, X) denote the Banach space of all continuous functions from a compact Hausdorff space K to a Banach space X equipped with the supremum norm $||f|| = \sup_{k \in K} ||f(k)||$. By B(X) we denote the unit ball of the Banach space X. There is a natural conjecture about extreme points:

(*) $f \in \text{ext } B(C(K, X))$ if and only if $f(k) \in \text{ext } B(X)$ for all $k \in K$.

Obviously the "if part" in (*) always holds. This conjecture has been proved to be true under various additional assumptions. We list some of the known results. The conjecture is true if:

- 1) X is strictly convex,
- 2) B(X) is polytope,
- 3) $X=(C(K_1))^*=M(K_1)$, where K_1 is a compact Hausdorff space ([31], Theorem 4, 5). Note that in this case the conjecture (*) is equivalent to the fact that extreme operators in the unit ball of the space of compact operators $\mathcal{L}(C(K_1), C(K))$ are nice in the sense of Morris and Phelps. For other similar results on the space of weak* continuous functions from K into $(C(K_1))^*$ (this corresponds to the case of extreme point of the unit ball of the space of all bounded linear operators $\mathcal{L}(C(K_1), C(K))$ (see [6], p. 490)) under various assumptions on K and K_1 (see [2], [1], [34], [9], [20], see also [35], [36] for negative examples).
- 4) X has 3.2.I.P. ([37]).

- 5) B(X) is stable (to get it we use (iii')) in [4] and Michael's selection Theorem [29]).
- 6) $X=L^{1}(\mu)$ ([39]).
- 7) $X=L^{\varphi}(\mu)$ is an Orlicz space equipped with the Luxemburg norm ([18]).
- 8) $X=M(K_1, Z)$ is the space of Z-valued regular Borel measures of finite variation, Z is a Banach space, K_1 is a compact Hausdorff space ([40]).

The conjecture (*) is not true for every Banach space X. A negative example was given by Blumental, Lindenstrauss and Phelps for $X=R^4$ equipped with a suitable norm ([2]). The class of finite dimensional spaces for which conjecture (*) holds was described by Papadopoulou ([32]). She proved that B(X) (dim $X < \infty$) is stable if and only if all k-skeletons (k=0, 1, ..., n) of B(X) are closed (a k-skeleton of B(X) is a set of all $x \in B(X)$ such that the face generated by x has dimension less than or equal to k).

After dealing with the conjecture for Banach spaces the next natural step is to consider X as a space of linear operators. We denote by $\mathcal{L}(Y)$ the space of all bounded linear operators from a Banach space Y into itself equipped with the operator norm.

For $X=\mathcal{L}(l^p)$, $1 , <math>p \ne 2$, the conjecture does not holds. Indeed, we have the following example. Let $(a_n) \in l^p$ be such that $||(a_n)||_p = 1$ and $a_n > 0$ for all n. We define $f \in C([0, 1], \mathcal{L}(l^p))$ by $f(k) = T_k$, $k \in [0, 1]$ where

$$T_k((x_n)) = x_1(\sqrt[p]{(1-k)}, \sqrt[p]{a_1^p + a_2^p}, \sqrt[p]{k} \cdot \sqrt[p]{a_1^p + a_2^p}, a_3, a_4, \ldots),$$

 $(x_n) \in l^p$. We have for p > 2, $T_k \in \text{ext } B(\mathcal{L}(l^p))$ for $k \in (0, 1)$ and $T_k \in \text{ext } B(\mathcal{L}(l^p))$ for k = 0 or 1 (see [15], see also [14]). Using adjoint operators an analogous example can be written for $p \in (1, 2)$.

In this note we consider the case p=2. It turns out that the conjecture (*) holds for the space of operators acting on a Hilbert space (Section 2).

In Section 3 we consider under what conditions elements of ext $B(C(K, \mathcal{L}(H)))$ are exposed or strongly exposed. We show that extreme points of $B(C(K, \mathcal{L}(H)))$ are

- (a) strongly exposed if and only if dim $H < \infty$ and card $K < \infty$,
- (b) exposed if and only if H is separable and K carries a strictly positive measure.

2. Extreme points in B(C(K, (H)))

Let H be a (real or complex) Hilbert space. We denote by $P_E \in \mathcal{L}(H)$ the orthogonal projection onto a subspace E of H. The set of extreme points ext $B(\mathcal{L}(H))$ coincides with the set of all isometries and coisometries (see [23] for the complex case, and [16] for the real case). Our aim is to characterize ext $B(K, \mathcal{L}(H))$. Note that the below presented Theorem was proved in [14, p. 314, (**)] in the case when H is finite dimensional.

In the finite dimensional case the dual of $\mathcal{L}(H)$ was also considered, and it turns out that the unit ball of $\mathcal{L}(H)^*$ is stable (see [17]), so the conjecture (*) also holds for $C(K, B(\mathcal{L}(H)^*))$ (dim $H < \infty$).

Now we recall some facts we will use in the proof of Theorem 1 below.

Let $T \in \mathcal{L}(H)$ be a contraction. We put

$$M(T) = \{h \in H : ||Th|| = ||h||\},$$

We have $T^*Th=h$ for $h\in M(T)$. Moreover $T(M(T))=M(T^*)$ and $T(M^{\perp}(T))\subset M^{\perp}(T^*)$.

Obviously, if $T \in \text{ext } B(\mathcal{L}(H))$ then neither $TT^* = I$ nor $T^*T = I$ i.e.

$$M^{\perp}(T) \neq \{0\} \neq M^{\perp}(T^*).$$

Put $S = ((I + T^*T)/2)^{1/2}$. We have $I/2 \le S \le I$. Therefore S^{-1} , $S^{1/2}$ and $S^{-1/2}$ exist. We have $0 \le S^{1/2} \le I$. Hence

$$0 \le S^{1/2}(2S^{1/2} - I) = 2S - S^{1/2} \le I.$$

Since $T^*T \leq S^2$ we have

$$||Tx||^2 = \langle T^*Tx, x \rangle \le \langle S^2x, x \rangle = ||Sx||^2.$$

So $||TS^{-1}|| \le 1$. We get

$$||TS^{-1/2}|| \le ||TS^{-1}|| ||S^{1/2}|| \le 1$$

and

$$||T(2I-S^{-1/2})|| \le ||TS^{-1}|| ||2S-S^{1/2}|| \le 1.$$

Theorem 1. Let H be a Hilbert space and let K be a compact Hausdorff space. Then

$$f \in \operatorname{ext} B(C(K, \mathcal{L}(H)))$$

if and only if

$$f(k) \in \text{ext } B(\mathcal{L}(H)) \text{ for all } k \in K.$$

Proof. Let $f \in B(C(K, \mathcal{L}(H)))$. Assume that $f(k_0)$ fails to be extremal for some $k_0 \in K$, i.e.

$$M^{\perp}(f(k_0)) \neq \{0\} \neq M^{\perp}(f(k_0)).$$

We need to prove that then

$$f \in \operatorname{ext} B(C(K, \mathcal{L}(H))).$$

Put $T_k = f(k)$. We consider two cases.

1° There exist $k_0 \in K$ and $x \in M^{\perp}(T_{k_0})$ such that $T_{k_0} x \neq 0$. Put $f_1(k) = T_k S_k^{-1/2}$, and $f_2(k) = 2T_k - T_k S_k^{-1} S_k^{1/2}$, where $S_k = ((I + T_k^* T_k)/2)^{1/2}$. Obviously

$$f_1, f_2 \in B(C(K, \mathcal{L}(H)))$$
 and $f = (f_1 + f_2)/2$.

Since

$$M(T_{k_0}) = M(T_{k_0}^* T_{k_0}) = M(S_{k_0}^2) = M(S_{k_0}^{1/2}) = M(S_{k_0}^{1/2})$$

and $T_{k_0}^*T_{k_0}x \in M^{\perp}(S_{k_0}^{1/2})$ we have

$$||S_{k_0}^{1/2}T_{k_0}^*T_{k_0}x|| < ||T_{k_0}^*T_{k_0}x||.$$

Since $S_k^{1/2}$ and $T_k^*T_k$ commute, we get

$$T_{k_0}^* T_{k_0} S_{k_0}^{1/2} x \neq T_{k_0}^* T_{k_0} x$$
, so $T_{k_0} S_{k_0}^{1/2} x \neq T_{k_0} x$.

Hence $T_{k_0} \neq T_{k_0} S_{k_0}^{-1/2}$ and $f_1(k_0) \neq f_2(k_0)$ i.e. f is not extreme.

$$2^{\mathrm{o}} \qquad \qquad T_k\big(M^\perp(T_k)\big) = \{0\} = T_k^*\big(M^\perp(T_k^*)\big) \quad \text{for all} \quad k \in K.$$

Then $T_k^*T_k = P_{M(T_k)}$. Therefore $k \to P_{M(T_k)}$ is a continuous function, so $k \to P_{M^{\perp}(T_k)}$ is a continuous function, too. Fix $k_0 \in K$ such that $f(k_0) \notin \text{ext } B(\mathcal{L}(H))$. Choose $e \in M^{\perp}(f(k_0))$ and $g \in M^{\perp}(f(k_0)^*)$ with ||e|| = ||g|| = 1. We have

$$||T_k \pm P_{M^{\perp}(T_k^{\dagger})} g \otimes P_{M^{\perp}(T_k)} e|| \leq 1.$$

Hence f is not extreme.

3. Exposed and strongly exposed points in B(C(K, (H)))

A point q_0 in a convex set Q of a (real or complex) Banach space E is said to be exposed if there exists a bounded R-linear functional $\xi \colon E \to R$ such that $\xi(q_0) > \xi(q)$ for all $q \in Q \setminus \{q_0\}$. An exposed point $q_0 \in Q$ is called strongly exposed if for any sequence $q_n \in Q$ the condition $\xi(q_n) \to \xi(q_0)$ implies $||q_n - q_0|| \to 0$. Obviously each exposed point is extreme.

Note that extreme points of $B(\mathcal{L}(H))$ are strongly exposed in and only if H is a finite dimensional Hilbert space, and exposed but not strongly exposed if and only if H is separable infinite dimensional. Moreover there are no exposed points in $B(\mathcal{L}(H))$ if and only if H is not separable ([19]).

Consider the Bochner L^p -space $(1 . For <math>f \in L^p(\mu, X)$ (X is a Banach space), if ||f|| = 1 and $f(t)/||f(t)|| \in \text{ext } B(X)$ for $t \in \text{supp } f$ μ -a.e., then

$$f \in \text{ext } B(L^p(\mu, X)).$$

Generally the converse does not holds. A negative example was given by Greim [12] for a nonseparable Banach space X. But for all separable Banach spaces X this property characterizes extreme functions (see [38], [21], [22], [13]). For the strongly exposed points the analogous natural condition on the values of f are sufficient, whenever X is smooth ([10], see also [11]). Recently W. Kurtz considered strongly exposed points in Bochner—Orlicz spaces [25] (see also [26]). A compact Hausdorff space K is said to carry a strictly positive measure, if there exists a strictly positive Radon measure μ on X (i.e. $\mu(\mathcal{U}) > 0$ for all non-empty open subsets \mathcal{U} of X).

Several authors have workes on the problem of the characterization of spaces X which carry a strictly positive measure. Maharam [28] has given necessary and sufficient conditions for the existence of strictly positive measures. Kelley considers strictly positive measures on Boolean algebras. In his work [24] he introduced the notion of the intersection number of a collection of subsets to give a characterization of spaces which carry a strictly positive measure.

Next it turns out that the countable chain condition is not sufficient for the existence of such a measure (see Gaifman [8]). Note that in the case of a compact Hausdorff space, the problem mentioned above is equivalent to the problem of existence of a finitely additive strictly positive measure. Rosenthal ([33], Th. 4.5b) proved that C(X) carries a strictly positive functional if and only if its dual $C(X)^*$ contains a weakly compact total subset. Other results can be found in [7], [30], [3]. We refer the reader to [5, Chapter 6] for a survey of known results about strictly positive measures. In fact, we can consider a strictly positive measure on X as a functional on C(X) which exposes the function 1.

Theorem 2. If a Hilbert space H is separable and a Hausdorff compact space K carries a strictly positive measure, then each extreme point of $B(C(K, \mathcal{L}(H)))$ is exposed.

If H is not separable or K does not carry a strictly positive measure then $B(C(K, \mathcal{L}(H)))$ contains no exposed points.

If H is infinite dimensional then $B(C(K, \mathcal{L}(H)))$ contains no strongly exposed points.

Proof. Suppose that H is separable and K carries a strictly positive measure. Assume that $\mu(K)=1$. We fix an orthonormal basis $\{e_i\}_{i\in I}$ in H. Fix

$$f_0 \in \text{ext } B(C(K, \mathcal{L}(H))).$$

Put $K_1 = \{k \in K: f(k) \text{ is an isometry}\}$ and $K_2 = K \setminus K_1$. The set K_1 is closed. Let $(a_i)_{i \in I}$ be a sequence of strictly positive reals such that $\sum_{i \in I} a_i = 1$. We define a functional ξ on $C(K, \mathcal{L}(H))$ by

$$\xi(f) = \int_{K_1} \sum_{i \in I} a_i \operatorname{Re} \langle [f(k)](e_i), [f_0(k)](e_i) \rangle d\mu + \int_{K_{2_0}} \sum_{i \in I} a_i \operatorname{Re} \langle [f(k)]^*(e_i), [f_0(k)]^*(e_i) \rangle d\mu,$$

 $f \in C(K, \mathcal{L}(H))$. The functional exposes f_0 in $B(C(K, \mathcal{L}(H)))$. Indeed $\xi(f) \leq 1 = \xi(f_0)$ for all $f \in B(C(K, \mathcal{L}(H)))$.

Suppose that $\xi(f_1)=1$ for some $f_1 \in B(C(K, \mathcal{L}(H)))$. Because

$$\operatorname{Re} \langle [f_1(k)](e_i), [f_0(k)](e_i) \rangle \leq 1,$$

the condition $\xi(f_1)=1$ implies that $[f_1(k)](e_i)=[f_0(k)](e_i)$ for all $i\in I$ and $k\in K_1$

 μ -a.e. Analogously $f_1=f_0$ μ -a.e. on K_2 . Hence by continuity $f_1=f_0$. So we finish the proof of the first part of theorem.

Now suppose that a functional ξ_0 exposes $f_0 \in \text{ext } B(C(K, \mathcal{L}(H)))$ in $B(C(K, \mathcal{L}(H)))$. We define a functional m on C(K) by

$$m(h) = \xi_0(hf_0), \quad h \in C(K).$$

We claim that m is strictly positive. Indeed, suppose to get a contradiction, that there exists $h_0 \in C(K)$ such that $0 \le h_0(k) \le 1$, $h_0 \ne 0$, and $m(h_0) < 0$.

Then

$$\xi_0((1-h_0)f_0) = m(1-h_0) \le m(1) = \xi_0(f_0)$$

and $h_0 f_0 \neq 0$, which is impossible. It follows that K carries a strictly positive measure. Consider now a function n on all subsets of I defined by

$$n(L) = \xi_0(f_0 P_{\overline{\lim}\{e_i: i \in L\}})$$

 $L \subset I$ (in the case when all $f_0(k)$ are coisometries we define n by $n(L) = \xi_0(P_{\overline{\lim}\{e_i: i \in L\}}f_0)$). The function n is finitely additive on the family of all subsets of I. Moreover n(I) = 1 and $n(L) \ge 0$ for $L \subset I$. Suppose that $n(L_0) = 0$ for some non-empty $L_0 \subset I$. Then

 $\xi_0(f_0 P_{\overline{\lim}\{e_i:i\in L_0\}})=0,$

so

$$\xi_0(f_0 P_{\overline{\lim}\{e_i: i \in L\}}) = \xi_0(f_0)$$

(i.e. ξ_0 does not expose f_0). This contradiction proves that $n(L_0)>0$. Hence I is countable and H is separable, which yields the second part of the theorem.

Let $(L_j)_{j \in \mathbb{N}}$ be a sequence of non-empty disjoint subsets of I. Then $n(L_j) \stackrel{j}{\longrightarrow} 0$. Hence

$$\xi_0(f_0P_{\overline{\lim}\{e_i:i\in L_i^c\}})=\xi_0(f_0)-n(L_j)\xrightarrow{j}\xi_0(f_0)$$

and

$$\|f_0 - f_0 P_{\overline{\lim} \{e_i : i \in L_0^c\}}\| = \|f_0 P_{\overline{\lim} \{e_i : i \in L_0\}}\| = 1.$$

Therefore f_0 is not strongly exposed in the case when I is infinite (i.e. H is infinite dimensional). This proves the third part of the theorem.

Theorem 3. Let H be a finite dimensional Hilbert space and K be a Hausdorff compact space. Then each extreme point of $B(C(K, \mathcal{L}(H)))$ is strongly exposed, if and only if K is finite.

Proof. Let dim $H < \infty$ and card $K < \infty$. Fix $f_0 \in B(C(K, \mathcal{L}(H)))$. Let η_k be a functional on $\mathcal{L}(H)$ which strongly exposes $f_0(k)$, $k \in K$. It is easy to see that a

functional ξ defined by

$$\xi(f) = \sum_{k \in K} \eta_k(f(k)), f \in C(K, \mathcal{L}(H)),$$

exposes f_0 .

Now suppose that card $K = \infty$. Let a functional ξ_0 expose $f_0 \in \text{ext } B(C(K, \mathcal{L}(H)))$. Let $(k_n)_{n \in \mathbb{N}}$ be a sequence of distinct points of K such that $\lim k_n = k_0$. Let $h_n \in C(K)$, $n \in \mathbb{N}$, be such that $0 \le h_n \le 1$, $h_n(k_n) = 1$ and supp $h_{n_1} \cap \text{supp } h_{n_2} = \emptyset$ if $n_1 \ne n_2$. Put $a_n = \xi_0(h_n f_0)$. Note that $a_n \ge 0$ because

$$\xi_0(f_0) - a_n = \xi_0((1-h_n)f_0) \le \xi_0(f_0).$$

For every finite subset L of N we have

$$\sum_{n\in L} a_n = \xi_0((\sum_{n\in L} h_n)f_0) \leq \xi_0(f_0).$$

Hence $a_n \rightarrow 0$. Therefore

$$\xi_0((1-h_n)f_0) = \xi_0(f_0) - a_n \rightarrow \xi_0(f_0)$$

and

$$||(1-h_n)f_0-f_0|| = ||h_nf|| = 1.$$

Thus f_0 is not strongly exposed by ξ_0 . This ends the proof.

Remark. I would like to express my thanks to the referee for his useful remarks which shorten the proof of Theorem 1.

Acknowledgement. Written partially while the author was a research fellow of the Alexander von Humboldt-Stiftung at the Mathematisches Institut der Eberhard-Karls-Universität in Tübingen.

References

- AMIR, D. and LINDENSTRAUSS, J., The structure of weakly compact sets in Banach Spaces, Ann. of Math. 88 (1968), 35—46.
- Blumenthal, R. M., Lindenstrauss, J. and Phelps, R. R., Extreme operators into C(K), Pacific J. Math. 15 (1965), 747—756.
- 3. VAN CASTEREN, J. A., Strictly positive functionals on vector lattices, *Proc. London Math. Soc.* 39 (1979), 51—72.
- CLAUSING, A. and PAPADOPOULOU, S., Stable convex sets and extremal operators, Math. Ann. 231 (1978), 193—203.
- COMFORT, W. and NEGREPONTIS, S., Chains conditions in topology, Cambridge University Press, 1982.
- Dunford, N. and Schwartz, J. T., Linear operators I: General theory, Pure and Appl. Math., vol. 7, New York, 1958.

- HERBERT, D. J. and LACEY, H. E., On support of regular Borel measures, Pacific J. Math. 27 (1968), 101—118.
- 8. GAIFMAN, H., Concerning measures on Boolean algebras, Pacific J. Math. 14 (1964), 61-73.
- 9. Gendler, A., Extreme operators in the unit ball of L(C(X), C(Y)) over the complex field, *Proc. Amer. Math. Soc.* 57 (1976), 85—88.
- Greim, P., Strongly exposed points in Bochner L^p-spaces, Proc. Amer. Math. Soc. 88 (1983), 81—84.
- Greim, P., A note on strongly extreme and strongly exposed points in Bochner L^p-spaces. Proc. Amer. Math. Soc. 93 (1985), 65—66.
- Greim, P., An extremal vector-valued L^p-function taking no extremal vectors as values, Proc. Amer. Math. Soc. 84 (1982), 65—68.
- Greim, P., An extension of J. A. Johnson's characterization of extremal vector-valued L^p-functions, preprint.
- 14. Grząślewicz, R., Extreme operators on 2-dimensional l_p -spaces, Collog. Math. 44 (1981), 309—315.
- 15. GRZĄŚLEWICZ, R., A note on extreme contractions on l_p -space, *Portugaliae Math.* 40 (1981), 413—419.
- GRZĄŚLEWICZ, R., Extreme contractions on Real Hilbert Spaces, Math. Ann. 261 (1982), 463—466.
- GRZĄŚLEWICZ, R., Faces in the Unit Ball of the Dual of L(R"), Math. Ann. 270 (1985), 535—540.
- 18. Grząślewicz, R., Extreme points in $C(K, L^{\bullet}(\mu))$, Proc. Amer. Math. Soc. 98 (1986), 611—614.
- 19. Grząślewicz, R., Exposed Points in the unit ball of $\mathcal{L}(H)$, Math. Z. 193 (1986), 595—596.
- 20. IWANIK, A., Extreme contractions on certain function spaces, Collog. Math. 40 (1978), 147-153.
- 21. JOHNSON, J. A., Extreme measurable selections. Proc. Amer. Math. Soc. 44 (1974), 107-111.
- 22. JOHNSON, J. A., Strongly exposed points in $L^p(\mu, E)$, Rocky Mountain J. Math. 10 (1980), 517—519.
- 23. KADISON, R. V., Isometries of operator algebras, Ann. Math. 54 (1951), 325-338.
- 24. Kelley, J. L., Measures on boolean algebras, Pacific J. Math. 9 (1959), 1165-1177.
- Kurc, W., Strongly exposed points in Orlicz spaces of vector-valued functions I. Commentationes Math. 27 (1987), 121—133.
- 26. Kurc, W., Strongly exposed points in Banach functions spaces of vector-valued functions.
- 27. Kim, Choo-Whan, Extreme Contraction Operators on l_{∞} , Math. Z. 151 (1976), 101—110.
- 28. Maharam, D., An algebraic characterization of measure algebra, Ann. Math. 48 (1947), 154—167.
- 29. MICHAEL, E., Continuous selections I. Ann. of Math. 63 (1956), 361—382.
- 30. Moore Jr, L. C., Strictly increasing Riesz norms, Pacific J. Math. 37 (1971), 171-180.
- 31. Morris, P. D. and Phelps, R. R., Theorems of Krein—Milman type for certain convex sets of operators, *Trans. Amer. Math. Soc.* 150 (1970), 183—200.
- 32. PAPADOPOULOU, S., On the geometry of stable compact convex sets, *Math. Ann.* 229 (1977), 193—200.
- ROSENTHAL, H. P., On injective Banach spaces and the spaces L[∞](μ) for finite measures, Acta Math. 124 (1970), 205—248.
- 34. SHARIR, M., Characterization and properties of extreme operators into C(Y), Israel J. Math. 12 (1972), 174—183.
- 35. Sharir, M., A counterexample on extreme operators, Israel J. Math. 24 (1976), 320-328.
- 36. SHARIR, M., A non-nice extreme operator, Israel J. Math. 26 (1977), 306-312.

- 37. SHARIR, M., A note on extreme elements in $A_0(K, E)$, Proc. Amer. Math. Soc. 46 (1974), 244—246.
- 38. SUNDARESAN, K., Extreme points of the unit cell in Lebesgue—Bochner function spaces, Colloq. Math. 22 (1970), 111—119.
- 39. WERNER, D., Extreme points in function spaces, Proc. Amer. Math. Soc. 89 (1983), 598-600.
- WERNER, D., Extreme points in space of operators and vector-valued measures. Proc. of the 12-th Winter School, Rend. Circ. Mat., Palermo, Supp. Serie II no 5 (1984), 135— 143.

Received September 26, 1986 Received in revised form November 9, 1989 R. Grząślewicz Institute of Mathematics Technical University Wyb. Wyspiańskiego 27 50-370 Wrocław Poland