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1. In~oducfion 

The contents of the present paper are most easily introduced by referring to 
previous studies on half-spherical means of subharmonic functions s in the Euclidean 
half-space D=Rn•  + ~ ) ,  (n= > 1). Originally these means were defined as weighted 
integrals of s over the curved part of the boundary of a half-ball (see, for example, 
Huber [11], Dinghas [4, 5] and Kuran [12]). For these means to have desirable prop- 
erties, it was necessary to require that 

(1) lim sup s(M) ~ 0 (NER n • {0}). 
M.-,.N 

Two distinct lines of development can be traced from these origins. The first, 
due to Ahlfors [1] (n= l )  and then Kuran [13] (n->l), was to extend the half- 
spherical mean to include also a term involving the integral of s over the fiat part 
of the half-ball boundary. This permitted the restriction (1) to be relaxed to 

s(N) = liMm.su p s(M) < + oo (NER"X{0}). 

Analogous results, using different methods, were obtained for the infinite strip 
I2=R"X(0, 1) by Armitage.and Fugard [2]. 

The second, more recent, development due to Norstad [14] (n= 1) and then 
Wanby [15] (n=>l) involved instead a modification of the integral over the curved 
part of the surface. The requirement (1) was changed: for example, when n=  1 it 
became 

' o)} cos(. /2)s(O, x) (x > o) 

where 0 <it ~_ 1. Analogous results for the infinite strip have recently been obtained 
by Wanby [16]. This current study brings together both lines of development, present- 
ing a new mean incorporating both the modified mean over the curved surface and 
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a term involving the flat surface. For  reasons of geometric simplicity, we work in 
the infinite strip f2, and make use of the material in [2]. In fact the results in [2] 
will be seen to be a special case (2= 1) of  the theorems stated below; we use similar 
notation to facilitate this comparison. 

2. Notation and definitions 

The closure and boundary of a subset E of R n+a are denoted respectively by 
and OE. An infinite strip of height e will be denoted by 

a . = { M = ( X , y ) = ( x l ,  . . . . .  x . , y ) :  

so that ~ = [21. We also write 

IXl = 

Let B(r) and S(r) denote the open ball and the sphere of radius r in R n centred 
at the origin, and define F~(r)=S(r)• ~). The surface area measures on S(r) 
and F , ( r )  are denoted by a and z respectively (when n = l  we mean a ( { - r } ) =  
a({r})= 1). We write o , = a ( S ( 1 ) )  and define a related dimensional constant 

7~ = (27~) -1, Y,, = { ( n -  1)o',,+~} -1 (n => 2). 

Lebesgue measure on R n is denoted by dX. 
We shall say that a function s belongs to the class 6e~ if: 
(i) s is subharmonic in ~2,, and 

(ii) lim SUPM.N s(M)=s(N)< +~ (NE012,). 
ME~ 

I f  we wish to include also the possibility that s - - r  then we shall write s C ~ .  
Clearly, if s is subharmonic in an open set containing ~ ,  then sESe~, but the con- 
verse is false. 

We will define a weighted mean of sESa~ in terms of the Bessel functions I,/~_ 1 
and K~l~._ 1 which are defined in Watson [17; pp. 77, 78]. Following [2] we abbreviate 
these to I and K respectively and denote K/I by L. These functions have a simple 
form when n = 1 : 

I(t) = (2/r~t) a/e cosh t, K(t) = (n/2t)a/2e -', L(t) = 7r/(1 +e2t). 

(see [17; pp. 79, 80]). 
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Let f be an extended real-valued function on ~ and 0<2<_-2. Provided the 
integrals exist, we write 

~ ' ( f ,  r; 2) = r -'/~ {I(rc)or)}-' Jr,(,) f (M) sin {re4 (X--IX-- Y[)} d~(M), 

r r; ).) = 2 -t/2 rc~2 ~ f :  {cosh(n20}-~f(o,o cosh(rc4u){f(u, O) + f ( -  u, O) 

+f(u, 1)+f(-u,  1)-2cos(rc4/2)[ f (u , i )+f(-u ,X)]}dudt  ( n =  1), 

~o(f, r; 2) = ,~4 f[  t-~{I(u4Ol-~ f .(o lXlX-'/'l(rc41xI) 

X{f(X, O)+f(X, 1) --2 cos (na/2)f(X, 1)} dXdt (n ~_ 2), 
and 

~0(f, r; ,~) = ~(.f,  r; 4 ) + ~ ( f , r ;  4). 
We also define 

,r r; ,,t.) = log..C[(hxexp(f/h~), r; 4) 
where 

hx(M) =lXlX-'/~ Z(n4lXI)cos {rd (y--X)} (ME f2), 

~ ( f ,  ~; 4) = sup {f(U)/h~(M): McrAO}, 

and, if f is non-negative, 

~,(f ,  , ;  4) = ,"/~-, {~r(,~4,.)}-~ 

x {r'-'f~,(., [f(M)]. cos'-. [.4 (y -  1)] sin In4 G - I  x -  Yl)] d'(M)} 'Iv" 

3. Results 

The central result of the paper is Theorem 1 below, most other results being 
deduced from it. When a function is described as "increasing", the term should 
be understood in its wide sense, i.e. non-decreasing. We list the following boundary 
conditions which will be referred to in statements of results: 

(2) fs(.)X is(X, o)+s(x, 1)1 d~(X) <= cos (.4/2) fs(.)s (x, X) d~(X) 
(3) sup(s(i): iES(r)X{O, 1}} <-cos0:2/2)sup{s(M): MES(r)X{r 

(4) {f.,.,X[s.(X, 0)+s.(X, 1 ) l a~ (x )} ' -  cos(=.t/2){fs(oS.(X, X)da(Z)}" 

(5) f~(,)X [exp {s(X, O)/ha(X, 0)}+exp {s(X, 1)/h~(X, 1)}1 da(X) 

L,,,exp {s(x, X)lh (X, X)} a Cx) 
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Clearly conditions (2)---(5) are satisfied if 

max {s (X, 0), s (X, 1)} =< cos (zr2/2) s (X, ~) (XE R"). 

Theorem 1. I f  0<2=<2 and sESt'x, then ~o(S, r; 2) is real-valuedandincreasing 
as a function of  rE(O, +~o) and convex as a function of  L0r2r). 

Corollary 1. I f  0<2<=2, sE~  and (2) holds for a.e. (Lebesgue) r>0 ,  then 
~ ' ( s ,  r; 2) & increasing as a function of  rE(O, +~o) and convex as a function of  
L(rt2r). 

Corollary 1 ( 0 < 2 <  1), together with Theorems 6 and 7 below, are to appear 
also in [16] where different methods are used (I am grateful to Professor Wanby 
for sending me a preprint of his paper). The greater generality of Theorem 1 appears 
to be new. 

The conclusions of the above results could alternatively be stated in terms of 
convexity with respect to the family {AI(zr2r)+BK(zt2r): A, BER}. The case n =  1 
warrants special mention, the following result being a generalization of a theorem 
due to Heins [9], who gave the 2=  1 case. 

Corollary 2. I f  0<2=<2 and s is subharmonic in a rectangle (a, b)• 1) and 
(extending s to (a, b)• 1] by its lim sup) 

--~ [s (x, 0) +s  (x, 1)] =< cos (n)./2) s (x, ~) (xE (a, b)), 

then the function 
x -  ,(x, y)sin Ire2 ( l _ [ } _ y ) ]  dy 

is convex on (a, b) with respect to the family {Ae=~ + Be-=**: A, BER}. 

The following result is implicit in [2; Theorem2]. By taking n = l  and 
s=log  l f [  (where f is holomorphic in f2) and using an appropriate conformal 
mapping, it can be seen to be a generalization of a well-known uniqueness theorem 
of F. Carlson: namely that a holomorphic function of exponential growth in the 
half-plane cannot approach zero exponentially along the boundary unless it vanishes 
identically. 

Theorem A. / f  sE.q~l, 

(i) lim infr(1-")/2e-=" f s(M) sin (=y)dz(M) < + co 

and 
(ii) fa-  (1 + [XI) (a-")/~ e -<xl z~=o s+( X, k) dX 

< f a -  (1 + [Zl)a-")/~e -=lxl ~,~=0 s-(X, k) dX = +  0% 

then s - - -oo .  
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It is natural to ask if other results of this type can be obtained by weakening 
the growth restriction (i) and compensating with a stronger "decay" in (ii). We 
answer in the affirmative by stating the following easy application of  Theorem 1. 

Theorem 2. Let  1 <2<_-2. I f  sE~q'l, 

1 1 (i) lira infr(1-n'/~e -~" f s(M)sin < + ~  
r ~  ~ ,z F l ( r  ) 

and 

(ii) fR- (1 + IXI)(1-n)/Xe -~zlxj Z~ffi0 s+(X,/q2) dX 

< f R ~  (1 + IXl)(~-*)/2e -'~Ixl Z~=0 s - (X ,  k/2) d X  = + 0% 

then s = -oo.  

The new feature of  Theorem 2 is that condition (ii) involves three hyperplanes 
instead of two. To see that this is essential, consider the harmonic function (n= 1) 

s ( x , y )  = e ' Z X c o s n 2 ( y - ~ )  (yC[0, 1]). 

It is clear that s satisfies (i) of  Theorem 2. It would also satisfy (ii) if the term k = 1 
were omitted from the sums, since cos (n2/2)<0. 

Theorem3. Let 0<2_-<1 and let sC6"l be non-negative. I f ( 2 )  holds for a.e. 
r > 0  and 
(6) l iminf~g(s,  r; 2) -- 0, 

then s=-O in f2. 

The case 2 =  1 of Theorem 3 is the usual type of  Phragm6n--Lindel6f result 
where s<-0 on t912. When 0 < 2 <  1 we are weakening the boundary requirement 
at the expense of a stronger growth restriction in (6). similar observations can be 
made concerning the following criteria for harmonic majorization in f2, which gen- 
eralize [2; Theorems 5, 6]. 

Theorem4. Let 0<2_<-1. I f  sE6al and ~o (S , .  ;2) is bounded above on 
(0, +oo), then s has a harmonic majorant in 12. 

Theorem 5. Let 1 <-2-<2 and suppose that s is subharmonic in an open set W 
containing ~. I f  s has a harmonic majorant in f2, then ~0(s, �9 ; 2) is bounded above 
on (0, +oo). 

Finally we give results on other types of means. 

Theorem 6. Let 0<2<-1 and s6Aal be non-negative. I f  p > l  and (4) holds 
for  a.e. r>0 ,  then ~gp(S, r; 2) is increasing as a function o f  rE(O, +co) and con- 
vex as a function o f  L(zc2r). 
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Theorem 7. Let 0<4-<1 and s ~ .  If(3)  holds for all r>=O, then d/=(s , r ;  4) 
is increasing as a function of rE(O, +oo) and convex as a function of L(7~4r). 

Theorem 8. Let 0<4-<1 and sE~.  l f  (5) holds for a.e. r>0 ,  then ~r 
is increasing as a function of rE(O, +o~) and convex as a function of L(n4r). 

4. Preparatory material 

4.1. For the purposes of proving Theorem 1 we need to widen some of our 
definitions. We will keep close to the notation of [2J. We put A(Q, R)=B(R)\B(Q) 
(so that A(0, R)=B(R)) and define 

~=(Q,R) = A ( ~ , R ) X ( 0 , ~ ) ,  A2(~,R) = ACe, R)X{0 ,~} .  

ff  t~-Q, then A(O, t) should be understood as the empty set. We shall say that 
s(6e~(e, R) if 

(i) s is defined at least in ~(O,  R), 
(ii) s is subharmonic in f2,(O, R), and 

(iii) lim sup M-.N s(M)=s(N)< +~ (NEA2 (e, R)). 
M ~ f~(  o, R) 

Suppose that o<r<R and let f be an extended real-valued function defined 
at least on f2(Q, R). Then, provided the integrals exist, we write 

.14(f, r; 2, a) = r-"/z{I(rO~r/cO}-l L.( , ,  f (M)sin [u2 ( -~a- ] l  a -  y[)/:~] dr(M), 

~cr .  r; 4. ~) = 2-~/~.~ 4~ ~-~f~ {coshC,4t/~)}-~ f(...) cosh (n4u/a){f(u,O) + f ( -  u, O) 

(n = 1), 

uVq (f,  r ;  4, ~) = .4a -~ f'mi.O, R) t - '  { I ( .M/a) }  -~ fa(, ,  0 fX I ~- "i~I(u2 iX l/c<) 

X {f(X, O)+f(X, cr cos (rc4/2)f (Z, } a)} dX dt (n >= 2), 

: d f ,  r; x, ~) = ~ ( f ,  r; x, ~ ) + 4 f f ,  r; : .  ~). 

Whenever a =  1 and Q=O these definitions coincide with those given earlier. 

4.2. We now recall some results about the special case 4= 1 which was studied 
in [2] and implicitly in [8]. 

Theorem B. (i) Suppose that either 0_<-Q0<Q<R or 0 = ~ 0 = ~ < R .  I f  
sESP~(#o, R), then ~ ( s ,  r; 1, ~) is real-valued on (Q, R) and is a convex function of 
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L(rrr/e) on (0, R). I f  sESr R), then ~o(s, r; 1, ct) is also an increasing function 
on (0, R). 

(ii) I f  h is real-valued and continuous in O~(Q, R) and harmonic in f2~(Q, R), 
then in the case where 0>0,  NQ(h,r; 1, e) is a linear function (i.e. polynomial of  
degree at most 1) of  L(nr/e) on [O, R] and, in the case where Q=0, 9~o(h, r; 1, e) 
is constant on (0, R]. 

This result is [2; Theorem 1], trivially modified to deal with strips of arbitrary 
width e. Clearly it covers the  case 2 =  1 of Theorem 1. Further, the 2 = 2  case 
follows easily by applying the above in 121/z to the functions s and Sl, where s l ( M ) =  
s(X, y+~),  and then considering ~0(s, r; 1, ~)+9~o(sl, r; 1, ~). 

However there is more work to be done when 2~(0, 1)U (1, 2), and we require 
the following related result. 

Theorem C. I f  s~Se~, then there exists a unique measure A s on 012~ and a posi- 
tive constant c such that 

~o(S, 1"; 1, c 0 = ~'(s,  1; 1, ~)+cf~  t-l{I(Trt/~)}-~[As(A2 (0, t)) 

+ foo 0,o Ix I -n/ I@l z I/s) sin (ny/~) d/~s(M)]dt, 

where I~, is given by ?~As in the distributional Laplacian sense. Further, i f  s is con- 
tinuous on ~ ,  then A, is the zero measure on OI2~. 

The first assertion of the above theorem is a special case of [8; Theorem 2]- 
for further details, see [6; Chapter 4, w 11]. The second assertion is implicit in the 
proof of [8; Theorem 1]. 

5. Proof  of  Theorem 1 

5.1. It is perhaps worth remarking that Theorem 1 is straightforward to establish 
for sCC2(f2)c~C(~); the more sophisticated argument below is necessitated by 
the much weaker assumptions we make concerning s. We will in fact  prove the 
following more general result which is directly analogous to Theorem B. The greater 
generality is needed to prove some of the other results of this paper. 

Theorem 1". (i) Suppose that either 0 < - ~ o < 0 < R  or 0 = Q o = ~ < R .  I f  
sCS~l(Oo, R), then ~ ( s ,  r; 2, 1)  is real-valued on (~, R) and is a convex function 
of  L(n2r) on (Q, R). I f  sES~l(O, R), then 9~o(s, r; 2, 1) is also an increasing func- 
tion on (0, R). 

(ii) I f  h is real-valued and continuous in O(Q, R) and harmonic in O(Q, R), 
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then in the case where 0>0, 2~o(h, r; 2, 1) is a linear function of L(rc2r) on [0, R] 
and in the case where Q=0, N0(h, r; 2, 1) is constant on (0, R]. 

In view of what was said in w 4.2, Theorem 1" is already established when 2 = 2, 
so from now on we will assume 2E (0, 2). The proof of the finiteness of ~ (s, r; 2, 1) 
is almost identical to the 2=1 case, so we refer the reader to [2, w 7.1]. 

As for the rest of Theorem 1' (i), we need only prove it under the additional 
hypothesis that s is harmonic in A(Oo, R)N(-~-s,-}+s) for some eE(0, .~). To 
see this, we consider the case 00=0 (the argument when 00>0 being similar), 
and suppose that this special case of Theorem 1' has been proved. 

Let 0 < R ' < R .  For each integer m>2,  let 

and define 
E(m) = B(R' )x (+-m 

[H~r(m)(M) if MEE(m) 
s,,(M) = [ s(M) elsewhere in O1(0, R), 

where Hff denotes the Perron--Wiener--Brelot generalized solution of the Dirichlet 
problem in E with boundary data s(M) (see [10; Chapter 8]). Then, by the special 
case of Theorem 1', No(s,,, r; 2, 1) is increasing as a function of r and convex as 
a function of L(n2r) for rE[0, R'). It is easy to see that s,,ls in f21(0, R), whence 
by monotone convergence ~o(s, r; 2, 1) has the same properties on [0, R'), and 
hence on [0, R) since R'E(O,R) was arbitrary. 

5.2. It remains to prove Theorem 1' (i) when s is harmonic in A(eo, R)•  
1 1 �9 ( ~ - - e , ~ +  0. If Q=0 let Q'=0, otherwise let ~ E(~o 0, ~); also let R'E(Q,R). 

We define ~=2(2 +2)/(2-2),  

; /2 cos (y - -: )] s (x ,  if 1/2] 
s*(M) [s(X,y)+s(X, l - y )  if MEA(Oo, R)X[O, -~], 

and 

g (M)=/2  cos [rig ( y - ~ ) ]  {O~s/Oy~)(X, -~ )+n~s (X ,  ~)} if MEA(o',R')• 
tO elsewhere in ~x/~(~o, R). 

We note that 

(7) sin( 2y)cos dy -- 0. 

Next we need to evaluate the distributional Laplacian of s* in A(Q', R ' ) •  
(@-~, 1/2). Routine calculations yield that, in A(Q', R')• 1/2), the ordinary 
Laplacian of s* is given by As* = - g .  Let ~ be a C ~ function with compact sup- 
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port in A(Q', R ' )X(~--e ,  1/2). From Green's theorem it now follows that 

(8) ( = f s* (M) a V (M) aX dy 

= fa(Q,, R,)x (a/z,1/i) 7t (M) A s* (M) dX dy 

1 Os* 

= --fa(e',r)x(1/~,l/x) ~(M)g(M) dXdy, 

using the facts that s* is continuous in A(Q', R ' ) •  1/2) and that 

(~s*/~y)(X, i + ~ )  = - 2 ~  sin ( ~ ) s  (X, 1 )  -.  0, 

= o 

as ~5-~0+. 
Let G(- ,  .)  denote the Green kernel for f21/z, and define measures #1 and 

p~ on f21/~ by dp~(M)=?~g+(M)dXdy and dpz(M)=?~g-(M)dXdy. Since g 
is continuous and bounded on A(0', R ' )X(~ ,  1/,~), it is not hard to see that the 
potentials G/q and G/~2 are continuous on f21/l and vanish continuously at Of 21/x 
(cf. [10; Theorem 6.22 and Lemma 6.24]). In view of (8), the function s0=s * -  
Gpl+GI~z has zero Laplacian (i.e. is harmonic) in A(O', R')•  1/2). Further, 
it is clearly subharmonic in A(O', R')• ~). Thus, if we could show that 

(9) ~ ( s ,  r;  2, 1) = ~0(So, r; 1, 1/;t)+constant, 

for r~(Q', R'), then from Theorem B, ~Q(s, r; 2, 1) is convex as a function of 
L(=,~r) on (~', R'). In view of the arbitrariness of ~' and R', this must be true 
on (Q, R). The rest of  Theorem 1" (i) and (ii) would a/so follow directly from Theo- 
rem B. 

It therefore remains to establish (9). From Theorem C, 

MC(-G/xi, r;  1, t/2) = M/(-  G/**, 1; 1, 1/2)+cf~t-l{I(~2t)} -~ 

x f-~<0.-,, o IXl~-"/~x(~ilx I) sin @iy) d#,(M) dt 
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( i=  1, 2) and so using (7), 

v/ l (ala~-apl ,  r; 1, 1/2) = v/g(O#2-GIA, 1; 1, 1/a)+c'f2 t-l{I(Tr2t)} -~ 

say. Thus 

= d+C~(s, r; 2, 1)+r-"/2{I(n2r)} -1 f 
s(o X O/2, a/z) 

= d + ~ , ( s ,  r; 2, 1) 

using (7) again. This proves (9) as required. 

• f o1,.(o.,) Ix 11-"/~I(rc2 ix  I) sin (n2y)g (M) dX  dy dt 

= Jd(Gkt2-G#I, 1; 1, 1/2) = d, 

~.(So, r; 1, 1/2) -- d+~a(s*, r;  1, 1/2) 

s* (M) sin (n2y) dz (M) 

6. The corollaries of Theorem 1 

6.1. Again we prove a more detailed result, as follows: 

Corollary 1". I f  0<2=<2, sESal(0, R) and (2) holds for a.e. rE(0, R), then 
Jg(s ,  r; 2) is a convex function o f  L(zc2r) on (Q, R). In the ease where 0-----0, 
Jt '(s,  r; 2) is also an increasing function o f  rE(O, R). 

Let 0'C(0, R). We recall that the Wronskian determinant of  I and K evaluated 
at t is t -1  [17; p. 80], and so 

(d/dt)L(r~2t) = - t - l { I (n2 t ) }  -~ < 0 (t > 0). 
Hence 

(lO) d.Ar o, (s, r; 2, 1 )/dL (rcLr) = - re2 f a(r [X [1 - "/~I(~2 IX [) 

• {s(X, O)+s(X, I)-2 cos (rc2/2)s(X, r  dX. 

The boundary condition (2) ensures that the right hand side of (10) decreases as 
L(n2r) increases, so .A/~r r; 2, 1) is concave as a function of L(n2r) on (Q', R). 
Since 

(11) rig'(s, r; 2) = ~Q,(s, r; 2, 1)-.A~o,(s, r; 2, 1) 

and Q'E(Q, R) was arbitrary, J/t'(s, r; 2) is convex as a function of L(n2r) on 
(Q, R) as required. 

If  0=0,  the monotonicity of ./g(s, r; 2) follows from (10) and (11) since the 
right hand side of (10) is non-negative. 
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6.2. In proving Corollary 2, we assume without loss of generality that a>0,  
and we define s o on f21 (a, b) tO A~ (a, b) by 

Is(M) if Me(a, b)• 1] 
s0(M) to if MC(-b ,  -a)•  1]. 

Let a<xl<x2<b and choose c, d such that 

all(so, x,; ~,) = c +dL(n2xi) (i = 1, 2). 

From Corollary 1", 

~g(s0, x; )o) ~= c + gL(n~x) (xl ~- x ~= x~). 
Since 

dr(s0, x; 2 ) =  x -1/2 {/(nlx)} -1 f[o,1]s(x, y)sin In2 ( r  ] ~ - y  )1 dy 

and (n = 1) 
I(t) = (2/rot) 112 cosh t, K(t) = (zc/2t)a/2e-', 

it follows that 

ft0,1 s(x, y)sin [zct (~-- -~--y )] dy ~= c(2/2)l/'zc-lcosh (n2x)+ d(22)-l/Ze -"ax 

with equality when X=Xl, x2. Hence we have the claimed convexity with respect 
to the family {Ae~aX + Be-~Xx: A, BE R}. 

7. Proofs of  Theorems 2 and 3 

7.1. 

Lemma A. Let f be non:negative and locally integrable in R", let 2>0  

A1 (r) = f ;  t-1 {I(~,~t)}-3 f~(0 IX[l- nl2I(zc2[X I) U(X) dX dt, 

A2(r) = f,(,)\s(1)IX I (1-")/2 e -~lxl f (X) dX, 

andlet Al(oo) and A2(oo) bethelimitsof Al(r ) and As(r) as r~oo. Then Al(oo ) 
is finite i f  and only i f  A2(~o) is finite. 

The proof of Lemma A involves integration by parts. In fact, the 2=  1 case 
is proved in [2; Lemma 6] and other values of 2 require only trivial modification 
to the argument. We therefore omit the details. 

Theorem 2 will now be proved. Suppose s ~ -oo. Then hypothesis (i) together 
with the fact (see [17; p. 202]) that 

(2~t)ll~e-tI(t)-~ 1 (t-~ + oo) 
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imply 

Also, hypothesis (ii) together with Lemma A yield 

li_m M~0 (s +, r; 2) < lim JV o (s-,  r; 2) = + ~o, 

since cos (n2/2)<0. Hence 

lim inf~0(s, r; 2) = lim inf i t ' (s ,  r;  2)+ lim M~0(s § r; i ) - l i m  M~0(s-, r; 1) = - 0% 

yielding a contradiction to Theorem 1. Thus s =  _co as required. 

7.2. To prove Theorem 3, we apply Corollary 1 to show that / / / (s ,  �9 ; 1) is 
increasing on (0, +~o). This, together with (6) and the fact that s->0 implies that 
rig(s, �9 ; t ) = 0 .  It follows that s = 0  a.e. (Lebesgue) in f2, and so s = 0  in g2 by 
the volume mean-value inequality. 

8. Proofs of Theorems 4 and 5 

8.1. We prove Theorem 4 when n~2 ,  the proof for n = l  requiring minor 
modification due to the fact that the first integral in the definition of  ~0(f ,  r; 2) is 
over (0, r) rather than (t, r). Let sm be the function equal to H~ r in E =  O1(0, m) 
and equal to s elsewhere in O. Then s,,_->s and SmE~ ([2; Lemma 2]). Since 2E(0, 1], 
it follows that Xo(s,,,r;2)<=Xo(s,r;i) for all r>0 ,  and so ~0(sm, r ; i ) ~  
<-~0(s, r; 2) for r>-rn. Hence, using Theorem 1, 

(12) J t ' ( s , ,  1; ~) = Po(Sm, 1; I) <-- r m; 2) <-- N0(s,m; I)  

<= sup #a o (s, r; 1) < + oo. 
r > - 0  

It is easy to see that (S~)r~ R is an increasing sequence of harmonic functions in 
~21(0, R), and so lim sm is either identically +oo or harmonic in O. From (12) 
and the monotone convergence theorem the former is impossible, so the result 
follows. 

8.2. Let So be in O equal to the least harmonic majorant of s in O, and in W',,,O 
equal to s. Also, let R>0 .  Then s o is subharmonic in W ([2; Lemma 3]), and So 
equals H E in E =  O~(0, R), since the latter is regular. Since the restriction of So to 

$0 
tgE is u.s.c, and bounded above, there is a decreasing sequence of continuous func- 
tions (f~) on OE such that f~,~So. Let 

/ -L E ( w gEE 
h.(M) = lfm(M) if ME~E. 
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Then ~o(hm, r; 4) is constant on (0, R] for all m, using Theorem 1' (ii). Since 
hm~so on E, it follows that ~o(s0, r; 2) is constant on (0, R]. Since R > 0  is arbi- 
trary, N0(so, r ;2 )  is constant on (0, +oo), and since 2E[1,2], 

~o(s, ~; 4) -<_ ~o(S0, r; 4) = ~0(s0, 1; 4) (r~(0, + oo)), 

proving the theorem. 

9. Proof of Theorem 6 

9.1. We require the following two lemmas. 

Lemma B. I f  4 > 0 ,  then the functions 

IX Ii-n/~I(n21 x I) sin (n2y), 

are harmonic in R n+l, and the functions 

IX I x-"/2K (rc2 lX 1) sin (n2y), 

are harmonic in {(X, y)ER"+I: IJCl>0}. 

IX 11-"1=I(~2 Ix I) cos (=2y) 

IX I 1-'/2K(rc2IX l) cos (n2y) 

Lemma C. Let W be an open subset of  R n+l, let s be subharmonie in W and let 
h be positive and harmonic in W. I f  f :  R--,R is convex and increasing, then hf(s/h) 
is subharmonic in W. 

The proof  of Lemma B is only a trivial modification of  the proof  of [3; Lemma 1]. 
Lemma C is given in [7; Theorem 1 - -  see the end of w 3]. 

9.2. The 2 =  1 case of  Theorem 6 is [2; Theorem 7], so we will assume in what 
follows that 2E(0, 1). Let h A be the function defined in w 2, which is harmonic in 
R n+x by Lemma B, and clearly positive in ~ since 2E(0, 1). It follows from Lemma C 
(with f (x)=[max {x, 0}] p) that the function sx=h]-Ps p is non-negative and sub- 
harmonic in f2. 

The condition (4) on s can be rearranged to give 

f sco~ c~ O)+ sP(X, 1)1 da(X) ~_ cos (n2/2) f s(os,(x, 3) aa(x) 
which, on multiplying across by {Ixll-n/2/(n21.gl)p -p, shows that condition (2) 
is satisfied by the function Sl. By Corollary 1 of Theorem 1, ~g(Sl, r; 4) is real- 
valued and increasing on (0, +co). Since ~r162 r; 2 ) = { ~ / ( s l ,  r; 2)} alp, the same 
properties hold for ~r r; 4) on (0, +co). 

Further, ~r r; 4) is convex as a function of L(nlr ) ,  and from this the con- 
vexity of  ..gp(s, r; 4) may be deduced. The details are as in the 4 =  1 case, so we 
refer the reader to [2; w 11.2]. 
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10. Proof of Theorem 7 

The 2 =  1 case of  Theorem 7 is contained in [8; Theorem 9], so we assume 
2E(0, 1). The monotonicity of ~oo(s,  r; 2) will first be proved. Let 0 < r x < r  2. 
The function s/h A is u.s.c, and so attains its supremum, a say, on the compact set 
~ ( 0 ,  r~). Let N E ~ ( 0 ,  r2) be such that s(N)=ahA(N ). If  NE~21(0, !"2), then the 
subharmonic function s--ahA attains its supremum in ~21(0, r2) and so is constant 
there by the maximum principle. Hence 

(13) ~'.o(s, r~; ;~) = tit's(s, r2; 2). 

If  N(A~'(O, r2), then it follows from (3) that there exists N'~A(O, r~)• 1} for 
which s(N')=ahA(N" ) and (13) again follows. The only remaining possibility is 
that a~r~(r2), which clearly implies that ..g.~(s, rl; 2)-<J/**(s, r~; 2). Hence the 
monotonicity is proved. 

To prove the convexity, choose a, b such that 

(14) egoo(s, r~; 2) = a+bL(rc2r,) (i = 1, 2). 

Letting 
uA(M) = IX ll-"/~g(~2lX l) cos [~2 (y_l) ] ,  

which by Lemma B is harmonic for IX[>0, it follows from (14) that s<-ahA+buA 
on l"x(rl)U Fl(rz). Applying the maximum principle to the subharmonic function 
s-ahA-bu x in the open set s r~) shows that (following the same type of argu- 
ment as in the previous paragraph) s<-ahA+buA in s r~), whence 

,g~(s, r; 2) <= a+bL(rc2r) ( r  I <-- r <-- rz) 
as required. 

11. Proof of Theorem 8 

We again assume 2C(0, 1) since the 2 = 1  case is covered by [8; Theorem 10]. 
From Lemma C and (5) the function sl=hA exp (s/hA) belongs to Sex and satisfies 
(2). It follows from Corollary 1 of Theorem 1 that Jg(h A exp (s/hA), r; 2) is real- 
valued and increasing as a function of r, whence the same must be true of  dt'g (s, r; 2) 
since h A is positive in t'2. 

To show the convexity property, let 0 < r l < r 2 ,  choose aE(O, !"1), and observe 
from Lemmas B, C that the function 

sl = ha exp [(kuA+s)/hA] 
where 

(15) k = {ME(s, r2)--.-.gE(s, rl)}/{L(Tz)~rl)-L(~r2r2)} 
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belongs to 5a~(a, +~o). Further, it is easy to see from (5) that (2) holds for sx and 
a.e. r>0 .  From Corollary 1' in w 6 it follows that .//g(sl, r; 2) is real-valued and 
convex as a function of L(r~2r) on (a, +oo). Thus, if r~(rx, r2), then 

exp {kL(~2r)}exp {~'~(s, r ;  2)} 

f L(rc2r~)-L(rc2r)  ] 
/ ~ ' ]  exp {kL(~2r l ) }exp  {~'~(s, r l ;  ).)} 

f L ( z c ~ r ) - - L ( ~ r O  i 
+ / ' L ~ ) ~ ' ~  exp {kL (rd~r~)} exp{.C/E(s, r2; ~)} 

which, upon  rearranging, using (15) and taking logs, yields 

[ LOz2r2)-L(Tz).r) / . , [ L ( rGt r ) -L(~) . rO ] ,, . 
+   Ets, X) 

as required. 
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