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Introduction 

The class of norm one multipliers on LP(G), G a LCA group, whose norm is 
an attained value, was introduced by H. S. Shapiro. In the first part of this paper 
we continue his study and answer some of his questions. In particular we answer a 
question of L. Carleson and show that the structure of such multipliers is surprisingly 
similar to that of probability measures. 

In the second part of the paper we answer a question of C. Fefferman and 
H. S. Shapiro by characterizing all faces of codimension one in the unit ball of the 
space of multipliers on LP(G), G compact Abelian. This result is used to give a com- 
plete description of the isometrics between these spaces of multipliers. 

Let G be a locally compact Abelian group, and let F =  G be its dual. A func- 
tion v on F is called an LP(G) multiplier if v . f  is the Fourier transform of an L~'(G) 
function for each fELP(G). By the closed graph theorem the linear operator v [ f ] =  
(vf) v is then bounded on LP(G), and we identify v with this operator. We denote 
by Mp(F) the Banach space of all bounded multipliers on LP(G) with the operator 
norm, which we denote by [[v[lup(r ). 

As it is well known, Mp (F) for p = 2 is just L = (F) while for p = 1 it is the space 
of all Fourier transforms of finite Radon measures on G, and if/~ is such a measure 

then ][pl[~tl(o= [[p][. 
H. S. Shapiro [Shl] introduced and initiated the study of the classes 

Wp(F) = {vEM~(F): []v][upcr) = 1 = v(e)} 1 < p < r p ~ 2. 

(Here e is the identity element in F.) He showed some striking analogies between 
these multipliers and the Fourier transforms of probability measures on G. (See 
also [Sh2], especially w 5.) 

For example, the main result of [Shl] is that if G =  T, the circle group (hence 
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T'--Z the integers), and if 1 <p<oo ,  p ~ 2  and v="(v(n))~ Wv(Z ) satisfies v(k)= 1 
for some k ~ 0 ,  k~Z,  then v(kn)--=l for all n~Z. 

The analogous result for Fourier coefficients of probability measures on T is, 
of course, very easy. In fact if v-~/2 for a probability measure p, then # is nec- 
essarily supported in the group of roots of unity of order k; hence/2 is periodic with 
period k. 

L. Carleson has asked the following question (see the end of w 2 of [Sh~]): Sup- 
pose k > l  and vC Wn(Z) satisfies v(k)= 1. What can be said about the values of 
v(n) when n is not in the arithmetic progression kZ? 

The main result of w 2, Theorem 2.1, is a complete answer to this question, in 
the context of general locally compact Abelian groups. Surprisingly, the answer is 
again completely analogous to the case of Fourier transforms of probability measures 
(although the proof is, of course, completely different). For the particular case of 
LP(T), the answer to Carleson's question is that the sequence v(n) must be k-peri- 
odic, i.e., be constant on each of the cosets j+kZ  ( j = 0 ,  1, ..., k - l ) ,  and that 
the sequence of constant values (v(0) . . . .  , v(k-1)) is a norm one multiplier on 
LP(Zk), where Zk is the group of k th  roots of unity, i.e., the cyclic group of  order k. 

Shapiro and others (see remark (a) at the end of [Sh~]), generalized his theorem 
from the circle group to arbitrary compact Abelian groups G. They showed that if 
vEWp(F), then F0={V: v(v)=l} is a subgroup of F. In w 1, we first introduce 
the notation and the necessary preliminaries for this paper. We then give an alter- 
native, simpler proof of  a generalization of Shapiro's theorem to locaIIy compact 
Abelian groups. 

After proving Theorem 2.1 in w 2, we use it to give a further generalization of 
Shapiro's theorem. We show that if G is a locally compact Abelian group, 1 <p<oo,  
p r  and vC Wp(F) is continuous, then F I =  {~'CF: Iv(v)[= 1} is a subgroup of F, 
and that V[r I is a character on F~. 

In w 3 we show that for every locally compact Abelian group G and 2-<_p< 
q<~o, Wg(F) is strictly contained in Wp(F). In fact we construct vE Wp(F) so 
that vr Wq(F) for any q>p. This answers a question of H. S. Shapiro (private 
communication). 

In w 4 we consider a problem of a different type. In [FS] C. Fefferman and 
H. S. Shapiro proved that for 1-~p<oo, the unit ball of Mp(Z) has many faces 
of codimension one, namely F(z, n)={vEMp(Z): IIvll=l and v(n)=z} is such a 
face for each nEZ and z with ]z[ = 1. They ask whether there are any other codimen- 
sion one faces. We show, and again in the context of general compact Abelian 
groups, that the answer is negative. 

Thus the codimension one faces of the unit ball of Mp(Z), l < p < r  p ~ 2 ,  
are analogous to those in M2(Z)=/=.  But the facial structure for p ~ 2  is, in fact, 
very different from the p = 2  case, Using the results of w 2 we show that if re;an, 
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and l<p<oo ,  p~2 ,  then F(z, n)n  F(w, m) is finite dimensional for each Iz[= 
lwl=l. This is, of course, quite different from the situation for p = 2  where 
F(z, n) n F(w, m) is of codimension two. 

The results of w 4 are used in w 5 to give the general form of an isometry of 
Mp(F) onto M~(A) when F and A are discrete and p ~ l ,  2, ~o. In particular if 
such an isometry exists F and A must be algebraically isomorphic. 

It is a pleasure to thank H. S. Shapiro for his interest and advice during the 
work on these problems. We also thank E. Odell and G. Schechtman for many 
helpful discussions and G. Godefroy for suggesting the study of isometrics of Mp(F). 

w 1. Preliminaries 

We shall use standard notation and terminology for locally compact Abelian 
(LCA) groups, multipliers and functional analysis, see, e.g., [HR, R]. We also refer 
the reader to these books for unexplained terms or standard results which we use 
without proof. 

All integrals will be taken with respect to Haar measure on the appropriate 
group, which we denote by dpo when it is important to specify the group. Otherwise 
we shall write d/~ or simply dg or dx. If G is compact, p is normalized so that /t(G)= 1. 
In general, if H is a closed subgroup of G, the normalization of the Haar measures 
on G, H and G/H will be such that for all fELl(G) 

(1.1) L fav. = f . f(g+h) aV.(h) 

where ~ is the coset containing g, i.e., ~=g+H. 
The Fourier transform of fELl(G) is f(r)=ff(g)~--(~dg, and the Haar 

measure on F is normalized so that we have the Fourier inversion formula f ( g ) =  
ff(r)r(g) dr for all fELl(G) satisfying also fELl(F). This is consistent with (1.1) 
in the sense that if (1.1) holds for a group G, its subgroups and quotient groups, it 
will also hold for their duals. 

We shaIl use only very simple facts about multipliers: They commute with 
translations, I[vllMp(r~=llVllMp,(r~ for all vEMp(l') (where l ip+lip'=l)  and if 2 -< 
p-<q then IlvllM (r~<----llvllnqtr~ for all vEMq(F). 

We shall m~ke frequent use of the following two results of S. Saeki [Sa]. The 
first allows us to reduce the study of a/_,CA group to that of a compact one, namely, 
its Bohr compactification fl(G). (Recall that if G is a/_,CA group with dual group F, 
the Bohr compactification fl(G) of G is the compact group which is the dual of 
F d ~ the group F with the discrete topology.) 

Theorem 1.1 ([Sa], 4.3). Let G be a LCA group, and let v be a continuous func- 
tion on F. Then vEMp(F) iff vEMp(l"d) , and IlvllMp(r~=llvllMp(r~. 



162 Yoav Benyamini and Pei-Kee Lin 

Remark. For the theorem to hold, one clearly needs to impose some regularity 
conditions on v. Instead of continuity Saeki shows that it is enough to assume v is 
"regulated" (see [Sa], 4.5). The same remark holds for some of our results later on, 
but we shall not pursue this point. 

The second result of Saeki gives the relation between multipliers on LP(H) 
and LP(G) when H is a closed subgroup of G. Let A c F  be the annihilator of H, 
A-=H •  {?EF: ?(h)= 1 for all hEH}; then /4 is canonically identified with FlA.  

Theorem 1.2 ([Sa], w 3). Let G be a LCA group, H c  G a closed subgroup and 
A = H  • Denote by n: F ~ F / A  the quotient map. Let v be a function on F/A," 
then v is a bounded multiplier on LP(H) if f  yore is a bounded multiplier on LP(G), 

and in this case Ilvl[Mp(rZA)=llvozCllMp(r). 
We shall also need the dual result about quotients of G, or equivalently sub- 

groups of F. Here the situation is a little more delicate, but for our purposes the 
case when A c F  is discrete suffices. The next theorem is a combination of  results 
of S. Saeki ([Sa], corollary 4.6) and of A. Fig~i-Talamanca and G. I. Gaudry ([FG], 
Theorem 1). 

Theorem 1.3. Let G be a LCA group with dual F and let A c F  be a discrete sub- 
group. Set H = G / A  ". I f  vE Mp(F) is continuous and w is its restriction to A, then 
wEMp(A) and IIwlIM.(A)<--IIvlIMp(r). Conversely, i f  any wEMp(A) is given, there is 
a continuous v on F, v],t=w so that IlvltM,(O=llwllM,(a). 

We end this section with a generalization of Shapiro's theorem [Shl]. The proof 
is completely different from his. 

Theorem 1.4. Let v be a continuous function in Wp(F), l<p<~o ,  p ~ 2 .  Then 
F0= {?EF: v(?)= 1} is a closed subgroup o f F .  

Proof. Since v is continuous, F 0 is clearly closed, and to show it is a group 
we can assume, by theorem 1.1, that G is compact. The operators V m : m - l ~ o  -1 v j, 
being a sequence of norm one multipliers on L~(G), have a limit point w in the 
weak operator topology. As m - l ~ o - l ~ J - ~ 0  whenever ]~]=<1, a r  w(?)=l  for 
?EF 0 and w(?)=0 for ?~[Fo, i.e., w is a norm-one projection onto the subspace 
L~o(G) of LP(G) of all functions whose spectrum is contained in F0. Since eEFo, 
i.e., 1EL~-0(G ), the general structure theorem for norm-one projections on L p (see 
[L], w 17) says that there is a sub-a-algebra z~ of the Lebesgue field of G so that 
L~o(G) is the space of all ~-measurable functions in LP(G) (and the projection w 
is just the conditional expectation with respect to ~') .  

Thus if ?, flEFo, they are ~-measurable, and consequently so are their sum 
and inverses, i.e., ?+fl ,  - ?EF0 ,  and F 0 is a group. 
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Let G be a LCA group and fix 2 < p < ~ .  (The result for l < p < 2  will follow 
by duality.) Let v be a continuous function in Wp(F) and put F0= {TEF: v(y)= 1}. 
By theorem 1.4 F o is a closed subgroup o f F .  Let Go=Fo~cG be the annihilator of 
Fo and 7r: F *F/Fo the quotient map. 

Theorem 2.1. With the above notation, v is constant on each coset of  Fo, i.e., 
there is a function w on F/Fo so that v=worc. This w satisfies wEWp(F/Fo) and 
w(fl)~l  for all flEF/Fo, f lee.  Conversely, given such a w,v=wo~EWp(F) and 
r o  = v ( r )  = 1}. 

Proof. The heart of the proof is to show that v is constant on the cosets of F0. 
Indeed, once this is proved, the rest follows directly from Theorem 1.2. Also, by 
Theorem 1,1 we can assume that G is compact, i.e., F is discrete. 

Let GI= G/G o and let /~, P0 and /~1 be the Haar measures on G, Go and G1 
respectively. Let q: G~GI be the quotient map. 

Fix any BEF. We need to show that v is constant on B + r  0, and we assume, 
for contradiction, that this is not so. 

Claim. There is a continuous function 9 on G, a neighborhood W~ of e in G1 
and a constant c > 0  so that if we put W=q-~(W~)~G then 

(i) ~ is supported in /~+F0, 
(ii) ~plw=0, 

(iii) [v[~o](g)}>=c for all gEW. 
We first deduce the theorem assuming the claim holds. 

Let ff=zrv be the indicator function of W. By (ii) q~ and ~O are disjointly sup- 
ported; thus for all 2 > 0  

(2.1) ][O+2tplI"--ll4/il,+~Pll~}l,. 
Since by its construction, W is G0-invariant, so is 0, hence • is supported on Fo. 
As Vlro---1, v[0]=(/.  Using the fact that W=q-a(Wa) and the identity (1.1) we 
thus obtain 

(2.2) H v [~, + 2~] II" = II 0 + 2v [~] ti" => f w  11 + ~v [~] (g) l" de 

= f. ,f o 11+z [e](g+ go) l"dlto(go) dpl(~). 

We now estimate the inner integral. As ~ is supported in fl+Fo the same holds for 
/ - . .  
v[q~]; thus the function g~fl-l(g)v[q~](g) is Go-invariant, i.e., 

v[q~](g+g0) = fl(go)v[~o](g) for all gEG, goEGo. 
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Thus the inner integral is equal to 

(2.3) f ~ .  l1 + 2/~ (go) v [q~l (g) l" d#0 (go). 

We now use the following simple inequality: for each complex number z, 

(2.4) f ~  I 1 + zfl(go)lPdpo(go) ~ 1 .-t-lzl 2. 
o 

Indeed, the functions 1 and i l l aa re  orthonormal in L2(Go), and since p > 2  we have 

fG I1 + zfl(go)l'dl~o >= (f~ I1 + zfl(go)12d~of/s = (1 + [zl2) '/z ~ 1 + Iz[ z- 
0 o 

Substituting z=2v[cp](g) in (2.4) and recalling that by (iii) Iv[~o](g)[~c for all 
gE IV, we see from (2.3) that the inner integral is at least 1 +2UcL 

Substituting this value in (2.2), we have 

(2.5) 

where K--c2//I(I'V1) is a constant. We now compare (2.1) and (2.5): II~IIP=~(W)= 
/zl(Wx), and II~oll p is a constant. Since p > 2 ,  we thus obtain for small enough 
2 that 

If v [0 + 2q)] i[" =>/zI (W1) + K)t ~ > #1 (I411) + 4" II cpl[" = II ~b + ).ptl P, 

i.e., IIv[O +2~0]11 >llO +2c,0l[, con t rad ic t ing  [Ivl]M,(r) = 1. 
It remains to prove the claim: 
Assume 71,?~Efl+Fo and v(71)r The trigonometric polynomial cpo= 

71-72 satisfies 
(J') ~o is supported in fl + F o, 

(ii') cp0(e)= 0, 
(iii') v[Cpo] (e)= v(71)-v(~,2) r O. 
The desired q) will be obtained by approximating cpo. 
The function qh(g)=fl-l(g)Cpo(g) is G0-invariant, and can, therefore, be con- 

sidered as a function - -  a trigonometric polynomial - -  on GI=G/Go, which by 
(ii') vanishes at the identity eEG1. Since points are sets of  synthesis, there is a func- 
tion ~p~EA(G1) which approximates cpt arbitrarily well in A(G1) and which vanishes 
in a neighborhood of e. Define cp(g)=fl(g)q)~.(g). As ~pzEA(G1) it is continuous, 
and so is q~. If  I[~o~-~olllA(~0 is small enough v[cp](e)r hence by continuity 
there is a constant c and a neighborhood Wx of e in G1, so that we simultaneously 
have ~o(g)=fl(g)rp~(g)=O and Iv[~p](g)[>=c whenever gEW1, 
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This proves the claim and finishes the proof  of  theorem. 
Before stating our next theorem, we need the following lemma: 

Lemma 2.2. Let G be a compact Abelian group, and assume l < p < o o  pC2 .  
Let vE Wp(F), and assume Iv(w)l = 1 for some yEF. Then there is a gEG so that 
r(g)=v(r).  

Proof. I f7  has infinite order, this is obvious, as {v(g): gEG} is all of the unit 
circle. 

So assume V has a finite order k, and then {v(g): gEG} is the group of  k th  
roots of unity. Hence we need to show that (v(V))k= 1. 

Embed G in a group H which is an infinite product of  circles. (Equivalently, 
represent F as a quotient of  a free group, A, with sufficiently many generators.) 
Let A1cA=t: I  be the annihilator of  G, and identify F with A/A 1. Let z~: A ~ F  
be the quotient map. By Theorem 1.2 w=vozr belongs to Wp(A). 

Fix now any flEA so that lr(fl)=7. Since H is connected {p(h): hEH} is 
all of the unit circle; hence we can find an hEH so that fl(h)=w(fl)=v(V). Con- 
sider 3h, the Fourier transform of the Dirac measure fin at h, i.e., t~n(2)=2(h ) for 
all 2EA. Of  c o u r s e  t~hEVy'p(a), and the same is true for the product ~h.W. By 
theorem 1.4 A0={2EA: ~h(2)W(2)=l} is a subgroup of  A. Now Sh(fl)w(fl)= 
fl(h)fl(h)=l, so flEAo. Hence also kflEA o, i.e., ~(kfl)w(kfl)=l.  But ~h(kfl)= 
(~h(fl))k=(ff~)k=(v(7)) k and w(kfl)=v(k~,)=l because V has order k. Thus 

1. 

Theorem 2.3. Let G be a LCA group, and let l < p < o o ,  p;a2.  L e t  v be a con- 
tinuous function in Wv(F ) and put FI={vEF:  Ivff)l=l}. Then F1 is a closed sub- 
group o f F  and the map 7~v(7) is a character on Fx. In particular, there is a gEG 
so that v(y)--3o(V) for all vEF~. 

Proof. By Theorem 1.2 we can assume G is compact. 

Assume Iv(~)l=Iv(fl)[=l, i.e., ~, fiEF1. By the lemma there is a gEG with 
ct(g)=v(ct). Consider ~g, i.e., Sg(~)=7(g) for all vEF. The product ~gv belongs 
to W~,(F). Hence F0={V: 3g(V)v(v)=l} is a subgroup of  F and ~EF 0 because 
3g(~)v(oO=o~ (g) ~(g)=  1. 

By theorem 2.1 3gv can he identified as a multiplier on LV(H) where H=Fo ~ c G. 
Using the 1emma again we can find an h e n  so that fl(h)=3g(fl)v(fl). 

Consider the product 3h3gvE Wp(F): 

~h(fl)~g(fl)V(fl) = 1 by the choice of  h, 

Sh(~)~g(ct)v(ct)=~(h)= 1 because ~EFoand  hEFo ~. 
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By theorem 1.4 we must, therefore, also have 

1 = 3h(a+fl) 3g(a+fl)v(~+fl) 

= ~(h)fl(h)fl(g)~(g)v(o~+fl) 

= vf~)o(~)v(~+~) .  

Thus ~+flEF1 and v(a+fl)=v(a)v(fl). 

w  

It is well-known that for q>p>=2 there are norm-one multipliers on LP(G) 
whose norm as multipliers On L q (G) is strictly bigger than one. If  G is infinite, bounded 
LP(G) multipliers need not even be bounded on Lq(G). Since elements of  Wp(F) 
behave in a very special way, H. S. Shapiro has asked (private communication) 
whether these classes must also decrease strictly. In this section we show that this 
is indeed the case. 

Theorem 3.1. For each 2<_-p<o~ and each LCA group G there is a multiplier 
vEWp(F) so that [Ivll~q(r)>l for all q>p. 

The case p = 2  is, of  course, immediate. Indeed if vEM2(F) is such that Fo = 
{~: ]v(V)l=l} is not a subgroup, or even if it is a subgroup but V]r ~ is not a char- 
acter on F o, vCMq(F) for any q > 2  by Theorem 2.3. Thus we shall assume p > 2 .  

It turns out that the most difficult case is when G is finite. To prove the theo- 
rem for infinite groups, assume first G is compact. It is well-known that there is a 
multiplier wEMp(F) so that w~Mq(F) for any q>p. By a theorem of  C. Fef- 
ferman and H. S. Shapiro [FS], if e > 0  is small enough the multiplier v given by 

1 v = e  
v (v )=  ~w(v) v ~ e  

is in Wp(F). (Their theorem is stated for the circle group, but the proof  works for 
any compact Abelian group.) Obviously v is not even a bounded multiplier for 
any q>p. 

For  infinite LCA groups the result follows by "transplanting" the example con- 
structed for compact groups. By the structure theorem for LCA groups, G has 
either a compact subgroup or a compact quotient. I f  G has a compact subgroup 
we use Theorem 1.2, and if it has a compact quotient H, say, then ~ is a discrete 
subgroup of  F and we use Theorem 1.3. 
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As the estimates involved in the known constructions of multipliers in 
M~,(F)~U~>p M~(F) are not precise enough for our purposes, we need a completely 
different approach to prove the theorem for finite G. Thus assume G is finite. Hence 
all the L'  norms of functions on G are equivalent and bounded sets in LP(G) are 
relatively compact. By the theorem of C. Fefferman and H. S. Shapiro quoted above, 
if s > 0  is small enough then v,(y)EWv(F ) where 

1 ~ = e  
= 

ie T ~ e .  

Let e(p) be the maximal value of these 8's, and put v=V,(p). We shall show 
that if q>p, e(q)<8(p), thus I[V[lM~(r):~l for all q>p. 

We first show that e~(p)<-(p- 1) -1, hence, in particular, 8(p)< 1. 
For z=x+iy a (small) complex number, we have 

(3.1) II+z[P = (l+2x+xZ+y2) p/a = l+px+~[(p-1)x~+y2]+O(lzl~). 

Let h(g)=x(g)+iy(g) be a function on G with fh=o. Then v[h]=ie(p)h, 
and since v (e )= l ,  v[l+h]=l+is(p)h. Substituting z=h(g) or z=i~(p)h(g) in 
(3.1) and integrating we have 

( 3 , 2 )  

and 

(3.3) 

As 

tll + hll~, = 1 + P  [ ( p -  1)[Ixl[~+ IlYlI~] + 0 ([i hl[~) 

D 

llv[1 +h]lJp p = 1 + 2 8 Z ( p ) [ ( p -  1) ll yil~ + lt xll~] + O (ll hl[31,). 

IIv[1 +hill p~_ II 1 +hllp p, we obtain 

~2(p) <= (P-1)IIxlI2 +Ilyl[~ ~-O(llhll~,). 
( p -  1)llyl[ + Ilx[l  

Taking h'=iy (i.e., x - 0 ,  and h is purely imaginary) and letting llhll ~ 0  we 
see that 82 (p) _-< (p - 1 )  -1. 

Fix now a sequence e n so that e ( p ) < s n < l  and e,,~e(p). By the definition o f  
e(p), there is a function f~ELP(G) so that 

(3.4) ~v,,[f, lll ~ [[f,U. 

As I[v,Jh]l[=~, [Ihll<llhll whenever s  (3.4) implies that f f ~ r  so we 
normalize them so that f~=  1 +h ,  with 7 h , = 0 .  Moreover, by (3.4) again we have 

1 +8~nhnl[ => ]Iv[1 +hn]~ > ~1 +h,,ll > I[h,,~ - 1 
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hence Ilh.lI<=2(1-e,) -1, Since e.~e(p)<l the sequence h, is 
passing to a subsequence we can thus assume that h,--,h. 

We now distinguish two cases: 

bounded and by 

Case L h=0 ,  i.e., IIh, ll ~0.  
Writing h,=x.+iy, and substituting in (3.2) and (3.3) (with 5, replacing ~(p)), 

and using the fact that l[v, [1 +h,]l[ >111 +h,l[ we now obtain 

e~ ~ (p-1)Hx,[]~+lly.l]~ 
( p -  1)Hy.I]~+ IIx, ll~ ~-O(llh.llp) ~ ( p -  1)-a +o(llh.llp) 

(as (p-1)lal+lbl/(p-1)Ibl+lal>=(p-1) -1 whenever p > 2  and a and b are not 
both zero). 

Letting n ~ ,  we obtain ~2(p)->(p-1)-a,  i.e., ~ 2 ( p ) = ( p - I ) - l .  Hence if 
q>p, s~(q)N(q- 1 ) - l< ( p  - 1)-l=e~(p) and the result follows. 

Case lI. If  h r  put f=(l+h)/]]l+hH. Then I lv[f] l [=l l f l [=l ,  a n d f i s  non- 
constant. 

If I f l  is constant the result follows immediately. Indeed, in this case 1[ file = 
[l f l i p= l ,  and if 1/p=O/2+(1-O)/q, H61der's inequality yields l= [ tv [ f ] ] l , -  <_ 
[]v[f][l~[]v[f]H~ -~ and since Hz'[f]lrz-<l ( a s f i s  non-constant), Ilv[f]][~>l. 

We shall thus assume ] f l  is non-constant, and we now estimate IlvIlMo(r) _by 
Hadamard's three lines theorem. (This is just a repetition of the basic step in Thorin s 
proof of the Riesz interpolation theorem; see [BL], p. 3.) 

Fix g~LV'(G) so that []glTv,=l=(v[f],g}. If 0 ~ R e z ~ l ,  put lip(z)= 
z/q+(1-z)/2, and 1/p'(z)=z/q' +(l-z)/2.  

Put q~(z)=If[P/P(~)signf and ~(z)=lglte/~c(~) sign g, and then for all tER, 
[I r (it)[I~ = lift (it)llz = [[q~ (1 +it)Ha= ]l~(1 +/t)l[~, = 1. 

We shall show that 

A = sup Uv[~o(it)ll[2 < 1. 
t 

Once this is proved, the result follows immediately. Indeed, put F(z)=  
(v[~o(z)], O(z)), then IF(1 +it)l<=[lvll~q(r) while IF(it)l<-A, and by the three lines 
theorem if 0 < 0 < 1  is such that p(O)=p, we have 

1 = g )  = F ( 0 )  _-< Ax-ell lI ,<r). 

As A < I ,  we obtain that [[VI[Mq(r)>l. 
We now prove that A <  1. 
Write q~(it)=at+h t where at is constant, and fh,=o. Then v[q~(it)]= 
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at+ie(p)ht, and since e ( p ) < l  it is enough to show that 

inf II htll~ = inf dist {~p (it), C} > 0 
t t 

where C is the one-dimensional space of  constants in L~(G). 
But for each tER, 

dist {r C} >= dist {l~p(it)l, C} = dist {Ifl pt2, C} > 0 

as I f l  is non-constant. 

w 

Let G be a compact Abelian group, and fix i < p < ~ .  C. Fefferman and 
H. S. Shapiro [FS], proved that if # is the Haar measure on G and if ~ > 0  is small 
enough, then IIt~+VlrM,~r)=l whenever Ilvll~,<r)~_8 and v(e)=0.  (They formulated 
their result for the circle group T, but their proof  holds for any compact G.) 

Geometrically this means that/2 is a relatively interior point of  a codimension 
one face of  the unit ball Bp(F) of Mp(F): Namely of the face {vEBp(F): v(e)= 1}. 

Similarly, for any ~E/" and [z[= 1, the face 

r(z, 7 )  = = 

has codimension one. 
C. Fefferman and H. S. Shapiro ask whether Bn(F ) has any other codimension 

one faces. As the next theorem shows, the answer is negative. In fact we prove a 
little more, as we use a somewhat weaker definition of codimension one faces. 

If  F is a face of Bp(F), let ~b be a supporting functional for F, i.e., ~b is a norm 
one functional on Mp(F)and F =  {v~Bp(F): ~b(v)=l}. We say that a point w~F 
is relatively internal if for any vEKer ~b, w+tvEF provided t is small enough, 
Clearly if w is a relatively interior point it is relatively internal. If  F contains a rela- 
tively internal point, the supporting functional is, of  course, uniquely determined. 

Theorem 4.1. Let G be a compact Abelian group and l < p < ~ o .  Let w be a rela- 
tively internal point of  a face F of Bp(F). Then there are yE I" and lz[=l  so that 
w(),)=z. In particular, the unique supporting functional of F is given by ~ (v)-- ~v(y), 
i.e., F= F(z, ?). 

Proof. Multiplying each vEF by a fixed appropriate z, ]zl=l ,  and replacing 
~b by ~b we can assume ~b(3e)~O. (Recall that if g~G, and ?EF then 3g(?)= 
~(g). Thus 3e is identically one.) 

Let .f.6LP(G), hnELf(G) satisfy II.f.llp=llh,,[ln,=l and ( w [ f , ] , h , ) ~ l .  We 
first show that for each vCMp(F) 

(4.1) ~b(v) = lim (v[f.], h,). 
n 
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Indeed, v-~b(v)wEKer ~b, hence there is a t>O so that []w:i:t(v-q~(v)w)H: 1. 
Hence also n(w+t(v-r As llw[A][I-*m and LP(G) is uniformly 
convex, we obtain 

(4.2) [[(v-~b(v)w)[f~]H- o. 

Thus ((~-r ho)-~0, and since (w[f~], hn)--l, (4.1) follows. 
In particular, upon taking v=S e in (4.2) we see that I~(~,)I=l, and by our 

normalization ~b(~e)= 1. 
Next we show that r is a multipticative functional: 
Fix vl, vzEMp(F). Then 

~1 ~2 - r (~1) r (~.~) w = vl (v2 - r (~ )  w) + r (v~) w (v~ - r (~1) w) + r162 ( ~ )  w ( w -  ~.). 

It follows from (4.2) that the three terms in parentheses on the right hand side, when 
applied to f~, converge to zero; thus 

((v~v2--r ,], h n )~  O. 

As (wife], hn)-~l, this together with (4.1) gives that qb(vlv2)=~b(vx)f~(v2). 
In particular the map g~b(3g) is a complex homomorphism on G. We show 

it is continuous, i.e., a character on G: 
For each fixed n, v-*(v[f~], hn) is a continuous function with respect to the 

weak operator topology on Mn(F). Since by (4.1) these functions converge point- 
wise to qS, a standard corollary to the Baire category theorem gives that ~ has a 
point of continuity in the compact (with respect to the weak operator topology) set 
{3o: g~G}. (See [H], w 42.) Equivalently, the map g-~r has a point of continuity 
in G. Being a homomorphism, this implies it is everywhere continuous, i.e., there 
is a 76F so that ~b(3g)=y-l(g). 

We conclude the proof by showing that w(?)= 1 : 
By (4.2) ][(3g-~)-l(g)w)[f~]]l~O for all gEG. Multiplying by ~,(g) and inte- 

grating the vector valued function g~(7(g)3a-w)[fj  with respect to g, we have 

Ill ( (g)a.-w)LfoJ dgll - 0 
But 

fr(g) Sgtf,] dg = f~(r)r 
so 

il L(r)r -w[f~] [I  -~ 0. 

Since [Iw[f~][I-~1, it follows that tf~(~)[-~l. Using the fact that [h(~)I<=Ilhll for 
all hELP(G), we thus obtain 

I1 -w(~) ] lZ(~) l  = IZ(~,)-w(r)f~(~)l ~= llZ(r)~,-wLf~]]l. 

As the latter converges to zero, while lf~(y)l-~l, it follows that w(7)=l. 
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Remark. The facial structure of Bp(I") for p ~ 2  is in fact very different from 
that of B2(F), despite the similarity of their codimension one faces. For  example, 
the intersection of two codimension one faces 

F(z, ~)nF(w, fl) = {vEBp(F): v(T) = z and v(fl) = w} 

when t iC? is a face of codimension two in B~(F). But by theorem 2.3 for v to 
belong to this face requires very strong conditions: there is a subgroup FocF 
so that both fl and T belong to the same F 0-coset. Moreover, if we normalize so that, 
say, f l=e  and w = l ,  then V[r ~ must be a character on F 0. For  example, since 
subgroups of  Z have finite index, it follows from theorem 2.1 that when G =  T, the 
intersection is finite dimensional. 

If  we intersect three codimension one faces corresponding to three different 
characters 71, ?z, Vs, we obtain in B2(F) a face of codimension three, but for p # 2  
it follows from the above that the intersection is usually empty. 

w 

When p =  1 or p = 2  the algebraic structure of G (or F) does not reflect at 
all in the structure of  Mp(F) as a Banach space. Indeed, in these cases M~,(F) is 
just the space of measures on G, or L ~ (F) respectively, and the structure of  these 
Banach spaces depends only on G and F as abstract measure spaces. It follows from 
the next theorem that for l < p < o o ,  p r  and G compact, Mp(F) uniquely deter- 
mines the group F. 

There are four natural isometrics on Mp(F): 

O) v-~zv for some fixed [z I = 1. 
(ii) v~3g.v  for some fixed gEG. 

(iii) v~vro for some fixed ?0CF, where vr0(?)=v(?-?0 ). 
(iv) v~varc where rc is an isomorphism of F onto itself. 

It  turns out that when G is compact and l < p < ~ o ,  p r  every isometry of  
Mp(F) is obtained by composing such isometrics. We do not  know if an analogous 
result holds for LCA groups. 

Theorem 5.1. Let G and H be compact Abelian groups with duals F and A respec- 
tively. For l < p < o o ,  p ~ 2  let T: Mp(F)~Mp(A) be an onto isometry. Then there 
are ]Zo] = 1, hoE H, ?oC F and an isomorphism lr of  A onto F such that for all vE Mp(F) 
and tEA 

= 
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Proof. The codimension one faces of the unit ball Bv(F ) of Mv(F ) are mapped 
by T in a one-one way onto the codimension one faces of  By(A). Hence there is a 
map y ~ p ( ? )  from F to A, and a function z(y) so that T maps F(y, 1) to 
F(q,(~), ~(~)). 

Replacing T by the isometry obtained by composing it with a translation of F 
by 7oe~O-~(e), and multiplying it by Zo=Z(?o), we can assume that q ( e ) = e  and 
that z (e)= 1. 

Let vo=T3~. As 3~r F(?, 1), voqN~ F(~o(y), z(7)), i.e. Ivo(2)1=1 for all 2 
in the range of go. As v0(e)=l ,  theorem 2.3 implies that there is an ho~H so that 
3~(2)=v0(2) for all 2 in the range of  ~o. Composing T with the isometry w~3h.  w 
of Mp(A), we can thus assume that z (?)~  1. 

It now follows that ~0 is one-one. Indeed if 7 ~ ? 2 ,  the two different faces 
F(?I, 1) and F(y 2, 1) cannot be mapped by T to a single face F(2, 1). It is also 
onto, because if 2EA\(o(F) ,  then F(2, 1) is different from, and intersects all the 
faces F(~p(?), 1) in Bv(A ). But there is no codimension one face in Bp(F) which is 
different from and intersects all the F(?, 1)'s. 

Taking zc= ~o -~ we have by our normalization that 

(5.1) T(F@(2), 1)) = F(2, 1) for all 2~A. 

If  we denote by Cx and ~b~ the supporting functionals of F(2, 1) and F(7, 1) 
respectively it follows from (5.1) that T*r Hence 

(5.2) rv(2)  = <rv, ~ )  = <~, r * ~ )  = <~, ~ . ~ . )  = ~( . (2)) .  

It remains to show that n is an algebraic isomorphism, i.e., that for each 4, pEA 
and gE G 
(5.3) (Tr ~ )  + 7r (4)) (g) = (re (/.t + 2)) (g). 

Indeed, given g, (5.2) implies that T3 a is a norm one mukiplier of  absolute value 
one on My(A), with T3g(e)---= 1. By Theorem 2.3 there is an hEH so that T3a=3 h. 
Taking V=6g in (5.2) now yields 

~(2)(g) = 3g(.(2))= T3~(2) = Sh(2)= 2(h) 

and similarly zc0t)(g)=/t(h ) and (zt(2+/t))(g)=(2+p)(h) .  Thus 

( . (u)+, (2)) (g)  = . (~)(g) . . (2) (g)  = ~ ( h ) 2 ( h )  = 0~+2)(h) = (- (Z + Z)) (g). 
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