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Abstract. We give a characterization of Poissonian domains in R n, i.e., those domains for 
which every bounded harmonic function is the harmonic extension of some function in L *~ of 
harmonic measure. We deduce several properties of such domains, including some results of Mount- 
ford and Port. In two dimensions we give an additional characterization in terms of the logarilhmic 
capacity of the boundary. We also give a necessary and sufficient condition for the harmonic measures 
on two disjoint planar domains to be mutually singular. 

1. Introduction 

Suppose  f2 is a doma in  in R n for which  ha rmon ic  measure  co is defined. Given  

a (real  valued)  funct ion f6L'*(dco) we can define a bounde d  ha rmon ic  funct ion u 

on  t 2 b y  

u(z) = f o. f(x)dcoz(X). 

I f  n >-2 and  f2 is unbounded ,  co m a y  con ta in  a po in t  mass  at  oo. W e  say O is Pois-  

sonian i f  every bounded  h a r m o n i c  funct ion on  O is o f  this  form.  F o r  example ,  

the  uni t  bal l  is Poissonian ,  and  a non-Po i s son ian  d o m a i n  in R 2 can be cons t ruc ted  

by  removing  the l ine segment  [0, 1] f rom the uni t  disk,  D. There  are  b o u n d e d  

h a r m o n i c  funct ions  on this doma in  which  have different  b o u n d a r y  values " a b o v e "  

and  " b e l o w "  the slit, and  these are  no t  o f  the  fo rm descr ibed  above.  However ,  

using results  o f  [8] i t  is poss ib le  to bui ld  a Jo rdan  a rc  F connect ing  0 and  1 in D 

such tha t  D \ F  is Poissonian .  Thus  more  than  jus t  topo logy  is i m p o r t a n t  in deter-  

mining  whether  a d o m a i n  is Poissonian .  

The  pu rpose  o f  this  p a p e r  is to give a charac te r iza t ion  o f  Poissonian  doma ins  

and  derive some o f  thei r  proper t ies .  Our  charac te r iza t ion  is in te rms o f  h a r m o n i c  

measures  o f  subdomains  o f  f2. Since the  h a r m o n i c  measures  co r respond ing  to  
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two different points in a domain are mutually absolutely continuous (i.e., they 
have the same null sets) and our conditions only concern whether a set has zero 
or positive measure we will refer to " the"  harmonic measure to(E, f2) (or just 
to(E) if the domain is clear from context). 

Theorem 1.1. I 2 c R  n is Poissonian iff  for every pair o f  disjoint subdomains f2~ 
and f2a o f  (2 with 0(2~n0122c012 , the harmonic measures co x and toa o f  f2x and 12 z 
are mutually singular. 

By the measures being singular we mean that there exists EcOf21nOf22 with 
col(E)=0 and coa((0f2xc~0O~)\E)=0 and we write this as tox_l_coz. It is not 
clear how easy this condition is to check in practice, but it is sufficient to prove 
the following results (the necessary definitions will be given in Section 3): 

Corollary 1.2, [23]. Each component o f  the intersection o f  two Poissonian do- 
mains is Poissonian. 

Corollary 1.3, [23]. I f  01 and ~2~ are Poissonian and co(0921n0g22, f21u~2z)=0 
then f2=f21uf2., is Poissonian. 

Corollary 1.4. I f  E c R  n is closed and has zero n - 1  dimensional measure, 
then O = R n \ E  is Poissonian. 

Corollary 1.5. I f  E c R  ~ is a closed subset o f  a Lipschitz graph, then f 2 = R ~ , E  
is Poissonian iff E has zero n -  1 dimensional measure. 

Some hypothesis is needed in Corollary 1.3 since it is easy to see that the union 
of Poissonian domains need not be Poissonian, e.g. f21 = {0< lzl < 1, 0<arg (z)<3zt/2} 
and O 2 = { 0 < l z l < l ,  rt/2<arg (z)<27r} whose union is D \ [ 0 ,  1]. Corollary 1.5 
was proven in [23] when E is a subset of  a n -  1 hyperplane and this case also fol- 
lows from results in [4]. Also see [2]. Mountford and Port [23] also gave a charac- 
terization of Poissonian domains in terms of the Martin boundary A of f2. It says 
that a domain is Poissonian iff there is a measurable mapping q~: 0Q~A which 
takes harmonic measure on 0f2 to the harmonic measure p on A, i.e., iff (Of2, to) 
and (A, p) are equivalent as measure spaces. 

For domains in R 2, the characterization in Theorem 1.1 can be restated in 
terms of a Wiener type condition involving the logarithmic capacity of 012, as fol- 
lows. For xER ~, 6>0,  5>0 and 0E[0, 2n) we define the cone and wedge 

C ( x ,  6, ~, O) = {x  + rel~': 0 < r < 6, I~ - OI < 5} 

W(x, 6, 5, O) = C(x, 6, ~, 0)n  {z: 6/2 ~_ Iz-xl}. 

We also let cap (E) denote the logarithmic capacity of E (to be defined in Section 4). 
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For a fixed x, ~ and 0 let 

7i(k) = cap (2k-2(W(x, 2 -k, ~, ( -  1)t+x0)\Oi)), 

i.e., v~(k) is capacity of  f2~c~W(x, 2 -k, 5, 0) after we have dilated it to have diameter 
about 1/2. We say a point xCO~21c~Ot22 satisfies a weak double cone condition 
(WDCC) with respect to the pair g21, f22 if there exist ~ and 0 such that 

(1.1) ~ = 1  (yl(n) + 72 (n)) < co. 

I f  f2x= ~2 = f2 we simply say x satisfies a WDCC with respect to f2. We refer to 
this as a "weak" condition because it generalizes the double cone condition stated 
in [6] and [8] which requires that 

C(x,  6, 5, ( -  1)'+10) c f2,. 

It  is clear that this condition implies the WDCC since all but finitely many of  the 
terms in (1.1) will be zero. 

Theorem 1.6. A domain f 2 c R  2 is Poissonian iff  the set o f  points x~Of2 which 
satisfy a weak double cone condition with respect to 12 has zero 1 dimensional measure. 

The proof will also show: 

Theorem 1.7. Suppose f21 and Q2 are disjoint subdomains in R* and let o~ and 
o9~. be their harmonic measures. Then col 2_ cos iff the set o f  points in 0~1c~0f2~ sat- 
isfying a weak double cone condition with respect to f21, f22 has zero 1 dimensional 
measure, A~. Moreover, i f  coa and co 3 are mutually absolutely continuous on a set E 
then there is Besicovitch regular F c E  with coi(F)=wi(E) and o~ i mutually ab- 
solutely continuous with A~ on F for  i= 1, 2. 

In the case when the domains are simply connected, these results follow easily 
from the results of [8] and the fact that the capacity of a connected set can be esti- 
mated in terms of  its diameter. We can also characterize the disjoint planar domains 
for which the two harmonic measures are mutually absolutely continuous. This 
happens iff 12i=l ] i \E  i for i = l ,  2 where cap(Ei)=0 and f~l and ~2 are disjoint 
simply connected domains with mutually absolutely continuous harmonic measures 
~ and fib. Such domains are characterized in [8] (also see [6]): ~ < < ~ < < ~ 1  iff 
for every 5>0 there are subdomains D ~ c ~  with rectifiable boundaries F/ such 
that ~ i (F~nE2)~I-~  for i=1 ,2 .  

Theorem 1.7 implies that if s'2 is not Poissonian then ~I2 contains a Besicovitch 
regular set of  positive length. Thus we obtain 

Corollary 1.8. I f  E c R  2 is a closed, Besicovitch irregular set, then 12=R~',,,E 
is Poissonian. 
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In the next section we shall prove Theorem 1.1. In Section 3 we will prove its 
corollaries and in Section 4 we prove Theorems 1.6 and 1.7 and Corollary 1.8. In 
Section 5 we prove a lemma used in Section 4 and we conclude in Section 6 with 
some remarks concerning the Martin boundary and possible generalizations of 
Theorem 1.7 to higher dimensions. 

I would like to thank Tom Mountford and Sidney Port for discussing their 
work on Poissonian domains with me and for their comments on this paper. I am 
also indebted to Mike Cranston, John Garnett and Tom Wolff for many helpful 
conversations on harmonic measure and the Martin boundary. 

2. Proof of Theorem 1.1 

Before starting the proof we recall a few basic facts of  potential theory (see 
[10], [12]). By the Newtonian kernel on R" we mean 

K ( l x l ) = / l ~  I-~-1 ' n = 2  

[[xl 2-", n > 2 

and given a positive measure # on R" we define its potential by 

u~,(x) = f K(Ix-yl)dl~(y)  
and its energy by 

I(#) = f f  g ( l x -  Yl) d# (x) d/~ (y). 

For a set E ~ R  ", we let Pr (E) denote the set of probability measures on E. We 
define the capacity of  E as 

inf I (#) -1 .  cap (E) = (.s ) 

There exists a unique probability measure /7, called the equilibrium measure, for 
which the inf is attained. Moreover, the potential of this measure satisfies 

ua(x ) = 1(/7) 

for every x~E  except possibly a subset of capacity zero. In 2 dimensions the kernel 
is not positive, so a large E may have infinite or negative capacity, and for this 
reason the capacity is sometimes defined as exp ( - c a p  (E) -1) to make it positive 
and monotonic. However, we will only consider sets of  diameter less that 1, so our 
capacities will always be positive. 

If  f2 is a domain with cap (~)f2)>0 then t2 has a Green's function and the 
harmonic measure for f2 exists. A set E with cap (E )=0  is called polar. A property 
which holds everywhere of  ~)I2 except possibly on a polar set is said to hold p.p. 



A characterization of Poissonian domains 

("presque partout")  on 0(2. For  example, the Green's function of  (2 always tends 
to 0 p.p. on 0~2. The points of  0~  where it does so are called regular for the Dirichlet 
problem on O. I f  EcOg2 is polar then E has zero harmonic measure in (2. I f  f is 
continuous on 0~  and we extend it to a harmonic function u on (2 via the Perron 
process such that u extends to be continuous and agree with f p.p. on 0C2. The 
mapping f+u(z) turns out to be a continuous linear functional on C(0(2) so by 
the Riesz representation theorem there is a probability measure o~ on 0(2 such 
that u(z)=f fd~z .  This is the harmonic measure for ~2 with respect to z. For  a 
fixed EEOC, o~z(E ) is a nonnegative, harmonic function in z, so is either 0 for 
all z or for none if (2 is connected. Thus the harmonic measures for different points 
of  (2 are mutually absolutely continuous, as mentioned before. 

I f  FcO~ is closed then the harmonic function u(z)=wz(F) tends to zero 
p.p. on O(2\F. Furthermore, the maximum principle states that if u is a bounded 
subharmonic function on (2 such that 

lim sup u(z) <- M 
Z~X, ZE~ 

for p.p. xEO~ then u<=M on (2. I shall also use the phrase "maximum principle" 
to refer to the following fact: if ~ c O  and EcO~c'~O(2 then ~o(E, ~)=<~o(E, (2). 

Now we begin the proof  of  Theorem 1.1. First we will show the stated con- 
dition implies (2 is Poissonian. Let HB (Q) denote the Banach space of  bounded 
harmonic functions on (2 with the "sup"  norm. Then there is a continuous linear 
mapping P:  L=(o~)+HB ((2) given by 

l~(_f)(z) = f f(x) dog~. 

In order to show (2 is Poissonian we want to show this mapping is onto. It suffices 
to show that for any u~HB((2) with [[u[] ~1  there exists an fEL~(og) with 
[[f[]=<_-I and such that [[u-P(f)[[ <- 3/4. Since P is bounded and linear a stand- 
ard successive approximation argument gives a g with P(g) - -u .  

So fix a uEHB((2) with Ilull <=1. We may assume that u ( ( 2 ) = ( - 1 ,  1). Let 

~1 = {z~(2: u(z) > 1 } ;  

(22 = {zE(2: u ( z ) < - l } .  

Note that 0~r'~1/-~0~'~2 m u s t  lie in 0 0  and that ~1 and 02 may have countable many 
components. By hypothesis the harmonic measure for any component of  (21 is 
singular to harmonic measure of  any component of  Q2. Therefore, given compact 
subsets Ki of  (2, ( i= 1, 2) and 5>0  we can find disjoint closed sets EicO(21c-~ 
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3D2c3D such that 
co(z, E,, 03 -~ co(z, Of 2n0G, 03-8 

for every zEK~ and i =  1, 2. 
Now define a function g by setting g (z )= l /3  for zEE1, g ( z ) = - l / 3  on E2 

and extending g to be continuous on all of  R" and satisfying -1/3-<_g<= 1/3. Now 
restrict 8 to O~ and let v=P(g) .  By the maximum principle -1/3<=v<=1/3 so 
for z E ~ \ ( O l u ~ ) ,  lu(z)-v(z)]<-2/3. For zEOQln~ we have u(z)=l/3, so 
[u(z)-v(z)l<=2]3. Also, for p.p. xEEI v(z)~l/3 as z~x  in i l l .  Thus for p.p. 
xE E1 

l imsup (u(z)-v(z)) <= 1-1 /3  = 2/3 
z ~ x , z ~ . Q  x 

and for every xE(O~lnO~)\E1, 

lim sup u(z)-v(z) ~ 2. 
Z ~ X ,  Z E 1"/1 

From this and the maximum principle we obtain 

lu(z)-v(z)l <-- 2/3+2co(z, Of2\E1, f20 <= 2/3+2z, zEK1. 
Similarly for f2~. Thus if  we take an exhaustion of f2x and ~22 by com- 
pact sets and a sequence of  a's tending to zero, we obtain a sequence {g,}EL-(co) 
with IP(g,)(z)-u(z)l<=3/4 for every zEO and n=n(z) large enough. By passing 
to a subsequence we may assume the {g,} converge weakly in L | (co) and the limit 
g clearly satisfies []u-P(g)l]| Thus O is Poissonian. 

Next we prove the converse. We will show that if the condition in Theorem 1.1 
fails then f2 is not Poissonian. So suppose 121 and f22 are subdomains of  t2, that 
Of 21nO~2~cOO and that cox and w2 are not singular. Then there is a set EcOf21nO02 
such that codE)>0,  coz(E)>0 and co~ and co, are mutually absolutely contin- 
uous on E. 

Let ~" be the family of subharmonic functions v on ~ which satisfy 

1--2co(z, E, Q~, z e t a  
v(z) ~= w(z) = {1, zEONQ~. 

Note w is a superharmonic function on ~, and so ~ is a Perron family (see [1, 
page 248]). Thus 

-1  <=u----~pv~_w 

exists and is harmonic. We claim that u cannot be uniformly approximated on ~ by 
functions of the form P(f), fEL~(co). 

First note that if we define v on ~ by 

v(z) ~2co(z, E, o3-1,  z~Ol 
= [ -  1, zE ~ \ O x  
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then v is subharmonic on f2 and is in ~r. Thus v<-u. Let D~cI2i be defined by 

D / =  {zEf2i: co(z, E, f2i) > 3/4} 

for i = 1 ,2 .  Note that u>=l]2 on D~and u<~-l /2 on D2. 
Now suppose there exists fEL**(co) such that ][u-P(f)[l~< 1/4. Then P(f)>= 

1/4 on D1. Therefore f>=l/4 a.e. (col) on E, for if F ~ - { f < l / 4 - e }  and col(F)>0 
for some e:~0, there would be a sequence {z,}cDa with co(z,, F, f2~)-~l and 
hence P ( f ) ( z , ) <  1/4 for some n, a contradiction. 

The same argument shows that P ( f ) < = - l / 4  on D2 and therefore f<=- l /4  
a.e. (co2) on E. But f-> 1/4 a.e. cot and cot and co., are mutually absolutely continuous 
on El This is a contradiction, and so no such fcan  exist. Hence I2 is not Poissonian. 

3. Proof of the corollaries 

Before proving the corollaries it is convenient to record the following simple 
results. 

I.emma 3.1. Suppose I2cR  n and EcOf2 has positive harmonic measure. Fix 
0 < a < l  and set f2={zEf2: co(z,E, f2)>a}. Then F c E  has positive harmonic 
measure in f2 iff it has positive harmonic measure in some component of  ~. 

Lemma 3.2. Suppose f2~ and f22 are disjoint domains with mutually continuous 
harmonic measures cot and co., on a compact subset EcOf21c~Of2., o f  positive measure. 
Then there exist ~2~cf2 i for i=1,  2 with mutually continuous harmonic measures 
t3 i on a subset F c E  of  positive t3 i measure and O01c~OQzcE. Moreover, given 
any open neighborhood U of  E, we may take ~ i c  U for i=1,  2. 

To prove the first lemma, let F c E  be compact and note by the maximum 
principle that for each component f2j of  ~, co(F, f2j)_-<co(F, f2), so co(F)=0 
implies coj(F)=0 for every j.  On the other hand if  co(F)>0 then there exists 
z0E~ with co(Zo, F, f2):>(l+a)/2. Suppose zo is in a component f2j of  ~. First 
note that co(z, F, f2) is harmonic on f2j but less than a on tgf2jc~I2. Also observe 
that cap (012S~g2) \F)=0 (this holds since co(z, F, O)~0 p.p. on ~ f2 \F ) .  Thus 
co(z 0, F, f2j)>0. This proves Lemma 3.1. 

To prove Lemma 3.2 let ~i be components of  {zEf21: co(z,E, f2i)>I/2} for 
i=1 ,  2. By Lemma 3.1 they can be chosen so they have mutually absolutely con- 
tinuous harmonic measures on some subset F c E  of  positive measure. Now sup- 
pose x E ~ l n ~ 2  but not in E. Then xEOf21nOI2.,. After the proof of Lemma 3.3 
we shall observe that a point of the common boundary to two disjoint domains 
must be regular for the Dirichlet problem for at least one of  the domains. So as- 
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sume x is regular for f2x. Then since xCE, co(z, E, f2x)~0 as z ~ x  in ~'~1" Since 
co(z, E, f2x)> 1/2 for z~ Ox, x~ Qx, a contradiction. Thus xEE, as required. 

To prove the last claim we take ~ to be components of  

{z~f2~: co(z, E, ax) > 1-~} 

for small e. To show ~ i c  U if ~ is small enough observe 

co(z, E, f21) <= unfz) 
] ( p )  " 

where fi is the equilibrium measure for E. This inequality holds by the maximum 
principle since both sides are 1 p.p. on E and the the right-hand side is positive 
on 0 f2x \E  while the left-hand side is 0 p.p. on 0f2x\E.  The right-hand side is 
strictly less than 1 off E and so is <- 1 - ~  on the complement of U. This argument 
needs to be slightly modified in 2 dimensions because the potential is not positive. 
However in this case we may assume that f2x is bounded (use a M6bius transforma- 
tion to put ~ f 2 2 )  and then compare co(z,E, 01) to 1-q(1-u~(z)/I(~)) which 
is positive on f2 x if r/is small enough. This proves the second lemma. 

To prove Corollary 1.2 suppose f2 is a component of  f2xc~f22 and that f2 is 
not Poissonian. Then there exist disjoint domains Dx,D2=I2 whose harmonic 
measures cox and co2 are not singular. Thus there is a subset ECODxc~cgD2 on 
which col and m~ are mutually absolutely continuous and which has positive measure. 
Since Of2cOf2xwOf22 either Ex=EC~Of2x or E2=EnO0 z must have positive 
measure with respect to cox. Without loss of  generality suppose it is El .  Then DI, 
D2 are disjoint subdomains of  f21 whose harmonic measures (restricted to El) are 
not singular. We may not have ODxc~OD2=Of2x, but we can fix this by using 
Lemma 3.2. Thus f2x is not Poissonian. 

To prove Corollary 1.3 suppose f2 x and f22 are domains, and define f2= Qxw~22. 
Suppose also that co(Of2xn0122, f2)=0, but that ~2 is not Poissonian. Then there 
exist disjoint subdomains Dx and D2 and a set E=ODxc~ODz as above. Since 
cox(E)>0, co(E, I2)>0 by the maximum principle. Since co(O121c~0f22, f2)=0 either 
Ex=Ec~Of2x\Of22 or E2=Ec~Of22\Of21 must have positive harmonic measure in f2. 
Assume it is Ex. We may also assume E1 is compact and so does not meet ~ , .  Ther.e- 
fore there is an open neighborhood U of  E1 which also does not meet I22. By the 
second part of  Lemma 3.2 we can find subdomains of Uc~ 121 which have mutually 
continuous harmonic measures on a set of  positive measure. This proves Corol- 
lary 1.3. 

Before proving Corollary 1.4 we we recall the definition of  Hausdorff measure. 
For  a set E = R "  we let 

A~(E) = lim (inf ~'~' (rj)~: E = uB(xj ,  r j), r j <= 6}). 
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Here B(x, r) denotes a solid ball of radius r and center x. We call As the s dimen- 
sional Hausdorff measure. See [10] or [13] for further details. We also need the 
following estimate on harmonic measure. 

I.emma 3.3. Suppose f21 and f22 are disjoint domains in R". Fix points ziE f21 
for i = 1 ,2 .  There isa C > 0  so that for x60121c~Of22 and 

r < min (dist (zl, 0g21), dist (z2, 0f22)), 

o (Zl, B(x, r)nOal, B(x, r) OO , O,) <= C:("-'. 
The constant C depends only on dist (zl, Of 21) and dist (z2, 0g22). 

First normalize so that dist (z~, 0f23=>1 for i =  1, 2. For domains in R ~ 
this result is proven in [8]. For higher dimensions it follows from estimates of 
Huber [17] and Friedland and Hayman [14]. Suppose u is positive and subharmonic 
on R" and vanishes on 01L and for r > 0  let S(x, r)=OB(x, r) and define 

m.(,)=(L<x..)u'do-)':' 
where o- is surface measure on the sphere normalized to have mass 1. Then we have 

(::,' (3.1) m,(u) <= Cml(u)exp - c~(t 

where ~(t) is the characteristic constant of the n -  1 dimensional set f2(t) which is the 
radial projection of f2nS(x, t) onto the unit sphere. This can be defined by 
c~ (~ + n - 2) =/t  where 

f IVsf[ ~ do- 
2(f2(t)) = inf f [fl 2 do- 

where the " in f"  is over all Lipschitz, nonnegative functions vanishing off f2(t) and 
V s f denotes the spherical gradient o f f .  The constant - 2  is also the first eigenvalue 
for the Dirichlet problem with vanishing boundary conditions, at least if O(t) is 
smooth enough. If  f is the eigenfunction corresponding to 2 then u(x)= [x]~f(x/[xl) 
is harmonic in the cone defined by f2(t) iff ~(c~+n-2)=2.  This is because for a 
homogeneous function u the spherical Laplacian is given by A s = - U r , - ( n - 1 ) u ,  
on the unit sphere. Thus As f = ( - c ~ ( e -  1 ) - ( n -  1)~)f= - e ( a + n -  1)f. See [14] for 
details. 

To deduce our estimate from this result, let ~ = ( f 2 \ B ( x ,  r))u {1/2< [z-x[ <2} 
and let v(z)=co(z,S(x,r),~2) for z ~  and v(z)=0 elsewhere. Then v is sub- 
harmonic on R~,,B(x, r) and an easy application of the maximum principle shows 
co(z,B(x,r),f2)<=v(z) for z(f2. Without loss of generality, suppose x = 0  and 
define u(z)=v(z/IzJ2)lzJ 2-a. Since u is obtained from v by a Kelvin transforma- 
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tion (reflection across a sphere) u is harmonic at z iff v is harmonic at z*=z/Izl 2. 
Therefore u is positive and subharmonic on B(O, R) (R=  I/r) and is zero on 00* 
and equals R 2-a on S(0, R)c~f2*. Applying the result from [14] gives 

(:;,, .,,1 ml(u) <= CmR(u) exp -- ~ ( 1 / t ) - -  . 

Note that ml(u)=ml(v), mR(u)<=R z-d and by Harnack's inequality 

ml (v)-,~min v~,max v. 
s(0,1) s(0, i) 

Thus for Izl > 1 the maximum principle gives 

(3.2) co(z,B(O,r)c~Of2, g2)<-maxv~C,a-2exp(- L )d~tt ) _ o ~ ( t  . 
S(o, 1) 

To obtain Lemma3.3,  we use Theorem3 of  [14] which states that ~ ( t ) _  -> 
2 ( 1 -  Si(t)) where Si(t) is the ( n - 1 )  dimensional surface area of  g2i(t) (normalized 
so the whole sphere has area 1). This is proven using a result of Sperner [25] that 
among all domains on the sphere with equal area, the spherical cap is the one with 
smallest characteristic constant and then estimating cc for a spherical cap. Since 
12~(t) and f22(t ) are disjoint we have S~(t)+S2(t)<= 1, and hence ~l(t) q-~z(t)>=2. 
Multiplying the two estimates in (3.2) and using exp(-fldt/t)=r proves 
Lemma 3.3. 

I f  we apply the arguments of  the above paragraphs to the Green's functions 
G~ and G~ of  two disjoint domains we see that 

(max Gl(z) (max G2(z) < Cr 2(n-1) 

This implies that at least one of the two functions tends to 0 at x and hence x is 
regular for the Dirichlet problem on at least one of  the domains. This is a fact which 
we used earlier. A similar argument shows that if f21 and f2 z are disjoint, unbounded 
domains, their harmonic measures cannot both have point masses at infinity. There- 
fore the point at infinity is not important in deciding whether a domain is Poissonian 
or not. 

To prove Corollary 1.4 suppose E has zero 
let f2=R",,,E. Suppose f2 x and 02 are disjoint 
Fix e small and let ~ = { B j } =  {B(xp r:)} be a 
I f  col(E)=0 we are done so suppose col(E)>0. 
of  balls such that col(Bj)=>~ -1. By Lemma 3.3 
cg covers a subset F of  E with col(F)>=cot(E)-e 

( n - l )  dimensional measure and 
subdomains with Of 21c~Of22cE. 
covering of  E with ~ ' ~ - x < e .  
Let : g c ~  be the subcollection 
o~2(Bj)<=Cr "-1 for BjEcg. Thus 

and 

_-< Zc  o2(Bj) c x c  ,'7 
Taking ~--~0 we see that col A_co~.. Thus t2 is Poissonian. 
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Recall that a real valued function A on R" is called Lipschitz if there is a con- 
stant C > 0  such that IA(x)-A(y)l<=Clx-yl  for all x, yER". A Lipschitz graph 
in R" is a set of  the form {(x, A(x)): xER "-x} where A is a Lipschitz function 
on R "-1. 

If  A,_I(E)=O then f2 is Poissonian by Corollary 1.4. To prove the other 
direction of  Corollary 1.5, suppose E= {(x, A(x)): xE F} and let f21 be the region 
above the graph of the Lipschitz function ~/(x) and f22 the region below it. Then 
the harmonic measures are mutually absolutely continuous because of Dahlberg's 
theorem that harmonic measure on a Lipschitz domain and ( n - 1 )  dimensional 
measure are mutually absolutely continuous ([11], [18]). Using Lemma 3.2 we may 
assume r and so f2 is not Poissouian. 

4. Poissonian domains in R e 

We start by reviewing some related material from [6] and [8]. Suppose f21 and 
f2a are domains and that xEOOxnOf22. We say x satisfies a double cone condition 
with respect to the pair f21, f2 z if there exists fi, e>0  and 0E[0, 2r0 such that 

C(x, 6, e,O) ={x+rei~': 0 < r < 6 ,  10-~bl < ~} c f21 

and C(x, 6, ~ , -0)c f2z .  The point x is called a tangent point if there is a fixed 0 
for which can take ~ as close to 7t as we wish (if 6 is small enough). Up to a set of  A1 
measure zero, the set of  tangent points and the set of  points satisfying the DCC are 
the same. From [8] we have 

Lemma 4.1. I f  121 and f22 are simply connected domains with harmonic measures 
o91 and co S then col 3_ o9~ iff the set of  points satisfying a DCC with respect to Qx, g22 
has zero A~ measure. 

Simply connected Poissonian domains in R 2 were considered by Glicksberg in 
[15] in connection with certain function algebras. He called them "nicely connected" 
and defined them as those domains for which the Riemann mapping from the unit 
disk to [2 is 1-1 on a full measure subset of T. For further details see [7] and its 
references. 

It follows from the lemma that if  o~ and w2 are not mutually singular then 
0f2~c~0f2z "looks like" a Lipschitz graph. More precisely, if o91 and o92 are not 
singular then for any e > 0  we can find real valued functions f~ and f~ on [ -1 ,  1] 
such that 

(1) ft are Lipschitz with constant e, i=  1, 2. 
(2) f~=f2 except on a set of  length _~e. 
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Moreover, if 

D1 = {z: [zl <: 1, Im (z)>f~(Re (z))} 
and 

D2 = {z: [z[ < 1, Im (z) < f ~ ( R e  (z))} 

then after translating, rotating and dilating f21uQ2 we have D~c~2 i for i=1 ,  2. 
The subarc of OD~ corresponding to the graph off~ will be denoted F~. See [6] for 
details. 

Note in particular that if co~ and co~ are not mutually singular then 0~21~0g22 
contains a positive length subset of  a Lipschitz graph. 

Given a set E c R  2 with 0 < A I ( E ) < ~  we call a point x~E Besicovitch 
regular if 

lim A~(EnB(x, r)) = 1 
r~O r 

and irregular otherwise. The set E is called Besicovitch regular if a.e. (A0 point of  
E is regular. E is called irregular if a.e. point is irregular. One can show that a set 
is regular iff it consists of  a subset of  zero Ax measure plus a subset o f  a countable 
union of  rectifiable curves. Conversely, the intersection of  an irregular set with 
any rectifiable curve has A1 measure zero. Furthermore, any set E with At(E)< 
can be divided into two sets, one of  which is regular and the other irregular. For 
the proofs of  these facts and further details see [13]. 

We now prove Corollary 1.8. Suppose ~ and O2 are two general domains 
whose harmonic measures co 1 and 0) 2 are not singular. Since ~22 is connected it is 
contained in exactly one of  ~?t's complementary components. Let ~1 be the simply 
connected domain containing f~l obtained by removing all the complementary 
components of  (21 except the one containing ~ .  Similarly we define 5 2 by removing 
all of  ~2's complementary components except the one containing f21. (More pre- 
cisely, let Fa be the component of  0f2~ separating f2~ from ~2- Define F2 similarly. 
Then F~nF2=O[2xc~OO2r so F~uF 2 is connected. Thus the components ~ and ~ 
of  (FtuF2) ~ containing Q~ and ~.2 are disjoint, simply connected domains and 0~1c~ 
O~=FxcaF~.) The harmonic measures ~51 and ~5~ for the new domains cannot be 
mutually singular (if they were, then so would o)a and o)~ by the maximum principle). 
Therefore 0 ~ c ~ 0 ~  hits a Lipsehitz graph in positive length. Thus 0f2~c~0O~ con- 
tains a Besicovitch regular set of  positive length. This proves Corollary 1.8. 

Let K(x)= log  I~~-" Recall from Section 2 that 

/(~) = f x(Ix-y[) cO~(y),O,(x) 

cap (E) = ( inf ~(U)) -~ 
Pr(~) 

and that there exists a unique probability measure/~ which minimizes the energy 
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integral. It also has the property that for p.p. zEE 

u.(z) = f l o g  Iz-wl-ld~(w) = 1(~) = cap  ( E )  -1 .  

I f  f2 is a domain a theorem of  Wiener [27] says that xE0f2 is regular for the Dirichlet 
problem on f2 iff 

~ = 1  n.cap(OOc~{2-" ~ Iz-xl <= 2-"+1})<  oo. 

We will not need this result, but the computations we will do are quite similar to 
those in the proof  of  Wiener's theorem. (Note however that the series in Wiener's 
theorem is not quite the same as in Theorem 1.6.) 

Recall from the introduction that given 6, ~>-0 and 0El0, 2z0 we define a 
cone and wedge 

C(x, 6, e,O)= {x+reiq': O< r <6,  [O-~[ <e} 

w (x, ~, 5, o) = C(x, ~, 5, o ) \ c ( x ,  ~/2, 5, o). 

Given an open sets I21, ~22 we define 

v,(k) = cap (2k-l(W (x, 2 -k, 5, (-- 1)i+10)\f2i)) 

and say xEOf2zc~Of22 satisfies a weak double cone condition if  there exists 8 and 0 
such that 

Z L 1  (~ (k) + r2 (k)) < ~. 

Now we start the p roof  of  Theorem 1.6. We will start by proving that if ~ is 
not Poissonian then the set of  points satisfying the WDCC must have positive A1 
measure. So let ~ and ~2 be, as usual, two disjoint subdomains with non-singular 
harmonic measures wl and co 2. As in the paragraph above we construct simply 
connected domains ~ t ,  ~,. containing f2 I, f2~ and then the corresponding Lipschitz 
subdomains D~ and D2. Let /3~=I2~c~D~ for i=1 ,  2. Let ~1 denote a Riemann 
mapping of  D~ onto the upper half plane, say with F~ going to the interval [ -  1, 1]. 
Since D~ is a Lipschitz domain the mapping �9 is conformal almost everywhere 
on OD1, i.e., if  0 is the inward normal angle at a boundary point x and r is small 
enough then the image of  a cone C(x, r, 5, O) contains and is contained in a cone 
at O(x)ER, centered on a vertical line segment (see e.g., [24]). Moreover the series 
for C diverges if the corresponding series for a cone inside 4~(C) diverges, and it 
converges if the series for a cone containing ~ (C)  converges (we are using the fact 
that the capacity is changed by at most a constant factor under a smooth mapping. 
Since the mapping in question is conformal, the Koebe 1/4 theorem provides the 
necessary uniform bound on the derivative). 

Now let EcFIr~F2 be a set where the harmonic measures for O1 and f22 are 
mutually continuous. We have seen that on this set these measures are also mutually 
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absolutely continuous with A1. Therefore E has positive length and # ( E ) c R  has 
positive length and positive harmonic measure in UI= ~(/31). I f  we can show 
that a.e. xE ~x(E) is the vertex of a "vertical cone" with convergent Wiener series, 
we deduce the same for a.e. xEE with cones in the direction normal t o / ]  at x. 
Applying the same argument to D2 and using the fact that F~ and/'2 agree on a set 
of positive length (and hence have opposite inward normals on a set of  positive 
length) finishes the proof of this direction. 

Thus we need only the first part of: 

I.emma 4.2. Suppose f2 is a subdomain of  H, the upper half-plane, and let o~ 
denote harmonic measure on Of 2. Suppose E c R  and Ax(E)>0. Then og(E)=0 
i f  for a.e.(A1) xEE there is a cone C(x, 1, e, O) in the upper half-plane for which 
the corresponding series diverges. Com ersely, i f  a.e. xEE is the vertex of  a cone in 
H with a convergent series then a)(E)>0.  

This will be proven in the next section. Note that if a.e. xEE has some "con- 
vergent cone" then every cone is convergent for a.e. xEE. The other direction of  
Theorem 1.6 will follow from the second claim in Lemma 4.2. We want to show 
that if the set of points satisfying a WDCC has positive Ax measure then f2 is not 
Poissonian. Our first step is to prove: 

Lemma 4.3. Suppose f2 is a domain, and the WDCC is satisfied on a set E with 
AI(E)< oo. Then E is Besicodtch regular. 

The proof of this just uses a few basic facts about regular and irregular sets 
from [13]. The first fact is that if A~(E)< oo then for Ax a.e. xEE ([13, Corol- 
lary 2.5]) 

1 At (EnD(x ,  r)) ~_ 1. 
(4.1) ~- <- lim sup 

- , - o  2r 

The second fact is that if E is an irregular set then for Ax a.e. xEE and any p->0 
and 0E[0, 2~) ([13, Corollary 3.30]) 

AI(Ec~C(x, r, ~, 0)) AI(EnC(x ,  r, ~, - 0 ) )  
(4.2) lim sup I-lim sup > 

, ~ o  2 r  ~ 2 r  - -  "]-0" 

Choose a set F with 0 < A x ( F ) < ~ ,  where a WDCC is satisfied. Suppose F is 
Besicovitch irregular. By passing to a positive measure subset if necessary, we may 
assume (4.1) and (4.2) hold on F and that 

(4.3) Ax(FnB(x,  r)) ~_ 4r 
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for all xEF and r~_r o. Now fix xEF and let e and 0 be as in the WDCC at x. 
By (4.2) (and replacing 0 by - 0  if necessary) we can choose a small r<=ro such that 

~r 
A (E C(z, r, 0)) >= 

Then by (4.3) 

AI(En(C(x, r, ~, o) \e(x ,  r~/320))) > er = g 6  

if  r is small enough. But this implies 

( AI(EnW(x, 2-", ~, 0)) _-> log2 (e/320) 

for some m/320~_2-"<=r. The capacity of 2"-2(EnW(x, 2-", e, 0)) is easily seen 
to be bounded below by some absolute constant A by using (4.3) to estimate the 
potential for Alle. Thus the corresponding term in the series is bounded below by A. 
Since this happens infinitely often, the series must diverge, a contradiction. Thus F 
must be regular and the Lemma 4.3 is proven. 

Now suppose EcOY2 is a set of  positive A1 measure where the WDCC holds. 
By dividing E into a countable number of subsets and choosing one of positive 
measure we may also assume we have the same e and 0 for every xEE. By the 
previous lemma we may assume E lies on a rectifiable curve, even on a Lipsehitz 
graph F with small constant. Since almost every point of E is a point of density, 
the cones must be disjoint from F for a.e.x.  By taking a small neighborhood around 
a point of density of  E and recalling we may assume F is the graph of a Lipschitz 
function on [ -  1, 1]. Let DI be the part of B(0, 1) lying above F and D., the part 
lying below. Let ~1 be a Riemann mapping from D1 to the upper half-plane which 
maps FnOD~ to [ -1 ,  1]. Since each point of  E has a cone in D1 for which the 
Wiener series converges, a.e. point of  ~I(E) has a cone in the upper half-plane 
with a convergent series. I f  /31=DirtY2 and UI= ~(/31) then the second part of 
Lemma 4.2 implies ~I(E) has positive harmonic measure in U1, hence in/31. In 
fact the harmonic measure for/31 is mutually absolutely continuous with A~ on E. 
The same argument applies to/32 so the harmonic measures for/31 and/33 are not 
singular. Hence f2 is not Poissonian. 

The proof  of  Theorem 1.7 is clearly similar. 
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5. Proof  of  Lemma 4.2 

First we will show that if every point of  E is the vertex of  a cone in H with a 
divergent series, then the harmonic measure of  E in O is zero. Suppose i~ ~2 and 
fix an x~E. We will show that 

o)(i, B(x, r)raO0, O) -~ 0 

as r-*0. Since E has finite length and ~2~H, this implies co(E)=0.  In this sec- 
tion, if E c R  we will let IEI=A~(E) denote its Lebesgue measure. The notation 
a..~b will mean the ratio a/b is bounded and bounded away from zero by some 
absolute constant. 

Fix a x~E with a cone C(x)=C(x, 1, e, 0) for which the associated series 
diverges. For  each integer k > 0  let A(k)=O~?nC(x)ca{2-k-l<-----Iz--xl~2-k} and 
let B(k)=2k-eA(k) (since x is fixed we will omit it from our notation to simplify 
matters). Let 7 (k)=cap  (B,). Then our hypothesis is that ~'k 7(k)= oo. 

Let #, be the equilibrium measure for B(k). This is the unique probability 
measure supported on B(k) which minimizes the energy integral discussed in the 
last section. It also has the property that its potential 

u~,k(z ) = f log [z-w[ -1 d~k(w) 

is equal to cap (B(k)) -1 p.p. on B(k). Now set 

= f log ]z--w1-1 d#lk(w) +f log [z- ~1 d, , (w)  

= uuk (z) + f  log I z -  ~[ d/t,(w). 

Then ~ is positive and harmonic on H \ B ( k ) ,  is zero on R and near ~o, so takes 
its maximum on B(k). For z, w~B(k), [ z - ~ [ ~ l ,  so the second term in the last 
line above is uniformly bounded (depending only on the cone) whereas the first 
term (the potential) is like ~(k) -1 on B(k). By replacing B(k) by a subset whose 
capacity is smaller by a fixed constant we may arrange for the series to still diverge, 
but also 

1 
(5.1) ~- 7(k) -1 <= ~ ( z )  ~ 2y(k) -1 

for zEB(k). 
We also need to est imate/~(z)  for z far away from B(k). Let q denote the 
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hyperbolic metric on H. Note that if w(B(k) and O(z, A(k))=>l, then 

I 
Since 1[/711=1, if either Iz[==_2" or I m ( z ) ~ 2 - "  we have ~ ( z ) N C 2  -" for some 
absolute constant C. Now let 

~ (z )  = s 

Then Fg is positive and harmonic on I-IX.xA(k), is approximately ]~(k) -1 on A(k)  
and for z(A(n), Fk(Z)~2--1"-kl�9 For Iz[=l ,  Fk(z)~2 -k. 

Now choose an integer m such that 

(5 2) Z "  7 ( k ) < 2 .  �9 1 <= k=l = 

This can be done since each term in the series is less than Ilog (diam (B(k)))l< I 
and the series diverges. Define F by 

f ( z )  = z~k"=l 2~-"r(k)Fk(z) �9 

Then F is positive and harmonic on D=I-IN, U~' A(k), is zero on R, is greater 
than 2 T M  on each A(k) (since FA(z)>=~,(k)-a/2 there). Next we want to find an 
upper bound for F on each A (k). 

So fix a l<=n<-m and a z~A(n). Write 

F(Z)  . - 2  k - "  . + 1  = Zk=,2 7(k)Fk(z)+Zk=._x 7(k)Zk-'Fk(z)+Z~=.+2 2k-'r(k)Fk(z) 
=/~+&+g. 

By (5.1), each term of  A is bounded by C2"-" so/2 is also bounded by this. Next, 

Ix < Z "  -3  2 k _" 7 (k) Fk (z)  < C Z "  -~ 7 (k) 2 k-  " + k - .  .< C2"- " Z T 7 (k) < C2"-  " 

since 2k-n<=n and by (5.2)�9 Finally, 

13 "< z~,"+ 2k-"7(k)Fk(z) < C 3"" 2k--"+"--kv(k) <= C2"-"  

Thus F(z),-,2"-" for z6A(n). Also note if Iz l=l  then, 

F(z) = > Z~2k-m?(k)Fk(z) = > C -I Z~2~-'-k?(k) 

> C - 1 2 - r a z " ] l ( k  ) => C - 1 2  -m.  
= 1 

by our choice of m. Let J = ( x - 2 - " ,  x + 2 - " ) .  Since the harmonic measure in H 
of  this interval looks like 2 - "  at i a more careful version of the above argument 
gives a M > 0  such that 

oJ(z, J ,  H) ~_ MF(z), Izl = 1. 
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Note that if  zs then c~(z,Y, H ) ~ 2  "-m. Since the same is true for F, 
we may also assume M satisfies F(z)~Mco(z,J, H) for zEA(n). Now let 

u(z) = co(z, J, H ) - M - 1 F ( z ) .  

Then u is harmonic on D, equals 1 on J and 0 on R ~ J  and is positive on every 
A (k). Thus by the maximum principle, 

co(z, J ,  D) ~ u(z) 

for zCD and in particular, for [z[= 1, 

a~(z, J,D) <= co(z, J, H ) - M - 1 F ( z )  <= (1 -M-2)co (x ,  J, H). 

The same argument works for any interval J with /Yl ~ 2 - "  if replace the coeffi- 
cient 2 k-"  in the definition of  F by IJ[2 k. 

Now we define a new domain Da by D . , = H \ U ~  '~ A(k) where m~ has been 
chosen so 

1 <- " '  _ _ .  

The argument above can be easily modified to show that if J ~ = ( x - 2 - " , ,  x + 2  -m~) 

w(z, 3~, D2) N (1 - M  -2) co(z, J2, D) 

for I z - x l = 2  -m-1 and hence everywhere in Dn{[z-x l~-2  . . . .  1} (the inequality 
elsewhere on OD is obvious). By the maximum principle, 

co(i, J.~, D~) ~ (1 - M - 2 )  co(i, ,~z, D) <= (1 -M-2)zco(i, J~, n ) .  

The obvious induction argument gives us intervals {J,,} shrinking down to x such that 

co(i, J , ,  O) ~ (1--M-Z)"lJ,,I. 

Doing this for every xCE and using Vitali's covering theorem, we see that for 
every 6 > 0  we can cover almost all of  E by intervals {Jj} such that 

X j  co(J~) <-- ~ Z~ IJjl ~ 2~IEI 
and hence co(E)=0 as desired. 

Now we turn to the proof  of  the other direction of Lemma 4.2: if IEI >0  and 
every point of E has a cone for which the Wiener series converges, then E has posi- 
tive harmonic measure in O. For  x~E and k > 0  an integer we define A(x, k), 
7(x, k), F~,k(z) as before and set 

F~,(z) " k = Z~=~2 ~(x, k)F~,~(z). 

By dividing E up into a countable number of pieces, we may assume the same 
and 0 work for all points of  E. We may also assume 

ZT=~ ~(x, k) <= A < oo 
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for some fixed A and every xEE. Furthermore, it is easy to see that E has positive 
harmonic measure in ~2 iff it does in ~2x=Qu{Im (z)>2} for all small 2:--0 (use 
Lemma 3.2 and the maximum principle. Thus we need only show that E has posi- 
tive harmonic measure in f2=Q~ for some 2. Therefore we may assume that 0 f~c  
{0=<Im (z) -2} .  This also means 

Z'[=l k) <- a, xEE 

may be assumed as small as we wish. Since ~(x, k) is small, we have inequalities 
Fx, k ( z ) ~ , ( x , k )  -1 for zEA(x , k )  as before. 

Note that Fx(z)>-M-1P~(z) for zEA(x , k )  and some fixed M > 0  where 
P~(z) is the Poisson kernel on H with a pole at x. This holds because P~(z)~2 k on 
A (x, k) and F~ (z) >=2 k ~ (x, k)Fx, k (Z) _~2 k-1 there. Now define u~ (z) = P~ (z) - MF~ (z) 
and let v(z)=co(z, E, H). Then by (5.1) 

, , ( z )  = = v(z)-M f~ F.,(z)dx. 

Then u is harmonic on ~ and is 0 on R \ E .  Note that u:,(z) is negative if zEA(x,  k) 
by our choice of  M and this happens iff xEI(z) where I(z) is an interval with II(z)] ,-~ 
Im (z) and dist (z, I ( z ) )~ Im (z). The constants in these " ~ " ' s  depend only on 
the fixed ~ and 0 we are considering. Thus if zEA(x,  k) for some x and k 

.(z) f e (z)dx co(z, e\i(z), H) 1-,. 

for some r t>0 which only depends on ~ and 0. 
On the other hand u(i) must be very close to o)(i, E, H). This is because for 

each xE E 
< " 2 (x,k)F~,k(O<=C 2 k-k x, = 
= k = l  1 

by our earlier remarks. Thus u ( i ) ~ v ( i ) - C 5  with 6 ~ 0  as 2 ~0 .  Choose a com- 
pact E o c E  of positive measure such that v has non-tangential limit 1 uniformly 
on E0 (we can do this since v has non-tangential limit 1 a.e. on E).  Let D be the 
union of  all the cones under consideration with vertices in E0. D is a Lipschitz 
domain with E0 in its boundary and E0 has positive harmonic measure in D since 
it has positive length (by the F. and M. Riesz theorem). Let F~=Ot?nD and F2= 
O~?nH~D.  Since u(z)<-v(z) for zEFa and u(z)<=l- t t  for zEFt we have by the 
maximum principle 

u(z) <= v(z) + ~ p  (1 - v ) -qoo( z ,  F1, t2x). 

Using z=i ,  6-+0 and v(i)-CS<-u(i)  we have 

co(i, V~, a~) <= ~/-~ ( ~ p  ( 1 - v ) + C 6 ) .  

is fixed and the right-hand side goes to 0 as 2 does, so co(z, F~, ~ ) - ~ 0  as 2 ~0 .  
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On the other hand E0 has positive harmonic measure in D, say >v  (with respect 
to i), and hence in H \ F ~ .  Therefore if 2 is chosen so small that o9(i, Fx, f2~,)<=v/2 
we must have by the maximum principle 

a)(i, Eo, f2z) ~= ~ ( i, Eo , H'N Fz) - vJ ( i, F~ , f2 z) >= v /2. 

Since E o c E ,  this completes the proof  of  Lemma 4.2. 

6. Remarks 

In this final section I would like to make a few remarks about the Martin bound- 
ary of  f2. A minimal harmonic function ~o on 12 is a positive harmonic function 
with the property that if ~k is another positive harmonic function on f2 such that 
~<=q~ then ~=2q~ for some 2>0 .  For  example, on the unit disk the minimal 
harmonic functions are just the Poisson kernels corresponding to different points 
on the unit circle. On a general domain, just as on the disk, any positive harmonic 
function has a unique integral representation in terms of  the minimal harmonic 
functions and, in particular, every bounded harmonic function u can be repre- 
sented as 

u = f . , K ~ , f ( x ) d l a ( x )  

where A1 is the set of minimal functions, # is the measure representing the constant 
function 1 and fEL~(# ) .  Moreover, p a.e. minimal function is unbounded in 
every neighborhood of  exactly one point of  0f2 (although this is not true for every 
minimal function). Thus there" is a "projection" P: A~--,-Of2 defined/~ a.e. on A1. 

Poissonian domains are simply those for which there is a full measure subset 
of  A1 on which P is 1-1 (see e.g. [23]). What we wish to point out here is that for 
domains in R 2 there is always a set of  full measure in A1 on which P is at most 2 to 1. 
This is because given three subsets of  At, )(1, Xz, Xa, we can form the three harmonic 
functions ul, us, u3 corresponding to the characteristic functions of  the sets. Since 
z~ ui <= 1, the domains f2,= {ui> 1/2} are disjoint subdomains on f2. I f  Ec0121 c~ 0122 
is a set where co~ and co 2 are mutually continuous then we know f2a and 12~ look like 
Lipschitz domains on near E. From this it is easy to see co3(E)=0. Thus we can 
find sets Ei~0~1~0~22(30~ 3 such that o~i(Ei)=O and (-oj(O~j~Ei)=l for j r  
Then let Fi=Xic~P- I (P (X i ) \E i ) .  Then F i c X  i has the same measure as Xi but 
P is at most 2 to 1 on F ~ E ~ u F  a. 

We should point out that it is possible for 3 disjoint planar domains to have 
the same boundary, e.g., the so-called "Wada lakes" (see [16, pages 143--144]). 
Also, the "2 to 1" nature of  harmonic measures on planar domains had previously 
been observed by John Garnett  and Peter Jones using the Green's lines of  f2 and 
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Moore's triod theorem. (A Green's line is a path orthogonal to every level line of  
Green's function, i.e., a line of  steepest descent. A triod is any continuum consisting 
of  three Jordan arcs with a common endpoint. Moore's theorem states that any 
disjoint collection of  triods in the plane must be countable). 

The same result should be true in higher dimensions, but I don't  know how 
to prove it because it is unknown under what conditions two disjoint domains in 
R n can have mutually absolutely continuous harmonic measures. If  mutual absolute 
continuity of  the measures implied that they look " ( n - 1 )  dimensional" then the 
2 to 1 property would also hold. In 2 dimensions harmonic measure for any domain 
~2 always gives full measure to a set of dimension ~_ 1 [19] (in fact to a set of  sigma 
finite A1 measure) and it had been conjectured that for domains in R n the same 
would be true with sets of  dimension n -  1. Tom Wolff has shown this is false by 
building a domain for which co(E)=0 for every EcOf2 with A,_I+~(E)=0 
and some ~ [28]. It should be possible to build such a domain so that the comple- 
ment of its closure also has this property, but it is not clear whether the measures 
will be mutually absolutely continuous (probably they will not). 

We can prove something weaker than 2 to 1 by using the estimate mentioned in 
Section 3 from [14]. Suppose f21 . . . . .  f2 m are disjoint domains in R" and x6 Aj 0f2j. 
Then the estimates imply 

I l  j~i o)j(B(x, r)) <= Cr ~(n-~) exp -- ~ j = l  dt 

where a~ are the characteristic constants for the Dirichlet problem on the domains 
~i( t) .  I f  Si(t ) denotes the n -  1 area of ~j ( t )  (normalized so the sphere has area 1), 
[14] contains the estimates (dropping the j's) a(~2)>=q~| (S) 

1 ( 1 1 8  ~ 1  =[-clog~ ~ + - f ,  0 < S = : u  

Z < _ S < I  cp.(S) / 2 ( 1 - S ) ,  , _ 

independent of  the dimension. They also give estimates depending on the dimension, 
which I will repeat only for n=3 .  We have a(f2)_->cp~(S) where 

1 .  1 l~ 1/2 1 / 
q~3(S)= max(q~(S),-~jo(--ff--~) --~) 

where J0= 2.4048... is the first zero of Bessel's function of order 0. The two dimen- 
sional version of  this harmonic measure estimate is called Tsuji's estimate [26] (see 
[3] for the history of  such estimates). 

For a bounded domain in R" and a.e. (co) point xE~f2 we have an estimate 
f2(B(x, r))>-_Cr ~ for some C > 0  (since 6~f2 has finite n measure). (In fact a result 
of  Bourgain improves this to r ~-*~ [9].) Therefore if  x is a common boundary point 
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of  f21, ..., Or. where this estimate holds for every domain we must have 

mn > m ( n - 2 ) + z ~  ~. 
= -  = 1  J "  

Using the fact that the domains are disjoint, we see that ~ ' i  Si(t) <= 1. Since the 
functions ~0, are convex we get 

mn >= m(n - 2)+ mq~n (--~-1 

Plugging in the formulas for q~, we see that m<=4 for n = 3  (~%(1/4)~ 1.749 and 
~oa(I/5)~2.045) and m-<10 for n = ~  (q~(1/10)~1.958 and 9~(1/11)~2.005). 
Thus A1 always has a finite to 1 projection onto the topological boundary (a.e. 
with respect to harmonic measure). This is essentially just a restatement of results 
in [14]. 

Of course the estimates we have used are not sharp. The estimates on the char- 
acteristic constants involve replacing each domain f~j(t) by a spherical cap of the 
same area. But three disjoint domains on S 2, for example, need not be spherical 
caps. We would get m = 2  for n = 3  if we knew cq+c~2+cq~6 for any three dis- 
joint domains on S ~. Unfortunately, this is not true. Think of Ra=(x ,y ,  z) in 
the polar coordinates (r, O, z) and let ~i i -  1, 2, 3 be the domains corresponding 
to 0<0<2rr/3,  27z/3<O<4~z/3 and 4zr/3<0<2~z. On f21 u(x,y ,  z )= Im (x+iy) a/z 
is a positive harmonic function which vanishes on 001 and is homogeneous of 
degree 3/2. Thus the characteristic constant c~ of f21(t) is equal to 3/2 for all t. 
Similarly for f22 and g2~ since they are just rotations of f2x. Therefore cq+~2+~a= 

1 9/2 = 4 -r 
We could also get m = 2  from following improvement of Bourgain's theorem: 

For any f2=R ~ co(B(x,r))>-r ~ for a.e. (co) xCOf2, all r > 0  small enough and 
fl~03(1/3) + 1 ~2.4011. This is probably false since the critical/~ for this estimate 
is conjectured to be 2.5. However if we knew that the example in the last paragraph 
was extremal, i.e., 0q+~,,+cq~9/2 for any three disjoint domains on the sphere, 
then we would only need the previous estimate with /~=2.5-e  for any e>0.  More- 
over, we may also assume that the harmonic measures for f2~, ~2~ and f23 are pair- 
wise mutually absolutely continuous on a set E and that x is a point of density 
of this set. The estimate should certainly be true with this additional hypothesis. 

I will finish the paper with one last conjecture concerning harmonic measure 
in R 2. Tom Wolff has proven that 

F = ~x~Og2: lim sup co(B(x, r)n~f2) > 0  
L r~O r ) 
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has s igma finite length  and  full h a r m o n i c  measure  for  any  p lana r  dema in  ~2 (un- 

publ ished) .  W e  have also seen in Sect ion 5 tha t  if  E c O ~  has posi t ive  length and  i f  

every po in t  o f  E is a vertex o f  a single cone with convergent  series (as in (I .  1) but  with 

only one cone) then 

lira co(B(x, t')nOQ) < 
r ~ 0  7 

A~ a.e. on E.  I t  seems poss ible  tha t  the converse  is also true,  i.e., i f  0 < A x ( E ) < o ,  

and  no  po in t  o f  E has a such a "convergen t  cone"  then for  co a.e. x E E  

lira sup co(B(x, r)n3f2) = oo 
,~o r 

so tha t  there  exists F c E  with co(F)=co(E),  but  A ( F ) = O .  This  is consis tent  

wi th  wha t  is known in the s imply  connec ted  case. I t  also has  the  fol lowing Con- 

sequence which  is o f  interest  in its own r igh t :  i f  f 2 c R  2 is a domain  and  E c O Q  

is Besicovi tch i r regular  then there exists F o E  with co(F)=co(E)  and  A ~ ( F ) = 0 .  

Peter  Jones has po in ted  out  tha t  this is true in the  case when E = 3 O  satisfies a 

capac i t a ry  " th ickness"  cond i t ion :  there  exists e > 0  such tha t  for every xE3O and 

0 < r < r  0' cap  ( r - l ( B ( x ,  r/4)c~Of2))->=e. 
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