
Conformal mapping and Hausdorff measures 

N. G. Makarov 

Introduction 

Let f :  D ~ f2 be a conformal mapping of the unit disc D onto a Jordan domain 
f2 and let E be a Borel subset of the unit circle T=OD. Suppose we know that E 
is of positive p-dimensional Hausdorff measure. What can be said about metric 
properties of the set rE, the image of E under the boundary correspondence induced 
by f ?  In particular, what are the restrictions on its Hausdorff dimension dimfE? 

In the case p = 1 this problem corresponds to a problem on the metric proper- 
ties of harmonic measure. It had for a long time been known (see [25]) that ff IE[ >0, 
then 

(0.1) d imfE -> L g 

but some efforts were required to improve this bound to the sharp result 

(0.2) d imfE ~ 1 

see [21]. The basic step was taken by Lennart Carleson [9] who proved that 

1 (0.3) d imfE _~/3 < T 

for an (unspecified) absolute constant/L 
In fact, it is easy to establish the inequality 

1 (0.4) dimfE _-> T dim E, 

generalizing (0. 1), for all p <  1 (see Section 1.2). The natural question whether the 
estimates (0.2) and (0.3) can also be extended to p < l  is the starting-point in our 
study. The answer is as follows. An estimate of Carleson type exists for all p >0, 
whereas an estimate of the type (0.2) holds only in case p = 1. The present paper 
provides some quantitative amplifications of this answer. Some other relevant 
problems, including those concerning the relationship between boundary distortion 
and the behaviour of the derivative in conformal mappings, are also considered. 
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It should be noted that no nontrivial upper bound of dim f E  in terms of dim E 
is possible in the whole class of conformal mappings onto Jordan domains. In 
fact, as was shown in [25], the image of a set of arbitrarily small Hausdoff dimension 
may have a positive area. 

0.1. Notation related to Hansdorff measures. For p >0  thep-dimensional Haus- 
dorff measure is denoted by Ap. We shall always consider A~ only on Borel subsets 
of T or of C (the complex plane). The measures Ap are particular cases (with tp (t) = 
t p) of general Hausdorff measures A, corresponding to measure functions q~ (i.e. 
continuous increasing functions on [0, +*o) satisfying q~(0)=0). For the definition 
and properties of A,p, see [8], [13]. However, it will often be more convenient to use 
the set functions H , ,  which are defined by 

H ,  (e) = inf ~ q~ (r j) 

the infimum being taken over all coverings of a plane set e with discs of radii rj. The 
quantities H ,  enjoy all properties of general capacities and Borel sets are capacitable 
with respect to H ,  (see [8], Chapter 1 and 2). Obviously, H ,  are finite on bounded sets 
and 

H~, (e) = 0 r A, (e) = 0. 

Similarly to the definition of the harmonic measure, we introduce the following 
notion. 

Definition. Let f :  D~K2 be a conformal mapping onto a Jordan domain 12 and 
p >0. The set function h~ is defined on Borel subsets e of ~f2 by 

(0.5) h~ (e) = H~ ( f -1  e). 

Whenf i s  clear from the context, we simplify the notation to h~. The set function h~ 
is said to be absolutely continuous with respect to H ,  (notation: h~ <H, )  if 

H,p(e) = 0 =* hE(e) = O. 
Observe that 

is equivalent to 

E c T ,  Hp(E) > O=~ d imfE  >= q 

V q ' < q :  hE < H r 

Sometimes it is convenient to consider (0.5) as the definition of h~(e) for arbitrary 
plane Borel sets e. Clearly, in this case 

hE(e ) = h~(e n Of 2). 

We also define a set function ~ = x  J" by 

• (e) = cap f - 1  e 
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where cap is the logarithmic capacity. As follows from the well-known relationship 
between the capacities Hp and cap (see [18], p. 253), 

(0.6) h[(e) <- C[zS (e)] p 

where C is a universal constant. 

0.2. Main results on boundary distortion. In the statements, for brevity, we 
introduce the following function. 

Definition. Let p~(0,1]. By d(p) we denote the supremum of the set of numbers 
q>0  satisfying 

E c T ,  Hp(E)>O=~dimfE>=q 

for allfmapping D onto a Jordan domain. In other words 

d(p) = sup{q: h~ < Hq}. 

In terms of d(p), (0.2) means that 
d(1) = 1. 

I do not know the exact value of d(p) for any other p. As it was noted, our purpose 
is to improve upon trivial bounds 

1 -~p ~_ d(p) <= p 

(the left-hand inequality is just (0.4)). 

T h e o r e m  0 . 1 .  I f  p > 1 then 
(0.7) x -~ p -< d(p) < p. 

Moreover 

(0.8) lim d(p) 1 
P~p 2 '  

(0.9) lira d(p) = 1. 
p ~ l  p 

Remark that (0.9) provides a generalization of (0.2): 

dim E = 1 =~ dimfE _-> 1. 

Upper bounds of d(p), including the right-hand inequality in (0.7), require con- 
structions of the corresponding examples. Such examples already happen to exist in 
the class of starlike domains and they even provide the stronger bound 

(O.lO) d ( p )  < p 
- -  2 - p  

which implies (0.8). 
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Theorem 0.2. For any pE(0, 1], there exist a conformal mapping f onto a Jordan 
starlike domain with rectifiable boundary and a subset E c  T satisfying 

Hp(E) > O, dimfE _~ 2P-p .. 

It is interesting to note that this bound is sharp even in the wider class, that of 
close'to-convex domains. 

Theorem 0.3. Let f be a close-to,convex function and E c T. Then 

dim E 
d imfE =~ 2 - d i m e  " 

On the other hand, (0.10) is not sharp for arbitrary Jordan domains, at least when 
p is close to one. An example will be constructed to show that the order of p - d ( p )  is 

1 at most ~ as p ~ l - ,  whereas p - p ( 2 - p )  -1 is infinitesimal of first order. More 
precisely, the following is valid. 

19 
Theorem 0.4. I f  p > ~-~ , then 

r  <= p-d(p) f-ff  (f-Z-_p. 

The lower bound of d(p) contained in Theorem 0.4 easily follows from some 
known properties of integral means of the derivative of a univalent function. This 

estimate implies (0.9) as well as the inequality d(p) > p in (0.7) for p sufficiently close 

to one. 

For arbitrary p :> 0, I do not dispose of such an elementary proof of d(p)> P .  
2 

The proof (rather crude) is obtained by a famous device due to L. Carleson [9]. Our 
argument differs from that in [9] only in technical details. The main difference is 
that we avoid any modification of f2, for it is difficult to track down the effect of 
Hausdorff measures under such modifications. At the same time, the approach of 
L. Carleson seems to be much deeper than the result we derive with its help. It would 

not be a surprise if the inequality d ( p ) > P  admits a more direct proof. 
2 

0.3. Connection with the behaviour of  the derivative. The greater part of the 
results stated relies on the relationship between boundary distortion and the behaviour 
of the derivative in conformal mappings. The following two assertions occur to be 
most convenient in further applications. 
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Theorem 0.5. Let o~ > 0 and 

lim" . I f "  (r~)[ (0.i I) > 0 

Then for any q < P---P-- 
l+~z '  

for Ap-almost all ~ET. 

h~ < l-I~. 

Theorem 0.6. I f  
< Hpo+ )-l, 

then for all ~ outside a possible exceptional set of  Ap-measure zero, 

lim su-If ' ( r~)l  
r _ i p ~  > O. 

These assertions are certainly very far from being invertible, for one of them 
contains lira inf while the other lira sup. No criterion expressed in terms o f f "  is 
known to me for the validity of  

h~ K H  a. 

However, such a criterion can easily be obtained in the particular case when f2 is a 
quasidisc. 

I f l  is a subarc of T with center at ~, then by a1 we denote the point (1 - l / l )ff ;  I" I 
denotes the normalized Lebesgue measure on T. 

Definition. Let f be a univalent function on D and (p be a measure function. 
Define the set function D~ by 

Dr(E) = D. (E)  = i n f . .  ~p(llvl If'(qv)l) 

where E c  T, and the infimum is taken over all coverings of E with subarcs {Iv} of 
T, a v = a l .  If  r (t) = t q, for some q > 0. D~ is denoted by D~. As above, the notation 

means that 
E c T, D~(E) = O ~ H~(E) = O. 

If  O is a quasidisc and E c T ,  then (see Section 2.1) 

DSq (E) X H~CfE) 
and hence 

It is probable that also in the general case a criterion could be expressed in similar 
terms. I can prove only a weaker version of the necessity. 
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Theorem 0.7. Let f be a conformal mapping onW a Jordan domain. I f  

(0.12) Hp < D~, 

then 
V q ' <  q: h~<H~,.  

Observe that D~(E)=O if and only if there exists a subset A c D such that E 
lies in the cluster set of  A, and 

(0.13) Z ~ A  q~ [(list (f(2), 0f2)] < oo. 

Sums of the form (0.13) were studied in [20], [23] in the context of  dominating subsets. 
It was proved ([23], Lemma 2.3) that, for regular ~p, the following two assertions 
are equivalent: 

H 1 < D ~  
and 

lira inf [f ' ( rOI , - 1 -  ~ ( 1 - r )  > 0  for a.e. ~CT 

where ~b(t)=t-lcp-l(t). Thus, for p = l ,  the conditions (0.11) and (0.12) in Theorems 
0.5 and 0.7 are equivalent. This is no longer true for p < 1. 

Theorem 0.8. For any pC (0, 1), 

onto a Jordan domain such that, for some q > 

there exist o~ > 0 and a con formal mapping 

P 
1+cr 

<Hq, 
but 

lim If'(r0______]l = 0, 
,~1-  ( 1 - r ) "  

on some subset E c  T o f  positive Ap-measure. 

~CE, 

Consequently, Theorem 0.6 will be false for p < 1 if we substitute lim sup by 
lim inf. 

0.4. Strong absolute continuity. If p =  1, the set function h~ coincides with the 
harmonic measure of  f2 evaluated at f(0). In this case h~<H~ is equivalent to the 
condition 

(0.14) V~ > 0 ~g > 0: H~(e) < g =~ h~(e) < 5. 

This motivates the following 

Definition. The set function h~ is said to be strongly absolutely continuous with 
respect to H~ (notation: h~-<H~o) if it satisfies the condition (0.14). The notation 
Hp-<D~ has a similar meaning. 
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It is clear that 
h{ ~ H~ ~ h~ < H~, 

but the converse is false for p < 1 (see Section 4.3). Therefore, it is interesting to 
look at the boundary distortion also from the viewpoint of the new notion. For 
the strong absolute continuity we are able to trace the relationship with the behaviour 
of the derivative even more precisely (compare with Theorem 0.7). 

Theorem 0.9. 

1) ttp -< D{:=~ V q" < q: h{ .K Hr 

2) H, -< 

Another important distinction between the two notions follows from the fact 
that the simple condition (0.1 l) in Theorem 0.5 is no longer sufficient for the strong 
absolute continuity (see Section 4.3). 

On the other hand, we shall see that all estimates stated in Section 0.2 (including 
that of Carleson type) stay in force also for the strong absolute continuity. 

0.5. A problem on dominating subsets. The methods employed in the paper to 
study the set functions Ds enable us to make an advance in a problem on dominating 
subsets stated in [22], Section 3.1. Let f2 be a Jordan domain and q~ be a measure 
function. It is known (see [22], Lemma 3.1) that if there exists a dominating subset 
A of f2 satisfying 

(0.15) ~'~ca q~[dist (2, 0t2)] < co, 

then the harmonic measure of f2 is singular with respect to H~. (The latter means that 
there exists a Borel subset ec0f2 of full harmonic but zero Ap-measure.) Is the 
converse true? We answer in the affirmative for measure functions of special type. 

Theorem 0.10. Let q~ be a logarithmico-exponential function. The harmonic 
measure of  f2 is singular with respect to the Hausdorff measure Ao i f  and only i f  there 
exists a dominating subset of  12 satisfying (0.15). 

0.6. Organization of the paper. The paper consists of seven sections. 

In Section 1 we derive several basic results on the boundary distortion (most of 
them are known) from a theorem due to A. Pfluger [27]. 

In Section 2 we study relations between boundary distortion and the derivative 
of the conformal mapping, and prove Theorems 0.5, 0.6, 0.7 and 0.9. 

In Section 3 we study distortion properties of close-to-convex functions and 
prove Theorems 0.2 and 0.3. 

In Section 4 two examples are provided. The first corresponds to Theorem 0.8. 
The second exhibits distinction between absolute and the strong absolute continuity. 
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In Section 5 we study the boundary distortion in dimensions close to one and 
prove Theorem 0.4. 

As was noted, the results of Sections 3 and 5 imply all assertions of Theorem 0.1 

except for the inequality d(p) > P .  The proof of the latter is the subject of Section 6. 
2 

Section 7 is devoted to concluding remarks. First, we list the facts on the ra- 
dial growth of the reciprocal of the derivative obtained in the previous sections and 
also state the counterparts of these results concerning the growth of the derivative 
itself. Secondly, we prove Theorem 0.10 on dominating subsets. 

Some more notation. N is the set of positive integers; A (z o, r) is the disc 
{z:lZ-Zol<r }, and A(zo, r) is its closure; R(zo;rl, r~) is the annulus 
A (z o, r~)\z] (z0, rl). 

The letters e and C are used to denote various constants. 

1. Some consequences of Pflnger's Theorem 

In this section some auxiliary results on boundary distortion are provided. All 
of them admit simple proofs based on the technique of extremal lengths, mainly 
invoking a theorem due to A. Pfluger. For the most part, these results are well-known, 
but our approach may possibly deserve some interest. 

1.1. Facts on extremal length. For the convenience of the reader, we recall the 
definition and some basic properties of extremal lengths. See [3], [2] and [26] for a 
more comprehensive account. 

Definition. Let F be a family of locally rectifiable curves in C. Consider all non- 
negative Borel measurable functions Q on C, integrable with respect to the area 
measure m2, and for each such 0 define 

L(e) = i n f f  Q(g)ldzl. 

The supremum 
[L(e)P 

2(F) = sup f f  o~dm2 

is called the extremal length of the family F. 

Properties. 1) Extremal length is conformally invariant. 
2) If each curve ~2EF2 contains some curve 71EF1, then 2(Fz)<-2(F=). 
3) If the families {F j} lie in disjoint Borel sets and if F = U F j, then 

__> Z 
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4) If the families {Fj} are as above and F is a family such that each ~1" con- 
tains at least one ~sEFj for any j, then 

2(r)  -> Z 

Example. Let 1" be the family of all curves in the annulus R(zo; rx, r2) that join 
the boundary circumferences. Then 

1 . r2  2 (F) = ~ mg "~l" 

Pfluger's theorem ([27]). Let K be a Jordan curve in A (0, ~) surrounding the 
origin. Let E be a Borel subset of T and F be the family of  all curves in D joining E 
with K. Then 

(1.1) 
where 

(1.2) 

CK exp {--n2(1")} _--__ cap E <= CK exp {-n2(F)} 

CK = inf 1--1zl l+[zl 
zcg r  CK=SUpze~: 1/~_. 

In the sequel we shall use only the right-hand inequality in (1.1). Taking into 
account the properties of the extremal length listed above, this inequality may be 
rewritten in the following conformally invariant form. 

Corollary. Let f:  D-~ f2 be a con formal mapping onto a Jordan domain f2 and 
K be a continuum lying in f2. Let e be a Borel subset of Of 2 and 1" be the family of all 
curves in f2 joining K with e. Then 

(1.3) xf  (e) ~ Cexp{-n2(F)} 

where C does not depend on e. 

By (1.3) and (0.6), we also have 

(1.4) h[ (e) <- C exp { -  rcp2 (F)}. 

1.2. Proposition. Let f be a conformal mapping onto a Jordan domain f2. There 
exists C > 0  such that for all ecOf2, 

(1.5) ~Y(e) <- C[diam e] 112. 

Proof. Fix a continuum K in /2. Let R=dist (K, 0/2). Clearly, it is enough to 
prove (1.5) only for e of diameter less than R. Let F be a family of all curves joining 
e and K. Then 

2(F) :'- log diam e . 

By (1.3), 

x(e) <= Cexp - ~ - l o g  = C[R-ldiame]ll s. [] 



50 N.G. Makarov 

Corollary 1. For any p > O, 

Proof. Let e c 0 f 2  and Hv/.z(e)<6. Then e c  UA v 
radii r, and 

By (0.6) and (1.5), 
hp(e) <= Z hp(A,) <- C Z [x(Av)] p 

-< C ~ (diam A~) p/2 <= C6. 

: >  1 a(p )  = -~p. [] 

Corollary 2. 

where {A,} are discs of  

[] 

Remark. The inequality (1.5) is immediate from a result of  Ch. Pommerenke 
[28] which asserts, in particular, the following. If  g is a conformal mapping of C \ D  
onto the exterior of  a Jordan domain and satisfies g ( ~ ) =  0% g'(oo)= 1, then 

[cap E] 2 <= cap gE, E = T. 

As to the latter, it may also be derived from Pfluger's theorem. One have to apply the 
formula (which follows from (1.1) and (1.2)) 

cap E = lim ]/R'exp { -  re2 (FR)}, 

where FR is the family of  all ares joining E and OA (0, R), and the estimate 

(1.6) cap e <= lim R exp {-- zc2(F~)} 
a ~  

valid for any bounded plane set e (F~ is the family of  all arcs joining e and OA (0, R)). 
The inequality (1.6) readily follows from the estimate of  2(F~) arising by the choice 
0 = Igrad ul in the definition of  the extremal length, where u is the equilibrium po- 
tential of  e (of. [26], w 2.23). 

1.3. Proposition. Let f be a con formal mapping onto a Jordan domain, let I be a 
subarc o f T  and onto a = a  I. Let R > I  and set 

AR = A (f(a),  Rill  lf,(a)l). 
Then 

(1.7) cap ( I \ f  -IAR) <= CR-1/211 I 

where C is a universal constant. 

Proof. Applying an appropriate M6bius transformation, we can reduce the 
problem to the c~se a=0 ,  f ( 0 )= 0 ,  f ' ( 0 ) = l .  Let e=Of2\A(O, R). We must verify 
that 

x (e) <= CR -1/2. 
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Let F denote the family of  all curves in t2 joining OA (0, -~) with e. Then 

2(F) ~ - ~ - l o g  8R 

and, by (1.3), 

z(e) -< Cexp{-n,~(r)} <_- Cexp { - ~ - l o g  8R} = CR -xl~ 

where, by (1.2) and the distortion theorem, C can be chosen absolute. [] 

The inequality (1.7) is a particular case of another result due to Ch. Pommerenke 
[29], see al~o [30], Chapter 11. 

1.4. Theorem. Let  f :  D ~ f2 be a con formal mapping onto a Jordan domain f2. 
For any pE(O, 1] andany M > 0  there are numbers r0>0  and koCN satisfying the 
following. I f  A is a disc o f  radius r, r~ro,  and A" is a disc o f  radius 2r concentric 
with A, then there exist N subarcs trx . . . . .  tr N o f  OA', 

1 
(1.8) N -< k0 log - - ,  

r 

which are crosscuts o f  12 and separate from f(O) the subarcs fl~, ..., fin o f  Of 2 such that 

\uL ] = h A 113~ "< 

Proof. Fix a small circle Kcentered at f(0). We can assume that (fist (K, Or2) >2to. 
Let A be a disc of  radius r<-ro such that ~f2c~A ~ .  We carry out the following 
construction. See Figure 1. 

Fig. 1 
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Let f20 denote the component of 0 \ 3  containing f(0). Let {Uj} be the set of 
those components of f20c~A" whose boundary has an arc on 0A. It is clear that 
this set is not empty, that the components Uj are disjoint and lie in the annulus 
A'x,,Z 

The set (~UjnOA')\Of2 is relatively open with respect to OA'. Let aj denote 
the component of this set that separates Uj from f(0), and flj denote the subarc of 
0f2 that is separated from f(0) by the crosscut aj. Denote e j=~jnA .  Then 

(1.9) OI2c~A = U ej. 

Let Fj be the family of all arcs in f2 joining K with ej, and/~j be the family of 
all arcs in Uj which join the boundary circumferences of the annulus A'\z].  By the 
properties of extremal lengths, 

2 (F j) >- 2 ( r  j) 
and ]-1 

1 

By (1.4) 
h,(ej) <-_ A exp {-np) ,(Fj)}  

with a constant A depending only off ,  K and p. The two last inequalities imply that 
for all kEN 

2re 1 
(1.10) card {j: h,(ej) >= dr  ~pk} <- lo---~- k log r .  

Choose ko~N large enough to satisfy 

npk o > M. 
Then 

~'tj:h,(e~)<A,~Pko} ho(ej) <- z~k~_~o Z~/.'~,'~k+X'~--h,(e?~--A,~'kl hp(ej) 

2rcA 1 
< - - l o g  . ~k>ko(k - t -1 ) r  ~pk < r u 
= log 2 r = = 

provided r<=ro and ro is sufficiently small. 
We have actually proved the theorem. In fact, put N equal to 

card {j: hp(ej) >- Ar~Pko}. 

By (1.10), N--k01og 1 .  Suppose that the Uj are arranged in such a way that the 
r 

numbers hp(ej) come in decreasing order. By (1.9), 

N < {y: hp(ej)<a,~ko} h~ (ey) h p ( A ~ U j = l f l , )  = Z ~ rM" [] 

Remark. In the case p = 1 the theorem was established in [22], Lemma 2.3, and 
the present proof is quite similar to that. The method of proof is essentially due 
to L. Carleson [9]. 
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Corollary. Let f :  D ~ f2 be a con formal mapping onto a Jordan domain f2 and 
K be a continuum in I2. For any p, qE(O, 1] and any q ' > q  there exists ro>O satisfy- 
ing the following, l f  A is a disc o f  radius r<=ro with 

h~(A) = Pq, 

then there exists a subarc a o f  OA' which constitutes a crosscut o f  12 and satisfies 

(1.11) 2(F~) ~- log r 

where F ~ is the family o f  all curves in ~ joining tx with K. 

Proof. Applying the last theorem with a sufficiently large M > 0, we obtain N 
subarcs ~i of 0/2 such that 

1 
N ~ ko log 

F 

and 

Hence 
h, , ( ,~XUL, ,~ , )  <- er". 

2;=1 hp(flj) ~_ ~ rPL 

Consequently, there exists J0 such that for fl=fl& we have 

hp(fl) =~ c Ilog rl-lrPq. 
By (1.4) 

hp (fl) <- A exp { -  r~p2 (F~)} 

where a =  a&. Thus (if r0 is small), 

exp ~ -  .p~(ro)} >= cllog rJ 'r"~ _-> rP~ -- exp / -pq '  log ~ /  

which implies (1.11). [] 

1.5. Proposition. Let f :  D-~ I2 be a conformal mapping onto a Jordan domain 
f2, I be a subarc o f  T and tr be a crosscut o f  [2 joining the endpoints o f f ( I ) .  Then 

diam a >- clII lf'(al)l 

where c > 0 is a universal constant. 

Proof. By means of an appropriate M6bius transformation we can reduce the 
problem to the case f (0)=0,  f ' ( 0 )= l ,  I = T +  (the upper semicircle) and az=0. 
We should verify that in this case 

diam a -> c. 

1 
Let A = A  (0, ~ ) .  Then dist ( fA,  0/2) =~-~-bythedistorfion theorem. Iftr r~fA ~0 ,  
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/ o 

Fig. 2 

> 1  
then diam tr___--. Also if ~ c~fA = 0, then the crosscut f -  1 a separates a semicircle, 

54 
say T+,  from A. Denote the family of all arcs in D joining T+ with 0A by F. On the 
one hand, 

2(/') ~_ 11o g 2 .  

On the other hand (see Figure 2), 

1 
2(P) _-> ~ -  Ilog (54 diam tr)[. 

1 
Hence diam tr -> . [] 

216 

The last result is certainly well-known (cf. [30], Exercise 2, p. 318). Lemma 2.2 
in [22] is a consequence of Proposition 1.5. 

2. Boundary distortion and the behaviour of the derivative 

2.1. It is instructive first to consider the case of quasidiscs. Recall that a Jordan 
domain t2 is said to be a quasidisc if there exists a number M > 0  such that for any 
two points wx and w2 on 0~2, 

rain (diam ill, diamfla) ~ Mlwl-w~l 
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where fll and f12 are the components of 9g2\{wl, w~}. See [1] for the relation with 
quasiconformal mappings. 

Lemma. Let f be a conformal mapping of  D onto a quasidisc f2. There exists 
C > 0  such that i f1 is a subarc o fT ,  then 

(2.1) C-11II If'(a~)l <= diamf/~_ CIII If'(a~)[. 

Proof. The left-hand inequality (with a universal C) follows from Proposition 
1.5. To prove the second inequality, let I be a subarc of T with II1<--1, -. From both 
endpoints of  I we draw the subarcs/1 and 13 congruent to L By Proposition 1.3 
there are points zlE11 and zzEl~ such that 

I f (al)- f (z l ) l ,  l f (al)- f (zz) l  <= C[II If '(al)l 

with a universal C. Hence 

If(Zl)-f(z~)l <-- C~III If '(ai)l .  

By i we denote the subarc containing 1 with endpoints zl and z2. Then either 

d i a m f i  <= MC1 [I[ [f'(a~)[ 
and (2.1) is true, or 

(2.2) 

Since T ' , j  contains 

d iamf(TNJ)  --<_ M G I I I  If'(ax)l. 

a semicircle, by Proposition 1.5, 

diamf(T', , , i)  => c If'(0)l 

where c is a universal constant. Therefore, by (Z2), 

IIIIf'(a~)l ~= cl > 0 

where cl does not depend on L Hence 

d i a m f i  <= diam f~ <= (ci -1 diam f2)II[ If '(al)l ,  

and the fight-hand inequality in (1.1) follows. [] 

Proposition. Let f be a con formal mapping onto a quasidisc and q > O. There 
exists C > 0 such that for any E c T, 

(2.3) C-IDa(E) <= Ha(fE) <- CD~(E). 

Proof. First we establish the fight-hand inequality. Cover E by arcs {I,} with 

[[Ivl [f'(av)l] ~ < D~(E) = 5. 

Then the fight-hand inequality in (2.1) implies that 

Ha( f  E) <= z~ [CII, l If '(a,)l] ~ <-- CD~(E) + Cs. 



56 N . G .  Makarov 

To prove the second inequality in (2.3), we consider a covering o f f E  with discs 
{A,} of radii r, such that 

Z r~ < Hq(fE)+e. 

Let e, =fEnAv. By the definition of a quasidisc, either r~ > c > 0 with c not depend- 
ing on E (in this case, (2.3) already follows) or there is a subarc 1~ of T such that 
e~ c f ly  and f ly is contained in a disc of radius Mrs. If the latter holds for all v, 
then E c  UI~ and, by (2.1), 

z~ [[Id lf" (a,)l] ~ <= ~ [CMrv] q <- CH~(fg) + ce. [] 

Corollary, l f  f is a conformal mapping onto a quasidisc and p, q are positive 
numbers, then 

(2.4) h~ < Hq r Hp < D~; 

(2.5) h~ -< Hq ~ H~, < D~. 

2.2. Conjecture. The equivalences (2.4) and (2.5) are valid for arbitrary Jordan 
domains. 

If this conjecture were true, the problem of the boundary distortion would be 
completely reduced to a question concerning derivatives of conformal mappings. 
Unfortunately, I can prove only partial results in this direction. 

2.3. Theorem. Let f:  D~f2  be a conformal mapping onto a Jordan domain C2. 
Let p, qE(O, 1] and 

cp(t) = tqlog tl *-g. 
Then 

(2.6) 

(2.7) 

Proof. First we prove (2.7). Suppose that Hp-<Dq, and let e=fEcOC2 satisfy 
H~,(e)<6 where fi is a small number. We have to prove that Hp(E) is also small. 

Consider a covering of e with discs {A,} of radii r, satisfying 

Z < a. 

To each disc we apply Theorem 1.4 with a fixed constant M > q .  There exist crosscuts 
r ~), l<=j<=N(v), 

1 
(2.8) N(v) <= ko l o g - - ,  

rv 

which lie on OA'~ and separate the subarcs fls(. ~) of 0f2 from f(0) such that 

N(v) (v) 
h,(a,\tOj=l/ j ) --< 
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Denote 

Then 

and 

Also denote I) =f(~)- -1~j(~) 
Proposition 1.5, we have 

ea =fE6 = e c~ U, 1Ira')fl(') ,,.:i=1 j �9 

rA \ 1 1  N(v) e \ e ,  c U ,  �9 , - , - j : l  B ? q  

hp(e\e~) <= ~ r~ <-i 6. 

and a~)=as$,>. Applying HBlder's inequality, (2.8) and 

~,NCv) Cv) , (v) q t - q  N(v) (v) <- [N(v)] VZj=~ IIJ I lf'(a~'))l]~ ~ j=~[ l l J  I l f  (aj)1] _ 

!" 1 ] t - g  [ y m ~ )  diana aJ')]q.  <= C [l~ L~--~]=I 

Since a~ v) are disjoint, the latter does not exceed 

Cllog rdl-~r~ = Cq~(r0. 
Since Ea c U~, ] IJ O, 

Dq(E~) ~ C Z~  q'(rO <= c,~. 

Because of H:<D~, Hp(E~) tends to zero as c5-~0. Hence 

hv(e) = Hp(E) <= Hp(En)+H,(E\Ea) <= 6+o(1)  as 6~0 ,  

and hp < Hq,. 
Next we verify (2.6). Let Hp<D~, and suppose that E c  T satisfies H~,(_fE)=0. 

We have to prove that Hp(E)=O. Reasoning as above, for each 6>0,  we obtain 
a subset En c E such that 

H , ( E \ E , )  < ~, D~(E,) < ~. 
Define 

Eo = N.>_-~ U~_~.E~-~. 
Then, for all nEN, 

Da(Eo) <- Da(Uk___. Ea-~) --< ~k___. Da(E2-k) -< 2 - '+1. 

Hence Dq(Eo)=0 and 

(2.9) tip (Eo) = 0. 

For any nEN we also have 

E \ E o  c Uk~_. E\E2-~.  
Therefore 

I-IF(E\Eo) <- Zk>_nl-Ip(E\E~-,,) <-- 2 -"+I, 

and Hr(E\Eo)=O. Combined with (2.9), this gives Hp(E)=O. [] 
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The result obtained implies Theorem 0.7 and the first assertion in Theorem 
0.9. The second assertion will be proved in Section 2.4. 

Remark. For p=q= 1, Theorem 2.3 was established in [20], Theorem 4, where 
it was also noted that the implications (2.6) and (2.7) (coinciding when p--1) are 
reversible. In Section 7 we shall proceed with the discussion of the case p---l, that 
of the harmonic measure. 

2.4. Theorem. Let f be a conformal mapping onto a Jordan domain. Then 

h~ -< Ha=~ Ht, ~, DY a. 

Proof. Suppose that hp<Hq. To prove the theorem, it is sufficient to verify 
that for any e>0  there exists 5 > 0  satisfying: 

(2.10) E is compact, Dq(E) < 6 =*.~Hp(E) <- e. 

In fact, if E is an arbitrary Borel subset of T, then, by the properties of the "'capaci- 
ties" Hp (see [8], Ch. 2), there exists a sequence of compact subsets EncE such 
that Hp(E)=limHp(E,). If Dq(E)<6, then D~(E,)<6 and, by (2.10), Hq(En)<=e. 
Hence Hq(E)<=e, which provides Hp-<Dq. 

Thus, let E be a compact subset of T and Dq(E)<6. We can cover E by a finite 
number of arcs {Iv} with 

Z [llvl I f ' ( a , ) l ]  g < 5, 

so that the multiplicity of the covering is at most two. Fix a large number R > 0  
and apply Proposition 1.3 to each arc lv. For each v there exists a compact subset 
Fv c I, such that 

(2.11) IFv[ a -~ -r llvl, 

and f F  v lies in a disc of radius RIl, llf'(a)l. Denote the compact set t2 Fv by F. 
Then H~(fF)<--Rq6 and, since hp-<Hq, Hp(F)=o(1) as 6~1.  

Now we prove that (2.1 I) implies that 

(2.12) Hp(F) => cHv(E) 

with a universal c. This will yield (2.10). By the Frostman theorem (see, e.g., [8], 
Ch. 2, Theorem I), there exists a nonnegative measure # supported by E such that 

f HI,(E ) = C 

and for any subarc I of T 

(2.13) /~lll ~-[II v. 
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By means of/~ we shall construct a measure n supported by F and satisfying 

(2.14) f dn ~- clip(E); V I: n(I) <= lOllI p. 

Then (2.12) will trivially follow. 
Let ~/be defined by 

n = Z n ,  

where the measures n, are supported by F, and have the constant density IFvl-lp(19 
with respect to Lebesgue measure. Then 

fdn~ = ,(Z,);  

f a n  = Z ,(I,) >= f a~, >= c~,(E). 

To prove (2.14), let I denote a subare of  T with endpoints ~1 and (3. 

7(I) = Z n~(I) ~- E~v:r ~Yc,:~1,~+ Z~v:~v~. 

The last sum does not exceed 

Z{v :z~a  tz(XO <= 2~z(X) <-- 2111 p. 

The first and the second sums contain at most two terms. Let, for instance, ~t~Iv. 
If  ILl<= II1, then 

n~(x) = IF, I-~IF~ c~ ZI , (Z0  --< ~(Z0 <- II~1 ~ <= III ~. 

If I1,1_~111, then 
n~(I )  <-- 21I~ l -Xl l l  II~1 p <- 21II p 

because of  p<=l. Hence (2.14) follows. [] 

I do not know whether Theorem 2.4 remains true with < replaced by .<. Some- 
times the following partial result turns out to be useful. 

2.5. Proposition. Let f be a eonformal mapping onto a Jordan domain and h~ < H~. 
Then for any subset E c  T of positive Ap-measure and for any C > 0  

(2.15) inf{ff~ [llvllf'(av)l]q: E c U Iv, z~ I/vl p <-- C} > 0. 

Proof. Assume that the infimum in (2.15) is zero for some C > 0  and E c T  
with H~,(E)>0. Fix 6 > 0  and consider a covering E c  UI~ satisfying 

lI~l p ~_ C, Z [lI~l If'(a~)l] ~ < a. 

Applying Proposition 1.3 (with R=~ -1/2) to each I~, we obtain subsets F, cI~ 
such that 

HI,(I,~F,) ~_ Ce~/alI, I ~, 

andfF~ lies in a disc of  radius 8 -1/z II~11f'(a,)l. Define 

F = FrO = U Fv. 
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Then 

and 

Let 

For any nEN 

Hence 

(2.16) 

Also, for any hEN, 

and 

which implies Hv(Eo)>O. 
h,<%. [] 

I-I~(fF(O) <- e -~12 Z [ [ /v[ I f ' ( a , ) l ]  ~ --< ~a-~l~ 

H~,(E\F(O) <= Z I-Z,(r,\F,) <= C~P~" Z I I ,  I p ~ & p l , .  

Eo = (~.~_1 LJk>-n F(2- t0 .  

/r ~ ZP- .  H~(fe ('-~) =< Z~_--. 2 -~c~-~. 

Hr (fED = O. 

E \ E o  = [-Jk~_. (E\F(~-~)), 

H p ( E \ E o )  <- C Zk>=. 2-kv/*, 

Combined with (2.10, this contradicts the assumption 

As consequences of Theorem 2.3 and Proposition 2.5, we shall prove Theorems 
0.5 and 0.6 (see Introduction). 

2.6. Proof o f  Theorem 0.5. Because of (2.6), it is sufficient to prove //p<Dv(l+,)-1. 
Assume the contrary - -  that there is a subset E ~ T  satisfying Hp(E)>O and 
Dv(I+~)_I(E ) =0. By hypothesis, there exists a subset E0 = E  of positive Afmeasure 
such that, for some c>0,  

(2.17) If '(rO[ <= c ( 1 - r )  ~ 

for all ~EE0 and rE(0, 1). For any e>0,  there exists a covering E0c  U1, with 

,~ [llJ I f '  (a,)[] p/I +~ < ~. 

Clearly, we can assume that all 1, meet E0. Then, by (2.17) and the distortion theorem, 
r 

I f  (av)[ = > c[I,p. 
Consequently, 

Z I/J p ~= C •  [ l IJ l f ' (aOIY [~+~ <= C8, 

and hence Hv(Eo)=O. [] 

Remark. The hypothesis of Theorem 0.5 does not, in genera/, imply the strong 
absolute continuity, see Section 4.3. Reasoning as above, one can easily verify the 
following sufficient condition: I f  

liminfHv{~: nl f ' ( rOl  < (1 - r )  ~ for  some rE(O, 1)} = 0, 

then 
hSv -< Hv(l +~)-l. 
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2.7. Proof of  Theorem 0.6. Assume the contrary - -  that there is a subset E0 c T 
of positive Av-measure satisfying 

lim lf ' ( r01 = O, ~EEo. 
r -x-  (1--r) ~ 

Then there exists a subset E c E o  of finite positive Av-measure with the uniform 
estimate 

(2.18) ]f '(rOI = [5 ( 1 -  r)] ( 1 -  r)L ~EE, 

where 5(t)=o(1) as t~0 ,  holding on it. Fix e > 0  and consider a covering of E 
with ares I v such that 

l/v[ < 5; H , ( E )  <= Z llv[ v ------- Ap(E)+a. 

By (2.18) and the distortion theorem 

If'(a~)[ <= 6 ( 0 I L  
Therefore 

Z [ILl [f'(a,)[] m+~ <= [6(e)]q[Av(g)+e] ~ O. 

Hence the infimum in (2.15) is zero for q=p(1 +~)-1 and C=Hp(E). By Propo- 
sition 2.5 this contradicts the assumption hv<H~. [] 

2.8. Remark. As it has been noted, for p = l ,  hp<Hm+o_,  implies that 

lim i f lY'(r0[  

for a.e. ~ET. For p <  1, this is no longer true, see Section 4.1. The reason is that 
the lower density (with respect to Hp, p < 1) of a set of positive Ap-measure may 
be zero everywhere. But if  the set is subject to some density condition, we can claim 
more 

Proposition. Let the subset E c  T satisfy O< Av(E)< ~o and 

YlminfHv(Ec~A(~'O) >_c.- ~ O, ~EE, 
t ~ o  I v 

and let 

l iminf  [ f ' ( rO[  = 0, lEE. 
, - 1 -  ( I - r )  �9 

then r n,c.+... 

Proof. Fix s > 0. For any ~EE there is a subarc I~ of T with center at ~ such that 

{f ' (al)[  < ~[Id~; 

Hv(Er~ I~) ~_ ellJ p. 
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Applying the covering lemma to {I~}r we obtain a covering { I J  of finite multipli- 
city. For brevity, we shall write 1, instead of 1r Then 

Z llvl p <= C ~  a~(Ec~I,) <= CA,(E) = C. 

On the other hand 

Z [ILl ]f'(a,,)l] p/I+~' <= ~'~ .Z  l/,l p -~ 0 as ~-~0. 

Therefore, the infimum in (2.15) is zero for q = p ( l + = )  -1. By Proposition 2.5 

The argument is applicable, for example, to standard Cantor sets of  constant 
ratio. 

3. Boundary distortion of close-to-convex functions 

To illustrate the results obtained in the previous section, we consider a question 
on the boundary distortion in the class of dose-to-convex functions. This class plays 
an important role in the theory of conformal mappings. On the one hand, it is large 
enough to contain many interesting examples of univalent functions. On the other, 
this class is often much easier to deal with, and many problems, open for arbitrary 
univalent functions, admit a complete solution for dose-to-convex functions. 

Recall that a function f analytic in the unit disc is said to be close-to-convex if 
there is a starlike function g such that 

z f '  ( z) 
(3.1) Re ~ > 0 for all z~D. 

Also recall that an analytic function g satisfying g(0) =0, g'(0) > 0 is a starlike func- 
tion if 

zg'(z) 
(3.2) Re ~ > 0, z(D. 

Starlike functions are obviously close-to-convex. Close-to-convex functions are 
univalent (see [12] w167 2.5 and 2.6). 

Our main result is as follows. If f is a close-to-convex function, then 

dim E 
dimfE > E c T, 

= 2 - d i m E '  

and this bound is sharp, see Theorem 0.2 and 0.3. 

3.1. Proof o f  Theorem 0.2. Let 0 < p < l .  Take an appropriate Cantor set 
E c  T statisfying 

0 < Ap(E)  < co 
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and denote by # the probability measure which is a multiple of  the restriction Ap[E. 
Let u denote the Poisson integral of  p and z7 the conjugate function with a(0)=0.  
Define 

2 
w = l + u + i ~ "  

Then w(0 )= l  and 

(3.3) 

If  f is defined by 

l + u  
R e w = 2  > 0 .  

(1 + u) ~ + ~2 

{f2 w ( z ) - I  dz} ,  zED, f (  z) = z exp z 

then z J ' = w  and (3.2) is valid. H e n c e f i s  univalent and maps D onto a domain ~2 
f 

starlike with respect to the origin. 
We shall verify that 0~2 is a rectifiable Jordan curve. Since 

If'(z)[ -<- 2If(z)] [w(z)l <- 4lf(z)], [zl > "~, 

the derivativef '  is bounded on D. Consequently, f i s  continuous up to the boundary 
and 0~2 has a finite length. The injectivity of  f i T  follows from the well-known identity 

0 
0---ff arg w(re i~ --- Re w(re i~ 

and also from (3.3) and the fact that Re w # 0  a.e. on T. 
To check the distortion properties o f f ,  we make use of  Theorem 0.6. Because 

of  the homogeneity of  the Cantor set E, 

lim inf pA ((, t) => c > 0 
t ~ o  t p 

for all (EE. By a simple estimate of  the Poisson integral, this implies that 

u(rO ~= c ( 1 - r )  p-1 

for all ~ E  and r~(0, 1). Hence, for ~CE, 

[f'(r~)[ ~ C[u(r$)l,  1 ~ C ( 1 - r )  1-p. 

Applying Theorem 0.6 with ~ < 1 - p ,  we have 

h l, r H~(1 +~)-1. 

The assertion now easily follows. [] 

Remark. The idea to use the Poisson integral of  a singular measure for the 
construction of an example in boundary distortion is due to A. Lohwater and G. 
Piranian [19]. 
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3.2. Proposition. Let f be a close-to-convex function mapping D onto a Jordan 

domain. I f  0 <p < 1 and 0 < q < 2 - : p '  then 

h~ -( Hq. 

Proof. Having in view to apply the assertion contained in Section 2.6, we prove 
that if 

F~ = {(~T: nlf '(rO[ <= ( l - r )  1-" for some r~(0, 1)}, 
then 

(3.4) H~(F~)~O as n ~  co. 

zf" 
Let w=  , where g is a starlike function satisfying (3.1). Since (see [30], Ch. 11 

g 
Theorem 9) 

c a p { ( ~ T : f ~ [ g ' ( r 0 [ d r > R } = o ( 1 )  as R~oo,  

for the validity of (3.4) it is enough to prove the following. If  �9 is an analytic func- 
tion in D with positive real part and 

En = {(ET: I~(r01 --> n ( 1 - r )  p-1 for some 
then 

(3.5) Hp(En)~O as n ~  co. 

r~ (0, 1)}, 

Le t / t  be a positive measure on T such that 

If  (EEn, then 

#A 0 
(3.6) sup t-----T----- >- cn 

t > 0  

with c depending only on p. In fact, if #A(~, t)<=A6 for all t>O, then 

~-- CA "J ~ [ tP dt 2 dt ~- I~(r01 C A ( 1 - r )  p -1 r=7  

where C depends only on p. 
By (3.6), for each (CEn, there is an interval I ~ = T  with center at ( satisfying 
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Applying the covering lemma to {Ir we can select a subcovering { I j  of  
multiplicity at most two. Then 

H~(ED <= Z~ l i l y  ~ (cn) -~ ~ ,~1~ ~_ 2(cn)-lt~E 

wich implies (3.5). [] 

Theorem 0.3 is a consequence of  the last result. 

4. Two examples 

We shall apply the method of  the previous section to construct two examples 
which shed more light on the relationship between boundary distortion and the 
behaviour of the derivative. The first example (it corresponds to Theorem 0.8) 
shows that, for p < l ,  in contrast with p = l ,  the condition 

H, <D~' 
is strictly weaker than the condition 

. �9 ~ [ f ' ( r 0 1  
l m~nI ( l_ r )~  > 0 for A:a .e .  [ 

where q = p  (1 + e ) -  1. The second example shows that, for p < 1, 

(4.~) h~ < H~ ~ h~ -< H~. 
4.1. First example. Choose a rapidly increasing sequence {Vk} of positive integers 

and set 

iV. =/-/~=1 vk' I. = Ng "2. 

Consider v~ closed subares 1 a) of T which are of  length/1 and equidistributed on T. 
At the n-th stage of the construction, we place Vn closed arcs I (") of length l. into 
each arc I ("-1) obtained at the previous stage, in such a manner that the distance 
between any two neighbouring ares 1 ~") is at least 

1 1.-1 1 1.)1/." 
(4.2) 2 v. -- T (t"-I 

The union of all iV. arcs I (") constitutes the closed subset E (") c T. Define the compact 
set E by 

E = N,___I E. 

A standard argument shows that 

(4.3) 0 < AI:~(E) <-_ 1. 
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F o r  each I (n), by ((I(")) we denote a point at the distance l~14 from I (n) and con- 
sider the corresponding point measure of magnitude 5/s l~ . Let p,, be the sum of all 
these point measures. Clearly, 

f d,. =/1,8. 
Define the probability measure # by 

# = C Z ~ ,  

with an appropriate constant C. As in Section 3.1, let u denote the Poisson integral 
of  the measure/~, 

(4.4) w = 2(1 + u +  i~) - t  

(4.5) f(z) = zexp{f~ w(z)-lz  dz}. 

Then f maps D onto a starlike Jordan domain ft. 

Theorem, The eonformal mapping f and the set E constructed above satisfy the 
conditions: 

(4.6) H1/~ < D~/9; 

(4.7) V ~ E :  l iminf  If ' (r01 ~o. 
r - l -  ( I - - r )  1/6 <: 

Remarks. 1) From (4.3) and the inequality 

4 1/2 3 
9 1 + 1/6 "7-' 

we obtain (4.1) for p = 1/2. Observing that, by Theorem 0.7, (4.6) implies that 

(4.8) Vq < 4/9: h~a < Hq, 

we also obtain Theorem 0.8 for p =  1]2. Similar arguments are applicable for any 
p < 1. We omit the details. 

2) In addition to (4.8), we will see that 

4 
(4.9) Vq > -~-: h(/~ < Hq. 

4.2. Proof of Theorem. Let ~C1 (n) and r=l-l~/4. Then 

u ( r0  => c ( 1 -  r)-t/l,{~(I(n))} = c ( 1 - r )  -1/6. 
Consequently, 

l f ' ( r 0 l  =< C ( 1 - r )  a/n, 
and (4.7) follows. 
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The rest of the proof  is devoted to the verification of (4.6). We need a Iemma. 

Lemma. Let I be a subarc of T. Then 

111/~(En I) <= max {1II 8/9, Clf'(al)l 4} 

where C does not depend on L 

Proof of Lemma. Let H1/z(Ec~I)=l ~ with ~E [~-, s ] .  It is sufficient to check the 
inequality 

l(u+ i~)(al)l <- ClXl 

Choose n so that  ln<=llI <ln-1. We consider two cases. 
1 ,el I x1/2 If 111<~ ' , - 1 , , )  , then, by (4.2), 1-1~/2(Ec~I)<=I-I~/2(l("))=l~n/2, and 

II1 < :  1112~ 
We estimate 

f d#~ (r l(u+iff)(al)l <= C z~k>_O I~--a11" 
Observe that 

Zk<n <- C z~k<~ l~(Vs)-(3/a)) <= CIII-~/4, 

1 
Zk>n ~ ~-~ 2k>n [l kll <= I; 1Zk>n "klt/s -<= C. 

Finally, by (4.2) 

1 
f l~-aIldP"(O <- ClSn/S[lnS/4+(In-lln)-x/2(l+'~ +''" +'~n-n )1 

"< Cln 1Is < CIII-~/4 

If  III > ~  (l=_J~)v~ then, by (4.2), I meets at most 1 +21II( l=_j ,)  -lzz intervals 
I c~). Hence 

~ / ~ ( g n  1)  <---- ClZl (l.-lln)-l/Zl~/~ = Cl/ l  "~-~t-V~ 
and 

This case is further analysed along similar lines. [] 

Corollary. l f l  is a subarc of T then 

(4.10) H~/z(Ec~ 1) <- ClIl If'(a~)l '/9. 

firoof of Corollary. If H1/~(Ec~I)<=Ill s/9 then 

[Hl/2(gnI)] 9/~< III 2 < Illlf'(a~)l ~ -  ~ . 

If H1/2(Ec~I)<=CIf'(a~)I 4 then 

[n~/~(EnZ)] 914 <= IIt[H~I~(E~I)] 11" <- ClZllf'(a~)[. [] 
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Proof  o f  (4.6). Let F ~  T. Since the derivative f '  has nonzero radial limits on 
the complement to the support of the measure # and since the set supp # \ E  is count- 
able, 

Hl /~ (F ' , , ,E )  > 0 =~ Z h / ~ ( F \ E )  > 0;  

see the proof of Theorem 0.5 in Section 2.6. Therefore, for the validity of (4.6) it 
is sufficient to show that 

F c E, D,19(F ) = 0 =~ H1/2(F) = O. 

If D4/9(F)=0 then, for any e>0,  there exists a covering of F with intervals Iv 
such that 

~Z [1I, I I f ' ( a 0 1 ]  4/a < e. 
By (4.10) we have 

HlI~(F) <- • [H~/2(Ec~Iv)] < C~. 

This concludes the proof of the theorem. [] 

Proof  o f  (4.9). Observe that 

u(at~.~) >= el(. (5Is)- (3/4)) = clza/s, 
which implies 

I f  ( )1 < Cl~ Is. t a lcn)  -~_ 

If 4 q > ~ ,  then 

Z [lI(")llf'(azc.,)l] p <= N.l~/sa = In C9/8q-1/2) "~ 0 a s  n --~ co, 

the summation being carried out over all intervals I (n). Since 

[I(n)[ 11~ = 1, 

the infimum in (2.15)is zero for p=~- and C - 1 .  Now (4.9) follows from Propo- 
sition 2.5. [] 

4.3. Second example. We fix 

(4.11) p = (log 9) -1 log 2 

until the end ofthe section. Let E0 be the standard ternary Cantor set on T. In the 
construction of Eo, 2" closed intervals Io (") of length 3-" arise at the n-th step. Let 
1 (n) denote the interval of length 9 -" concentric with I0 ~, and let E (") be the union of 
all such I ("). It is easy to see that for all n 

(4.12) H,(E(")) => c > 0. 

Let p, be the measure supported on E (") with constant density such that f d p , = n  -~, 
and let # =  C Z #  . be a probability measure. We shall consider the conformal mapp- 
ing f defined by the formulae (4.4) and (4.5). 
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Theorem. 1) I f  ~t>l - ( l o g  3)-11og 2 then 

(4.13) lim inf~J_yr,,,If'(t31 ~. 0, ~ET. 
, - ~ -  C l - r )  ~ 

r 81 ~-1 
2) I f  q >  Ilog "~"l log 2, then 

(4.14) D~(E(")) -- O, n -* ~ .  

Corollary. I f  

[ I o g - ~ ) - I  log 2 < q -< ( l og -~} -~ log  2 

then 
h f  ( Ha, h~-~ Ha. 

Proof o f  Corollary. The absolute continuity follows from Theorem 0.5. The 
lack of  strong absolute continuity follows from Theorem 0.9 and the fact tliat (4.12) 
and (4.14) imply Hp~D~.  [] 

Remark. One can easily obtain similar results for any p < 1. We omit the de- 
tails. 

Proof o f  Theorem. 1) Obviously, the inequality (4.13) requires a proof only for 
in Eo. Let ~EEo and 

1--r  = 3 -k. 
We estimate 

[(u+i~)(r~)[ <= C Zn._l f [~l-r~[ " 
To this end we show that 

(4 ,~)  f d/z~(rl) ~ Cn-Zk(3/2)  ~. 
I t /-r(I  - 

Then 
l(u+ia)(rOI ~- C ( 1 - r )  -~ 

for e > l  - log2 and (4.13) follows. 
log 3 

To prove (4.15) consider two cases. 
Suppose that n<=k. Taking into account that dist ((, supp/~n)---->3 -(n+l) and 

that the distance between any two intervals 1(") is at least 3 -("+x), we have 

f { , 1 �89 d/~,0/) ~ Cn_22_,3,+ ~ 1 + ~ - + ~ - + . . .  + < Cn-Zn(3/2)" < Cn~k(3]2) ~ 
]r/-r~] - = - 

Suppose that n > k .  I f  I is an interval of  length 3 -k, then it meets at most t w o  
intervals 1~o k). Therefore 

/z,(I) ~_ n-22 -k. 
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Hence 

<_ i+-~-+. . .  + <--_ Cn-=k(3/2) k. 
In-r~[ 

2) The set E (') is covered by 2" intervals I c"~. Observe that 

u(axc,~) => n-~2-"3 2~. 
Therefore 

D~(E(")) <= 2"[9-nnZ2~9-"] ~ 
and (4.14) follows. [] 

5. Boundary distortion in dimensions close to one 

In this section we prove Theorem 0.4 which asserts, in particular, that 

p - d ( p ) ~ ( 1 - p ) l / 2  as p ~ l - .  

First we derive the lower estimate of d(p). 

5.1. Lemma. Let 7, a and o~ be positive numbers. I ra  univalent function f satisfies 
the condition 

flf'(rOl-rld(l = O ( ( 1 - r ) - ~  r -+ 1 - ,  (5.1) 

then 

(5.2) dim {(CT: lim inf [--- j ' ( r ( ) l  } - , - 1 -  (1 - r) ~ < oo <__ max {0, 1 + a -  aT}. 

Proof. For any M > 0  and vCN we define 

E,,(M) = {(ET: [f ' (1--e-V)0] < Me-~V}; 

E (M)  {(~T: l imi  -~ l f ' ( rOI  < M}. 

By the distortion theorem 

(5.3) E(2M) c N.--~ Uv>--nEv(M) �9 

We have to estimate the Hausdorff dimension of the set 

E = UM~oE(M). 

Assume that p > 0  and Hp(E)>0 .  Then 

Hp(E(2M)) > 0 

for some M > 0 .  Fixing this value of M we will write, for brevity, Ev instead of  
Ev(M). By (5.3), 
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Hence there exists an increasing sequence {v j} of positive integers such that for anyj ,  

HAEO >= [vj]-,. 
Now we fix v=v j .  By G wedenote the e-V-neighbourhood of E~. Theset  G consists of  
disjoint open intervals of  length at least e -L  Subdivide G into a union of  N disjoint 

1 intervals, not necessarily open, of  length between -~ e -v and e -L  Then 

Ne - 'p  >= He(G) ~_ Hp(E,) > v -~ 
and 

(5.4) [G[ :->~ e -~ N :> ~e-~eP~v -z  . 

Observe now that if r = l  - e  -~ and ~EG, then 

[ f ' ( r0[  -<-- CMe - ~ .  

Combined with (5.1) and (5.4), this yields 

Ce ~ >= f o [ f ' ( r0l-~[d(]  => ce-V eP'v-2e ~ .  

For large v, the last estimate is possible only if 

a ~ - - l + p + ~ ,  
so (5.2) follows. [] 

The application of  the lemma is based on a recent result due to Ch. Pommerenke 
[31] which improves an earlier estimate of  J. Clunie and Ch. Pommerenke [11]. 

Pommerenke Theorem. Let  f be a function univalent in D and 2ER. Then 

flf'(rOlXld~l = o ( ( 1 ,  r) - ' ) ,  r - ~ l - ,  

for  any a satisfying 

(5.5) 1 1 
> - T + ~" + ( ~ -  '~ + 4~2) ~n" 

Notice that the expression on the right is ,-, 322 as 2 4 0  and it does not exceed 
322 provided 2 < 0. Thus, for any 7 > 0, 

(5.6) f If'(r0l-rldr = o((1 -r)-3r'). 

Corollary 1. l f  f is a univalent function and 0 <~<= 1 then 

{ l iminf l f , ( rO[  } ~2 dim ~ET: . r_~l_- ( l_r )~  .<r =< 1-- i~- .  

Proof. By (5.6) and the established lemma, for any ~ > 0  we have 

dim {...} <= 1 +3r2-~r. 
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The minimum of the right-hand side is obtained by the choice y = ~  ct and is equal 
to 1 - ~  ~. [] 

Corollary 2. 
P d(p)  -> 

1 + ]/~ '( l  --p) t/2 

_Proof. By the previous corollary we have 

hrn" "n "[ f ' ( r0]  1 t 7 7 - - : ~  ~ > 0 for Ap-a.e. (ET 
,-i- O-r) 

for any p~(0, I) and any c~> I~(I _p)~/2. It remains to apply Theorem 0.5. 

Remark 1. By Corollary 2, for any pE(0, I), 

_<- (1 _p)l/~. 
1 + 1/~  (1 _p)l/~ 

This yields the right-hand inequality in Theorem 0.4. 

Remark 2. Also by Corollary 2 we obtain the inequality d(p) > p for 
2 

pE(~-~, 11. 

This result could easily be improved to 

p6( 3 ,  1] 

by referring to (5.5) in place of(5.6). Moreover, by a similar argument one can obtain 
the bound 

pE(0.601, 1] 

if one applies the second theorem of Ch. Pommerenke in [31]: if f is a univalent 
function then 

f lf'(rOl-lld~l = o((1-r)-~176 r-~ l - .  

On the other hand, I cannot extend this method to prove d(p)>p/2 for all pE(0, 1). 
See the next section for a proof based on the method due to L. Carleson. 

5.2. Now we turn to the proof of the upper estimate of d(p) for p close to one. 
To obtain an upper bound of d(p) one should provide an example. We construct the 
corresponding example with the help of the lacunary power series 

(5.7) b(z) = Z~__.0z ~', zED, 
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which gives rise to the univalent function 

(5.8) f(z) = f :  exp {-~b(z)} dz, zCD, 

mapping D onto a Jordan domain (see, e.g., [30], Ch. 10, w 2). 

Theorem. Let f be a function defined by (5.8) and (5.7), and let p~(2-~, 1/ 

1 
~ = ~ - ( 1  -p):/~. There exists a subset E c T  of positive Ap-measure such that 

(5.9) lim If '(r0[ = 0, (EE. 
r ~ l - -  ( l - -r)  ~ 

19 
Corollary. I f  p > - -  then 

20 

and 

(5.10) d(p) <: 
P 

1 +~-~- (1 _ p ) : 1 2  " 

Proof of Corollary. Apply Theorem 0.6. [] 

Remark. If p~(~-~, 1) then,  by (5.I0), 

p - d ( p )  >= P 2~(1 _p):l~ ~ 3_~( 1 __p)!l ~', 
l + T 5  1/1-P 

which proves the left-hand inequality in Theorem 0.4. 
For the proof of the theorem, we need a result on the boundary behaviour of the 

lacunary series (5.7) which was established in [24] as a slight amplification of a theo- 
rem due to J. Hawkes [16]. For the sake of completeness the proof is included. 

1 
Lemma. Let 6 <--s-. 

10 
than 1-568 such that 

There exists a subset E c  T of Hausdorff dimension greater 

lim inf Im b (rO 6 > ~ E .  

logs 1 - r  

Proofoflemma. On the segment [0, 1] we define the functions 

S,(t) = Z~=a sin (2'. 2nt). 
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It is easy to verify that if n=[llog~ (I - r ) l ]  then 

Ilm b(re~"a)-S.(t)l <= C. 

On [0, 1] we also consider the probability measure # with respect to which the func- 
tions t~.t. (=the  v-th figure in the dyadic expansion of t) are independent random 
variables with distribution 

# { t :  tv = o}  = 1 -~+6, /t{t: g = 1} = T - &  

The measure/z is invariant under the dyadic transformation 

T(t) = 2t(mod 1) 

and ergodic with respect to it (see [5], Example 3.5). By the ergodic theorem, for 
/,-a.e. 

_ 1 • .  
1 S,(t) = n ~=lsin (2rtT~t) ~f~sin(Zrct)d~(t). 
n 

By the Eagleston--Billingsley theorem ([5], w 14), the measure kt is absolutely conti- 
nuous with respect to the Hausdorff measure A= provided that 

where 

Ent T 
log 2 ' 

EntT = 

is the entropy of T. It remains only to note that 

provided 6 < ~ 0 ,  and that 

Ent T 
1 - - - -  < 562 

log 2 

f~s in  (2rtt) d#(t) = 26 fdf= sin (2ra) d/~(t) 

]/2-6 (1+26)3(1_26) > 7 "  > 26 ~ , = ~  [] 

[ 1 9  ~ 
Proof of theorem. Fix p~/-~-~,l/ and define 

we can apply the lemma. Because of the identity 

1 1 
= (1 _p)l/*. Since 6 < 

,ice, exp{- lmb z,} 
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we have 
]f '(r0l  <-- ( 1 - r )  6/(151~ 

for all ~ in the set E obtained in the lemma and all r sufficiently close to one. Hence 
(5.8) is valid for all ~<6(15  log 2) -1, in particular, for 

= 2 ~  (1 _p)l/z. [] 

6. A version of a theorem by Carleson 

This section is devoted to the proof  of  the inequality 

P (6.1) d(p) > ~-, pE(0, 1]. 

In fact, we shall establish two stronger results, any of  which implies (6.1). 

6.1. Theorem. For any pE(0, 1] there is a number q > P  such that if  f is a con- 
2 

formal mapping of the unit disc onto a Jordan domain, then 

(6.2) h~ < H a. 

6.2. Theorem. For any pE(0, 1] there is a number c~<l such that if  f is a confor- 
mal mapping of the unit disc onto a Jordan domain, then the inequality 

"'m i " I f ' ( r 0 l  (6.3) llrl ltnI (1--T~ ~ > 0 

holds for all ~ E T outside an exceptional set of Ap-measure zero. 

Both assertions are consequences of  the following basic result essentially due to 
Lennart Cafleson. 

6.3. Theorem. Let pE(0, 1]. For any 5 > 0  there is a 6 > 0  satisfying the follow- 
ing. I f  f is a conformal mapping onto a Jordan domain, then there exists a positive num- 
ber ro=ro(e,f) such that for any r, 0 < r < r 0 ,  the maximal number of discs A of 
radius less than r with 

h~(a) >= [HpCA)] 1/2+6 

and with centers separated by 2r does not exceed r -~. 

First we derive Theorems 6.1 and 6.2 from the latter result. 
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6.4. Proof o f  Theorem 6.1. Fix pE(0, 1]. Define e=p/4 and let 6 be a corres- 
ponding number in Theorem 6.3. We shall establish (6.2) with 

q = ~ ( 1 + 6 ) .  

Let E ~ T  and H~( fE)<q  where r/ is a sufficiently small number. There exists 
a covering o f f E  by discs Aj of radii r s satisfying 

(6.4) ~YrJ < t/, 

m.ax rj < 2 -N < r o = ro(e,f), 
J 

where NCN and N = N ( r l ) ~  as ~/~0. Introduce the notation: 

Jo = {J: hp(Zj) < r~}, 

F 
s (r)  = {j: hp(aj) ->_ r~, T < rj <= r}, r > O. 

Then 

(6.5) Hp(E) N Z.icso hp(Aj)+ Z k e N  hp(l,.Jjes(~-~)A j). 

By (6.4), the first sum does not exceed q. To estimate the second, observe that if 
0 < r < r o  then 

hv(Ujej ( ,  ) A j) ~ Cr pt4. 

To this end, we apply the covering lemma to the collection of discs 

{2a j: j~S (r ) }  

and choose m disjoint discs 2A(v ), 1 <=v<=m, such that 

Us~ s~, ) A s c U '~v=~ 10At,). 

(For a disc A and k>0 ,  by kA we denote the concentric disc of radius k times the 
radius of A.) Since the centers of A(o are separated by 2r and 

h;(A(,)) >: 2-~r ~ ~-- r po/~+O, 

we have by Theorem 6.3 
rn ~_ r -p14. 

Hence 
hp([..JyEj@) A j) <:= ,~rnv=l hp(10A(v)) "<= Crpl~r-V/4 = CRY/4 

(in the last inequality we have applied (1.5) and (0.6)). Returning to (6.5), we have 

Hp(E)<=tl+C.~k~_~(2-k)v/ '~O as ~ /~0 .  [] 
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Remark. Our deduction of Theorem 6.1 from Theorem 6.3 coincides essentially 
with the corresponding part of Carleson's proof ([9], w 8). 

1 
6.5. Proof o f  Theorem 6.2. Let pE(0, 1], e=-~-p, and 6 be the corresponding 

number in Theorem 6.3. The assertion will be proved with 

1 - 2 6  

1 + 2 6  " 

Assume that there is a compact subset E c  T of positive Ap-measure such that (6.3) 
is false everywhere on E. For an arbitrary NC N we carry out the following construc- 
tion. Let (CE. Then, by assumption, there exists an interval 1~ with center at ~ such 
that 

II;I <= 2 -N, If'(atr ~ II;l ". 

Applying the covering lemma, we choose a finite subcovering {I~) of E of multipli- 
city at most two. In the sequel we write Ij instead of l~j. By Proposition 1.3, applied 
with a sufficiently large R, for anyj  there is a closed subset FjcI~  satisfying 

ItjI ~, (6.6) HpCF.j) >= 

where 

(6.7) 

Define 

fFi  c aj ~~ ,t ( f (aA  r3, 

rj = Rl l j i i f ' (as)  I < RlIs[ ~+'. 

F ~  = U Fa. 

As in the proof of Theorem 2.4, (6.6) implies 

Hp(FC~) > clip(E). 

On the other hand the inclusion f F  tN) c u Aj implies the inequality 

(6.8) ~(FCN~) -<_ Zk_~N hp(U~-,~+l,~,,_~-k A,) �9 

From (6.6) and (6.7) we have successively 

hp(Ai) >= iip(F.t) :2>  1 l/iV >=-~a (R_lr~)p/~+~ >=r 
where 

p 1 
q 

Similarly to the proof of Theorem 6.1, the latter implies that the expression on the 
right in (6.8) tends to zero as N ~ .  This contradicts the assumption Hp(E)>0. 
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Remark. The idea to apply Carleson's technique to questions concerning the 
derivative of a conformal mapping is due to J. Brennan [7]. 

6.6. The beginning of the proof o f  Theorem 6.3. Fix pE(0, 1] and e>0.  Let A 
be the least positive number greater than 20 ~-1 with exp AEN. We shall verify the 
assertion for 

(6.9) 6 = zA -2 

where z=z(A)  is the number appearing in the following lemma borrowed from 
Carleson's proof ([9], w 6). 

Lemma. For any A > 0  there is z > 0  satisfying the following. Let U be a Jordan 
domain with two distinguished boundary arcs lying on different components o f  
0R(0; I, ea). Suppose that 

2(/') < (2z0-1A+z 

where F is the family of  all curves joining these arcs in U. Then U contains a sector of  the 
annulus R(0; 1, e a) with central angle greater than 7zc/4. 

Carleson's elegant proof is based on a normal families argument. We shall not 
reproduce it here. 

Now we fix a conformal mappingf. For convenience, we assume that f m a p s  D 
onto the exterior of a Jordan domain. Denote g2 =f(D).  Without loss of generality, 
we may also assume that f ( 0 ) =  oo and 

1 
(6.10) diam Of 2 = T"  

Fix a number r<=ro with r0 small. In the course of the proof we shall obtain a finite 
number of restrictions on the magnitude of r0. 

Definition. Let z0EC and yEN. The pair (z0, v) is said to be exceptional if /2 
contains no sector of the annulus R(z0; re va, re cv+l)a) of apperture 7zc/4. If 
z0EC, n(zo) denotes the number of v's for which the pair (z0, v) is exceptional. 

6.7. Lemma. I f  

(6.11) 

then 

1 
n(zo) <= A-21og - .  /- 
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denote the family of  all curves in f2 joining a~ with tr,+~. By properties of  extremal 
length, 

(6.14) ~(F) -> ,~  2(F~). 

For  every v we have the trivial estimate 

,~(r0 -> (2~)-1A, 

whereas, by Lemma in Section 6.6, 

( r , )  ->_ (2~)-1A + 

provided that (z 0, v) is an exceptional pair. Taking these estimates into account, from 
(6.12), (6.13) and (6.14), we have 

A A 

__ NA2rc t-n(z~ >- ~ log 1 + n(zo)z. 

Hence 

1 
tSlog r -~ n(zo)~ , 

and by (6.8) 

1 1 
= A - 3 1 o g - - .  [] n (z0) ~ ~ log 7 r 

6.8. End of the proof of Theorem 6.3. The argument used at the same stage in [9] 
(see w 10) applies verbatim. We shall therefore only supply few additional elucidations. 

(6.13) 

On each circle OA (zo, rda), 
of f2, in such a way that for 

1 1 

v = l, ..., N, we choose a subarc av, which is a crosscut 
v=0,  ..., N - I ,  o'v+l separates trv from infinity. Let Fv 

Proof. By (6.10) we can assume that 

A (0, 

Suppose that (6.11) is valid. We apply Corollary to Theorem 1.4 with K = T ,  q =  
=~-+~5 and q ' = f f + 2 8 .  If  ro is small, then there exists a s u b a r c a  0 of  OA(zo, 2r) 
which is a crosscut of  t2 and satisfies 

(6.12) 2 ( 0  <- ~-1 ( 1 + 2 ~ )  log 1 
r 

where F is the family of  all curves in ~2 joining T with ao. Let 
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Suppose there are m discs Aj=A(z~, rj), 1 <=j<=m, satisfying r~<=r<=ro, 

(6.15) [zj-zkl >= 2r (j ~ k), hp(A~) >= rZ] ~1/~+~). 

We have to prove that 

(6.16) m ~_ r -~. 

Without loss of generality we can assume that 

(6.17) zjCtgf2, j = 1 . . . . .  m; 

and A is large enough to satisfy the following geometrical condition. 
Let a, b, z be three points in a sector of  the annulus K(0; 1, e a) with central 

~ (SeeFigure3.) angle and la l= l ,  Ibl=e A. Then the angle <(azb)isgreaterthan-~. 

b 
/ /  

Fig. 3 

Lemma 1. Let 

Iz~- zkl 
(6.18) 2<= reVa ~_e a - 1  

and 

(6.19) re ~v+l)a < ~- diam 0(2. 

Then at least one of  the two pairs (z~, ~) and (Zk, V) is exceptional. 

Proof Suppose that the pair (zz, v) is not exceptional. By hypothesis, 0fl meets 
both components of C \ R ,  R= R(zj; eva, e ~v+l)a) so the curve 0(2 should pass inside 

7~ 
a sector of R of apperture -~. Let a and b be two points of  0~  lying on different cir- 

cumferences of OR. By (6.17) and (6.18), zk lies in the sector so we have 

~z 
~(azkb) > -~. 

Hence the pair (zk, v) is exceptional. [] 
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For v = 0, 1 . . . .  , N, 

N =  I + ( A - ~ l o g l ] ,  

let ~v denote the lattice of all squares Qv of side 1 ~a s,=-~ re such that the coordinates 
of the vertices are multiples of s,. Since e a is an integer, f#,+l is a sublattice of f#,. 
We will assume that no point zj lies on the boundary of a square Q06 f90. By (6.15) 
each Q0 contains at most one point zj. By (6.10) we can also assume that all zj lie in 
a single square QNE fgN. 

Given Qv+16~,+, we define a set S(Q~+I) consisting of some squares Q , c  
Q,+I as follows 

Definition. If, for all zj6 Q,+~, the pair (zj, v) is exceptional, we put S(Qv+O = O. 
Otherwise, 

S(Q~+I) = {QvCfa~: Q~ c Q~+I and Q~c~A(zj, 2re ~a) ~ 0 for any zj6Qv+, 

such that (z j, v) is non-exceptional}. 
Since a disc of radius 2re*a=4s, meets at most 100 squares of ~ ,  we have 

(6.20) card s(a,+~) <- 100. 

Lemma 2. Let v < N -  1 and zk6Q~c Q,+I. I f  the pair (zk, v) is non-exceptional, 
then 

Q, c S(Q,+I). 

Let zj6Q,+l and let the pair (zj, v) be non-exceptional. We should /'roof. 
verify that 

(6.21) Qv c~ A (z j, 2re ~) ~ O. 

Since (6.10) and the inequality v < N - 1  imply (6.19), we can make use of Lemma 1. 
We thus have either 

Izj-zkl < 2re ~a, 
o r  

Izi-zkl > re f~+l)a-re~a .  

The first inequality implies (6.21) while the second is ruled out because zj and z k 
lie in the same square Q~+I. [] 

Each point zj defines (and is determined by) a sequence of squares 

(6.22) Q0 C Q1 C. . .  C QN 

with zj6 Q,. According to Lemma 2 

Q~ c S(Q,+x) 
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for all v<N-1 for which the pair (zj, v) is non-exceptional. By Lemma 6.7 the 
number of  exceptional pairs does not exceed 

1 N 
A-3 log r -<- "A--" 

Thus m does not exceed the number of  all posible sequences (6.22) with Qv c S(Qv+O 

except for at most ~-+  1 indices v. Therefore by (6.20), 

~--~k=0 e ~ak 100 s-k < exp 2A + 1 100 s -k  

= exp {2N+ Nlog 101 + 2.4} <_- ( 1 )  ~~ 

provided that r<-ro and r0 is sufficiently small. By the choice of  .4, we have 
(6.16). [] 

7. Concluding remarks 

7.1. Radial growth o f f '  and 1If'. Most of  the results on boundary distortion ob- 
tained in this paper are consequences of  the corresponding results on the radial 
growth of the reciprocal of  the derivative of  a univalent function. Now we wish to 
list the latter results explicitly and briefly discuss their counterparts for lhe derivative 
itself. The problem is to estimate the maximal dimension of  the set on which the order 
of  growth of  the derivative (or its reciprocal) is greater than the given one. This 
problem admits different versions. As variable we prefer to choose the dimension of  
the exceptional set. For p~(0, 1] we define the following quantities. ((S) denotes the 
usual class of  univalent functions.) 

a(p) = sup {~ -> 0: 3f~ (S) 3 E  c T such that Hp(E) > 0 and 

lira inf If '(r()l  - 0 for (CE};  
, - 1 -  ( l - r )  ~ 

cq(p) = sup{~-> 0: 3fE(S) 3 E c  T such that Hp(E)> 0 and 

lira lf'(r()______~l_ 0 for (~E} ;  
, ~ i -  ( 1 - r )  ~ 

fl(p) = sup{# _-> 0: 3fE(S) 3 E  c T such that Hp(E) > 0 and 

l imsup If ' ( rff) l (1-r)~ =oo for ~EE}; 

/~(p) = sup {fl _--> 0; 3fE(S) 3 E  c T such that Hp(E) > 0 and 

lim If'(r~)l(1-r)~ =oo for ~EE}. 
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Obviously, all four functions are decreasing and ~(p) =>~I(P), fl(P) >=ill (P). It 
is probable that they are continuous, strictly decreasing and that ~(p)=~(p) ,  
fl(p)=fl~(p), but I do not know the proof. Some estimates of these functions can be 
traced in the literature. 

The distortion theorem trivially implies that 

(p)  < 1, /~(p) <- 3 . 

A result of A. Beurling [4] shows that 

outside possible exceptional sets of logarithmic capacity zero, and hence 

fl(p) N 1 for all p > O .  

W. Seidel and J. Walsh [33] proved that 

/~(1) < x = T '  

and this result has recently been improved up to 

/~(1)=0,  c~(1) = 0  

by J. Clunie and T. MacGregor [10] (see also [17] and [22]). The only lower bound 
I know goes back to A. Lohwater and G. Piranian [19]. They constructed an example 
of fE(S)  with 

lim Jf" (r~)[ (I - r) 11~ = oo 
r - - ~ l -  

for all ~ in a set of positive capacity, but the proof shows, in fact, that 

~ ( p ) > O  and f l l ( P ) > O  for all p <  1. 

The results of the present paper provide estimates of ~(p) and ~I(P). Although 
these results have only been established for conformal mappings onto Jordan domains, 
they can easily be extended to arbitrary univalent functions. We do not include the 
details. Remark that a(p) and ~l(p) are connected with the function d(p) through the 
inequalities 

P P 
1 + c~ (p) ~ d (p) =< 1 +~i (P)  

cf. Theorems 0.5 and 0.6. Our estimates of c~(p) and cq(p) are the following. 

(7.1) ~(P) => ~i(P) -> 1 - p  (see Section 3.1), 

(7.2) ~ ( p ) ~ o q ( p ) X ( 1 - p )  v~ as p - ~ l -  (see Section5). 
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In particular 

(7.3) 

(7.4) 

Finally 

0{(0-~-) = 0{1 (0+  ) : 1, 

0 { ( 1 - - )  = 0{X(1--)  = 0.  

(7.5) 0{x(P) <- 0{(P) < 1 for p > 0 (Theorem 6.2). 

An alternative way to prove (7.5) is to verify that 

(7.6) infx(y)  = 1, 
~___0 

where 

x(~) = inf{x => 0: f lf'(rOl-eld~l = O((1 - ) n  x-') for any fC(S)} 

(of. Lemma 5.1). A stronger conjecture is that x (2 )=  1, of. [7]. 
Arguments similar to that used in the paper allow to obtain some estimates of  

fi and fii: 

(7.1') fi(p) >- fix(P) -> l - p ,  

(7.20 fi(P) X fix(P) X (1 _p)l/~ as p-~ 1, 

(7.3') f i(0+) = fix(0+) = 1, 

(7.4') fi(1--) = f ix(1-)  = 0. 

As to the counterpart of  (7.5), 

(7.5') fix(P) <-- fl(P) < 1 for p > 0, 

it admits a considerable amplification 

(7.7) fi(p) <- 1-P-- 
2 

with a very elementary proof. Together with (7.1) this gives a suitable approxima- 
tion to 1 - f i ( p )  as p ~ 0 + :  

1 -fl(p) X 1 -fix(P) X p .  

I do not know whether a similar result is also true for 0{(p). 

Proof of (7.7). With the help of  an elementary transformation, any simply- 
connected domain (other than C) can be mapped onto a bounded domain. The 
composition with an elementary function does not have an influence on the dimen- 
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sion of the set on which the derivative of a univalent function has a given order of 
growth. Thus we can assume that 

f f I f ' l  2 dm z < oo. 

Then from the distortion theorem or from the maximal theorem, it follows that 

('1 (7.8) f lf'(r~)121d~l = 0 -f-Z-;-r as r ~ l - .  

Repeating the reasoning in the proof of Lemma 5.1, we obtain from (7.8) 

dim {~CT: lim sup If ' ( r0l  (1 - r )a  > 0} =< 1 + 1-2/~ = 2(1 -/~). 

By definition of fl(p) (7.7) follows. [] 

7.2. On dominating subsets. In [22], [23] the following question on dominating 
subsets was studied. Let s be a simply-connected domain and ~p be a measure func- 
tion. Does there exist a dominating subset A of s satisfying 

(7.9) z ~ a  ~0(6a) < ~o 

where 3~=dist (2, 012)? See [23] for the background of the problem and [32] for 
the definition and properties of dominating subsets. Recall that the property of a set 
to be dominating is a conformal invariant and that A c D  is a dominating subset of 
the unit disc iff there exists a subset E c T of full Lebesgue measure such that the 
intervals I(2), 2CA, cover E with infinite multiplicity. (Here, for 2~D, I(2) stands 
for the interval I such that 2=ai . )  This characterization of dominating subsets of 
D makes obvious the following observation. 

Let f :  D ~  f2 be a conformal mapping onto f2 and ~o be a measure function. 
There exists a dominating subset A of f2 satisfying (7.9) if and only if there exists a 
subset E c T  such that [EI=I and D,Y(E)=0. 

It was proved in [22], Lemma 3.1 that the existence of a dominating subset 
satisfying (7.9) implies the singularity of the harmonic measure o9 =h~ with respect 
to the Hausdorffmeasure A,p and it was asked whether the converse is true. A (positive) 
answer has only been known for q~ (t) = t (see [20], Theorem 4). 

There exists another version of the problem under consideration. The argument 
in Section 2.4 implies in fact that 

(7.10) to </-~rq~ =:~ H1 < D{ 

(see also [23], Lemma 2.3). The question is whether the converse of (7.10) is true. 
By Theorem 2.3 (or by [20], Theorem 4) the answer is "yes" for q~(t)=t. 

The technique applied in the proof of Theorem 2.3 enables us to answer both 
questions in the affirmative for sufficiently regular measure functions cp. The restriction 
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we impose on go is certainly unnecessarilly severe and could easily be weakened 
considerably. At the same time, without any regularity condition, I am still unable 
to settle the question. 

Theorem. Let f be a conformal mapping o f  D onto a Jordan domain 12 and go be a 
logarithmico-exponential measure function. The following are equivalent. 

1) ro < n ~ .  
2) HI < D:~. 
3) For almost all ~ E T, 

lira inf lf ' (r01 > 0 
, -1 -  ~ O - r )  

where ~ = t -  a go- 1 (t). Similarly, the following three statements are equivalent. 

1) co is singular with respect to H~,. 
2) There exists a dominating subset A o f  I2 with 

3) For almost all ( E T 

Z~Ea go(rD < ~- 

lim inf If'(r()-------~[ - 0. 
r--L-- @(l--r)  

We shall confine ourselves to the proof  of  only the first part of  the theorem. 
First we make some preliminary remarks. 

a)  The class of logarithmico-exponentional functions (or L-functions) was 
introduced b y  G. H. Hardy [15], see also the excellent exposition in [6]. Roughly 
speaking, a measure function go is an L-function if it is defined on an interval (0, to) 
by an expression consisting of  a finite number of  log's and exp's together with 
some composition and arithmetic operations. By the main property of  L-functions, 
any two of  them are comparable, i.e. either goa=o(go~) or go~=o(goa), or goa~Cgo2 
as t ~ 0 + .  

b) The equivalence 2=*3 follows from [23], Lemma 2.3. Hence the only assertion 
still to be proved is 2 o l .  

c) The proof  of  2=*1 will rely on certain results from [22], which we now recall. 
If  rp(t)=o(t) as t ~ 0 ,  any  12 admits a dominating subset satisfying (6.8), see.J23], 
Lemma 3.1. In this case, Ha~D~ and 2=,1 is trivial. On the other hand, if 

texp{l logt l  m}  = o(go(t)) as t -.- O, 
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then by [22], Theorem 1, co<H~, and 2=~1 is trivial again. Thus we can assume in 
the sequel that 

(7.11) ct ~_ q~(t)<= Ct exp {llog tl 8/4] 

as t-*0. 

Proof of  Theorem. For the reason pointed above, we shall only prove 2=~1 
assuming (7.11) being valid. Define the L-function Z by 

(0  = tz(0 .  
We derive from (7.11) that 

c -<_ Z(t) <= C exp{llog t13/4}. 

It is easy to see that for L-functions the latter implies 

(7.12) Z < C x ( t )  as t -~0 .  

Assume that co~H~o, i.e. there is a subset eocOl2 with co(e0)>0 and 
H~,(eo)=O. For any 8=~0 there exists a covering of e0 by discs A, of radii rv<=ro 
such that 

E q'Cr,) < 

We proceed further as in the proof of Theorem 2.3. For any v there are subarcs 
a(f ) of OA v, 1 _~j = N(v), 

1 
N(v) ~_ ko log --~-, 

which are crosscuts of f2 and separate the subarcs 3~*)=f(I} ~ of 0f2 satisfying 

tVCv) 0') (7.13) co(Av\Uj=l/~ J ) ~_ r 

By Proposition 1.5 

,i=1 ~'J : - -  

Since (o is an L-function, (7.12) implies 

(7.14) 5 '  ~c,) ~ s = l  ~~ v)l I f ' ( a }  "))1) <- C~o(r,). 

Let e denote the set 
eon [ U ,  U NO') R(')'I j = l r /  j 

and E = f - l e .  Then by (7.13) 

(7.15) o (e \eo)  ~- s. 
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and 
1 IEI > -~cO(eo) > 0 

provided e is small. On the other hand, by (7.14), 

(7.16) D~(E) = ,~, / _ . t j =  1 r If'(a}'~)l) <= C ~ ,  ,', ~ Ce. 

Since 8 is arbitrary, (7.15) and (7.16) imply that 
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