
Extreme operator-valued continuous maps 

R. Grz~glewicz 

Abstract. Let .oq~(H) denote the space of operators on a Hilbert space H. We show that the 
extreme points of the unit ball of the space of continuous functions C(K, .LP(H)) (K-compact 
Hausdorff) are precisely the functions with extremal values. We show also that these extreme points 
are (a) strongly exposed if and only if dim H< ~ and card K<,~, (b) exposed if and only if / /  
is separable and K carries a strictly positive measure. 

1. Introduction 

Let C(K, X) denote the Banach space of  all continuous functions from a 
compact  Hausdorff  space K to a Banach space X equipped with the supremum norm 

Ilfl l=supk~x llf(k)]l. By B(X) we denote the unit ball of  the Banach space X. 
There is a natural conjecture about  extreme points: 

( . )  fEextB(C(K,X)) i f  and only if f(k)EextB(X) for all kEK. 

Obviously the " i f  par t "  in ( . )  always holds. This conjecture has been proved 
to be true under various additional assumptions. We list some of  the known results. 
The conjecture is true if: 
1) X is strictly convex, 
2) B(X) is polytope, 
3) X=(C(K1))*=M(K1), where K1 is a compact  Hausdorff  space ([31], Theorem 4, 

5). Note that  in this case the conjecture ( . )  is equivalent to the fact that extreme 
operators in the unit ball of  the space of  compact  operators La(C(K1), C(K)) 
are nice in the sense of  Morris and Phelps. For  other similar results on the 
space of  weak* continuous functions from K into (C(K1))* (this corresponds 
to the case of  extreme point of  the unit ball of  the space of  all bounded linear 
operators s C(K)) (see [6], p. 490)) under various assumptions on K 
and Kx (see [2], [1], [34], [9], [20], see also [35], [36] for negative examples). 

4) X has 3.2.I.P. ([37]). 
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5) B(X) is stable (to get it we use (iii')) in [4] and Michael's selection Theorem [29]). 
6) X=LX(#) ([39]). 
7) X=L~'(It) is an Orlicz space equipped with the Luxemburg norm ([18]). 
8) X=M(Ka,Z) is the space of Z-valued regular Borel measures of finite varia- 

tion, Z is a Banach space,/(1 is a compact Hausdorff space ([40]). 
The conjecture ( . )  is not true for every Banach space X. A negative example 

was given by Blumental, Lindenstrauss and Phelps for X=R 4 equipped with a 
suitable norm ([2]). The class of finite dimensional spaces for which conjecture ( . )  
holds was described by Papadopoulou ([32]). She proved that B(X) (dim X<oo) 
is stable if and only if all k-skeletons (k = 0, 1 . . . . .  n) of B (X) are closed (a k-skeleton 
of B(X) is a set of all xEB(X) such that the face generated by x has dimension 
less than or equal to k). 

After dealing with the conjecture for Banach spaces the next natural step is 
to consider X as a space of linear operators. We denote by .LP(Y) the space of all 
bounded linear operators from a Banach space Y into itself equipped with the 
operator norm. 

For X=Lz~ l<p<~o ,  p~2 ,  the conjecture does not holds. Indeed, we 
have the following example. Let (a,)El v be such that II(an)Jlp=l and a ,>0  for 
all n. We define fEC([0, 1], .~~ by f(k)=Tk, kE[0, 1] where 

Tk((x.)) = x , ( ~ ,  ~/af + ag, ~c-~. [/o7 + ag, a a, a, . . . .  ), 
(x,)El p. We have for p>2 ,  TkEextB(Le(IV)) for kE(0, 1) and TkqextB(~(/P)) 
for k = 0  or 1 (see [15], see also [14]). Using adjoint operators an analogous ex- 
ample can be written for pE(1, 2). 

In this note we consider the case p=2 .  It turns out that the conjecture ( . )  
holds for the space of operators acting on a Hilbert space (Section 2). 

In Section 3 we consider under what conditions elements of ext B(C(K, 5e(H))) 
are exposed or strongly exposed. We show that extreme points of B(C(K, .oq'(H))) are 
(a) strongly exposed if and only if dim H <  ~ and card K <  ~o, 
(b) exposed if and only if H is separable and K carries a strictly positive measure. 

2. Extreme points in B(C(K, (H))) 

Let H be a (real or complex) Hilbert space. We denote by PrE.oq'(H) the 
orthogonal projection onto a subspace E of H. The set of extreme points ext B (.oq' (H)) 
coincides with the set of all isometries and coisometries (see [23] for the complex 
case, and [16] for the real case). Our aim is to characterize ext B(K, ~(H)). Note 
that the below presented Theorem was proved in [14, p. 314, ( . . ) ]  in the case when 
H is finite dimensional. 
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In the finite dimensional case the dual of LZ(H) was also considered, and it 
turns out that the unit ball of s is stable (see [17]), so the conjecture ( . )  also 
holds for C(K, B(LZ(H)*)) (dim H <  ~). 

Now we recall some facts we will use in the proof of Theorem 1 below. 
Let TC s (H) be a contraction. We put 

M(T)  = {hEn: [IZhll  = Ilhll}, 

We have Z*Th=h for h~M(T).  Moreover T(M(T))=M(T*)  and T ( M •  
M• 

Obviously, if T~extB(.,q'(H)) then neither T T * = I  nor T * T = I  i.e. 

M • (T) # {0} # M • (T*). 

Put S=((I+ T*T)/2) x/2. We have I/2<=S<=I. Therefore S -1, S 1/2 and S -x/~ 
exist. We have 0~$1/2<-L Hence 

0 <= S~/2(2Sa/Z-I) = 2 S - S  ~/2 <- L 

Since T*T<=S 2 we have 

llTxII ~ = (T*Zx, x) <= (S2x, x) = !15x112. 

So [ITS-1I[<_-I. We get 

IITS-X/ell ~_ [ITS-lit [lSa/2ll <_- 1 
and 

[IT(2I-S-a/2)[I <-[IZS-l[I 1[2S-St/~l[ ~ 1. 

Theorem 1. Let H be a Hilbert space and let K be a compact Hausdorff space. Then 

f~  ext B(C(K, s (H))) 
i f  and only i f  

f(k)~extB(LZ(H)) for all kCK. 

Proof. Let f~B(C(K, .La(H))). Assume that f(ko) fails to be extremal for 
some koCK, i.e. 

M • (f(ko)) # {0} # M • (f(ko)). 

We need to prove that then 

fr  ext B(C(K, ~ (H))). 

Put T k=f(k).  We consider two cases. 
_ -1 l~  1 ~ There exist ko~K and xCMX(Tko) such that Tk0X~0. Put A(k)--TkSk , 

and f2(k)=2Tk-TkS[XS~/2, where Sk=((I+Tk*Tk)/2) u2. Obviously 

ae(H))) and f =  (A+A)/2. 
Since 

M(Tko ) = M(T~oTko ) = M(S~o ) = M(S~o) = M(S~k/o ~) 
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and * .t 11~ Tk, T~xEM (S~,) we have 

SV2T,* T, ko ko ko-~, < IIZ~Tkoxll. 

Since S~ 12 and Tk*T k commute, we get 

�9 /2 * TioTkoS~ko x ~ T~oTkox, so TkoS~k~x ~ Tko x. 

Hence Tko~TkoS~l/* and fl(ko)~f2(ko) i.e. f is not extreme. 

2 ~ Tk(M• = {0} = T~(M• for all k~K. 

Then Tk*Tk=P~(T~ ). Therefore k-~PM(r, ) is a continuous function, so k-~PM• 
is a continuous function, too. Fix koEK such that f(ko)r Choose 
eEM • (f(ko)) and gEM • (f(k0)*) with [[ei[ =[]gl] = 1. We have 

IITk + PM•174 <= 1. 
Hence f is not extreme. 

3. Exposed and strongly exposed points in B(C(K, (H))) 

A point q0 in a convex set Q of a (real or complex) Banach space E is said to 
be exposed if there exists a bounded R-linear functional ~: E-~R such that ~ (q0) > 
~(q) for all qEQ\{qo}. An exposed point qoEQ is called strongly exposed if 
for any sequence q.E Q the condition ~(q.)~(qo) implies llq.-q0]l-~0. Obviously 
each exposed point is extreme. 

Note that extreme points of B(.~(H)) are strongly exposed in and only if H 
is a finite dimensional Hilbert space, and exposed but not strongly exposed if and 
only if H is separable infinite dimensional. Moreover there are no exposed points in 
B(.~(H)) if and only if H is not separable ([19]). 

Consider the Bochner LP-space ( l < p <  oo). For f~LP(ll, X) (X is a Banach 
space), if  I l f [ ]=l  and f(t)/llf(t)llEextB(X) for t~suppf/~-a.e. ,  then 

fCext  B(LP(I~, X)). 

Generally the converse does not holds. A negative example was given by Greim [12] 
for a nonseparable Banach space X. But for all separable Banach spaces X this 
property characterizes extreme functions (see [38], [21], [22], [13]). For the strongly 
exposed points the analogous natural condition on the values of  f are sufficient, 
whenever X is smooth ([10], see also [11]). Recently W. Kurtz considered strongly 
exposed points in Bochner--Orlicz spaces [25] (see also [26]). A compact Hausdorff 
space K is said to carry a strictly positive measure, if there exists a strictly positive 
Radon measure # on X (i.e. p(q/ )>0 for all non-empty open subsets q/ of X). 



Extreme operator-valued continuous maps 77 

Several authors have workes on the problem of the characterization of  spaces X 
which carry a strictly positive measure. Maharam [28] has given necessary and 
sufficient conditions for the existence of  strictly positive measures. Kelley considers 
strictly positive measures on Boolean algebras. In his work [24] he introduced the 
notion of  the intersection number of  a collection of  subsets to give a characteriza- 
tion of  spaces which carry a strictly positive measure. 

Next it turns out that the countable chain condition is not sufficient for the 
existence of  such a measure (see Gaifman [8]). Note that in the case of  a compact 
Hausdorff space, the problem mentioned above is equivalent to the problem of 
existence of  a finitely additive strictly positive measure. Rosenthal ([33], Th. 4.5b) 
proved that C (X) carries a strictly positive functional if and only if its dual C (X)* 
contains a weakly compact total subset. Other results can be found in [7], [30], [3]. 
We refer the reader to [5, Chapter 6] for a survey of  known results about strictly 
positive measures. In fact, we can consider a strictly positive measure on X as a 
functional on C(X) which exposes the function 1. 

Theorem 2. I f  a Hilbert space H is separable and a Hausdorff compact space K 
carries a strictly positive measure, then each extreme point of B(C(K, L~'(H))) is 
exposed. 

I f  H is not separable or K does not carry a strictly positi~'e measure then 
B(C(K, ~ (H))) contains no exposed points. 

I f  H is infinite dimensional then B(C(K, L~~ contains no strongly exposed 
points. 

Proof. Suppose that H is separable and K carries a strictly positive measure. 
Assume that /z(K)= 1. We fix an orthonormal basis {ei}iet in H. Fix 

foEext B(C(K, A~ 

Put KI={kEK:  f(k) is an isometry} and K2=K\KI.  The set Kx is closed. Let 
(ai)tel be a sequence of  strictly positive reals such that ~ i e t  as= 1. We define a 
functional ~ on C(K, .~(H)) by 

(f)  = f r~ Z ,  c I a, Re (If(k)] (e,), [fo (k)] (e,)) d/z 

+ f K% Z , e ,  a, Re ([f(k)]*(e,), [fo(k)l*(e,)) d#, 

fEC(K, .s The functional exposesfo in B(C(K, .oq~ Indeed ~(f)_-__l= 
~(fo) for all fEB(C(K, Le(n))) .  

Suppose that ~(fx)= 1 for some fxEB(C(K, La(H))). Because 

Re ([ fx (k)] (e,), [ fo (k)] (el)) <= I, 

the condition ~ ( fx )= l  implies that [f~(k)](e,)=[fo(k)](e,) for all iEI and kEK~ 
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/z-a.e. Analogously fx=fo p-a.e, on Kz. Hence by continuity fx=fo. So we finish 
the proof of the first part of theorem. 

Now suppose that a functional ~0 exposes foEextB(C(K,L#(H))) in 
B(C(K, .La(H))). We define a functional m on C(K) by 

re(h) = ~o(hfo), hEC(K). 

We claim that m is strictly positive. Indeed, suppose to get a contradiction, that 
there exists hoEC(K ) such that 0 ~ h o ( k ) ~ l ,  ho~0, and m(h0)<0. 

Then 
~o((1-ho)fo) = m(1--ho) -<-- re(l) = r 

and hofo ~0,  which is impossible. It follows that K carries a strictly positive measure. 
Consider now a function n on all subsets of 1 defined by 

n(L) = ~o(foPl~ te,: ~ L)) 

L C I  (in the case when all fo(k) are coisornetries we define n by n (L)=  
~0(P~(~,:~cz~f0)). The function n is finitely additive on the family of all subsets 

o f / .  Moreover n ( I ) = l  and n(L)~O for L c I .  Suppose that n(L0)--0 for some 
non-empty L 0 c I .  Then 

SO 
~0(f0~Tte,:~L0 }) = 0, 

(i.e. 40 does not expose fo). This contradiction proves that n(L0)>0. Hence I is 
countable and H is separable, which yields the second part of the theorem. 

Let (Li)j~ N be a sequence of non-empty disjoint subsets of  L Then n ( L j ) ~  O. 
Hence 

~0(f0e~e ~CLg) = ~o(fo)--n(Lj) 1, ~offo) 
and 

Ilf0-foe~t,,:~r = IlfoP~ te,:ie Lsll I = 1. 

Therefore fo is not strongly exposed in the case when I is infinite (i.e. H is infinite 
dimensional). This proves the third part of the theorem. 

Theorem 3. Let H be a finite dimensional Hilbert space and K be a Hausdorff 
compact space. Then each extreme point of  B(C(K, .L#(H))) is strongly exposed, i f  
and only i f  K is finite. 

Proof. Let d i m H < ~ o  and cardK<r Fix foEB(C(K, .La(H))). Let r/k be 
a functional on .L#(H) which strongly exposesfo(k), kEK. It is easy to see that a 
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functional ~ defined by 

r  = Zkr  f ~ C ( K ,  .C#(H)), 
exposes ./~. 

Now suppose that card K = ~o. Let a fun ction al 3o expose f0 C ext B (C (K, .C>e (H))). 
Let (k.).(N be a sequence of  distinct points of  K such that lira k . = k o .  Let h.EC(K) ,  

nEN, be such that  0-<__h. <- I, h . (k . )=1  and supp h. c~supp h . = 0  if n1#n2. Put 

a#=r Note that  a.=>0 because 

~0( f0 ) -  a. = 3 0 ( ( 2 - h . ) f 0 )  ~ ~0(f0). 

For  every finite subset L of  N we have 

Z . e z  an = r h.)fo) ~- r 

Hence a.---O. Therefore 

~o((1-h,)f0)  = ~o(fo)-a~ -~ ~o(fo) 
and 

1I(2 -h.)f0-f011 = l ih . f  11 = 2. 

Thus fo is not strongly exposed by 40. This ends the proof. 

Remark. I would like to express my thanks to the referee for his useful remarks 
which shorten the p roof  of  Theorem 2. 

Acknowledgement. Written partially while the author was a research fellow of 
the Alexander von Humboldt-Stiftung at the Mathematisches Institut der Eberhard- 
Karls-Universitiit in Tiibingen. 
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