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1 .  I n t r o d u c t i o n  

During the 2nd Edmonton conference on approximation theory in June 1982, 
I. J. Schoenberg stated a conjecture concerning convergence of complete spline 
interpolation. 

t 1 n ) denote the space of spline functions of Let S2m_1=S2m_l -n-~ 1 . . . .  ' n~- 1" 

�9 . i 
degree 2 m -  1 with simple knots at n eqmdlstant points n-'-~-' i=  1, ..., n, in (0, 1), 

S2m_lcc2m-2(R) and any SCS2,~-I is a polynomial of degree ~ 2 m - I  between 
any two successive knots. The complete spline interpolation problem is to find S(x)E 
S2m- 1, where 

(1.1) = f  , v = l ,  2~...,n 

S(/)(0) =fc0(0), S(O(1)=f(i)(1),  i = 0, 1, ..., m - 1 .  

It is known that (1.1) has a unique solution (see [1]). Concerning this interpolation 
problem Schoenberg stated 

Conjecture 1. Assume that f ( x )  is holomorphic in a neighborhood o f  the interval 
[0, I]. Then there is a fixed value o f  n depending on f such that 

(1.2) l irn (Sm,,f) (X) = f(X) 

uniformly on [0, 1]. 

He first raised this conjecture in Budapest in 1968 and again in Oberwolfach in 
1971�9 As a means to study this problem, he also formulated the weaker 
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Conjecture 2. Let f again be holomorphic in a neighborhood of[O, l]. Then there 
is a f ixed value o f  n, depending on f (x ) ,  such that 

(1.3) m-=~lim flo (sin , ~ dx = f 2  f ( x )  dx. 

Let F~ = {z: I1 - z21 = ~}, ~ => 1 denote a lemniscate containing [ -  1, 1] and let 
D e denote the interior of Fe. Set 

fc(x) = (~--x) -1, ~ [ - - 1 ,  1]. 

Let A (D~) denote the class of functions holomorphic in the domain DQ. Furthermore 
we denote the maximum norm on [ - 1 ,  1] by 11" I1. Suppose, more generally, that 
S ( x ) = ( S , , , , f ) ( x )  is the complete spline interpolant to f on [ - 1 ,  1] relative to any 
given knots x i < x 2 < . . . < x ,  in ( - 1 ,  1). In other words, S(x)EC2"-~(R), 

S(x~) = f(xv), v = 1 , 2  . . . .  , n, 

s ( i ) ( •  = f ( 0 ( _ l ) ,  i = 0, 1 . . . .  , m-L1, 

and S(x)l(xv, x~+l ) is a polynomial of degree ~ 2 m -  1. In the sequel we shall denote 
this class of splines also by S~,,_ ~ (x~ . . . .  , x,). With regard to the above conjectures 
we shall prove the following result: 

Theorem 1. Let fEA (Dq) for some ~ > 1. Then for any n 

(1.4) lim It f-Sm,,f l l  ~/m ~ ~-~ 
m ~  

Moreover, for any ~ 4 [ - 1 ,  1], we have 

(1.5) lim (1 - ~2)" (1 - x2)  m [f~ ( x )  - ( S m , , f O  (x)] - B. (x) f~ (x) 

uniformly for xE[--1, 1], where 

Z - - X  i 
(1.6) B,(z) = Hi"=a 1 - z x ~ "  

In particular, this result shows that for each n, complete spline interpolation in 

S~,,-i(xi . . . .  , x,) for the function f~(x) diverges in [x[< 1/1 - a  2, if a~= I1 =~21< 1, 
as m ~ ~. Of course, Theorem 1 also shows that Schoenberg's quadrature formula, 

(1.7) Qm,,f = f ~ l  (s , , , , f )  (x) dx 

= Z , ~ o  ~ A(, m) i! I f  q) ( -  1) + (-- 1) 'f  (') (1)] + Zi"=l B}m)f(x'), 

converges (diverges) to f i a f ( x ) d x  under the same conditions o n f a s  in Theorem 1. 
We will say more about this quadrature formula later (see also [4]). 
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2. Kernel K~ (x, y) 

The proof of Theorem 1 is based on an analysis of the limit of the kernel 

(2.1) T~(x,  y)  = Kin(x, y)/(1--x~)Km(x, x) 
as m--- oo. Here 

(2.2) K,,(x,  y) = M(xI(--1) ~, y, 1") 

is the B-spline of degree 2 m -  1 with a simple knot at y and rn fold knots ___ 1, normal- 
ized to have integral one. In general, we write M(x[xo,  ..., x,)  for the B-spline of  
degree n -  1 with knots at x0< x l< . . .  < x, with integral one. This function is unique- 
ly defined by the conditions that it belongs to C"-~(R), vanishes outside (x0, x,) 
and is a polynomial of degree <=n- 1 on the interval [xi, xi+~], i=0 ,  1 . . . .  , n -  1. 
(See [1].) 

To obtain an explicit expression for Kin(x, y), we recall the identity (see [1]) 

(2.3) 

M < x o ,  x , ) -  ! x , - x  x - x o  M(XlXo ... .  ,x,_i)}. 
"'" n- -  1 t x ,  -- Xo x ,  - Xo 

Specializing this equation yields the following three relations: 

2m { 1 2 x  1 , , , ) + _ ~ M ( x l ( _ _ l ) m , y , l , , , _ l ) } ,  Kin(x, y)  -- 2 m - 1  - - M ( x l ( - 1 ) m - l '  y '  

- m x - - y  2 m - 1  { l l _@ M( x [ (  1)re_l, 1 ) + ~ _ y K . ~ _ l ( x , y ) } .  M(xl ( -  1) =-1, y, 1 m) - 2 m - 2  

and 

M ( x l ( _ l ) , , , , y , l , , _ l )  - 2 m - 1  y - x  . l + x  } 
2 m - - 2  {-]-~ Km-l(X' Y ) + " ] - ~  M ( x l ( - 1 ) m '  lm-1) " 

Y 

Combining these equations, we obtain 

1 2 
K m ( x , y ) -  2(m--1)m t/(1--X)Zl--y M(xl ( -1)m-l '  l')+(l'?x)2*+y M(xl(--1)m' 1"-1) 

2(x--Y)2 y)} 
l _ y  2 Km- l (x ,  �9 

Consequently, using the fact that 

It+ s -  1) (x+ 1)~-1(1 -x)~ -1 
(2.4) M(xI( - -  1) r, ! ~) = r k s-- 1 2 "+~-' 
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we derive the recurrence 

(2.5) 

Km(X'Y)= m--lm {(m- 

In particular, 

(2.6) 

( m _ 1 ) ( 2 m _ 1 2 ) ( ~ 4 x 2 ) m - 1 1 - - x Y  ( x ' y ) 2 K m _ l ( x , y ) }  , 
1--y  2 1--y~ 

K m ( x ,  x )  = m ~ . 

We shall now prove 

Lemma 1. We have the identity 

( x ~ - 1 ] " - 1  [ [y -x[  
(2.7) Km(x, y) = m t  4e ) t 1--y~ 

where 

(2.8) 

Proof. Set 

(2.9) 

Then (2.5) gives 

/ ~ -  

l z x y  m-1 2v _0)v],  

(1 -- XZ) (1 _y2) 
0 = 4(x_y)2 

( y ' - i  ].-1 Kin(x, y) 
Rm = t ( x - - y )  2) m 

1 - x y  (2m-2X .m_l~_i~ 
l _ y 2  [ m _ l J ( - - e J  ,,-1, 

where 0 is given by (2.8). Since 

/(l(X, y) = 

we obtain 

l + x  
- - l < x < y  

l + y '  
1- -x  
1- -y  ' y < x <  1 

i~m(X, y ) __ 1-- y 2 ~"=om-* (2v) (-- O)v + K l v  1-- _ y 2 

_ _  1--xy  ~m_a(2V] ly-xll_y~ + ~ z ; = 0  [ ~ J (-  ~)~. 

Using (2.9), we readily verify the desired formula (2.7). 

Lemma 2. The kernel 

1 
(2.1 O) G m (x, y) = :tz)'"m "-----r (1 -- y~) mK m (y, x) 

is a symmetric and totally positive kernel for (x, y) c ( -  1, 1). 
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Proof. From the definition of the B-spline and divided difference o f f  at x0 . . . .  , 
x. ,  we have 

[ X o , . . . , x , ] f = l f ~ M ( x l x o  . . . .  , x , ) f ( " ' ( x ) d x .  

Therefore for any function with f ( o ( - 1 ) = f ( ~  i f=0,  1, ..., m-- l ) ,  we have 

1 fl Km (x, y)f(~m)(x) dx. f(Y-----~) = [-- 1, . . . ,  -- 1, y, 1, 1]f-- (2m)! -1 
(y2_ 1),. ; , 

m 

In other words, we have shown that 

f ( x )  = ( -  1) m f ~ 1  Gm (X, y)f{~m)(y) dy 

and so (-1)mGm(x,y)  is the Green's function for the boundary-value problem: 

J ~ ) ( x )  = g (x), 

f{0(--1) = f (0 (1)  = 0, i = 0, 1, ..., m--1. 

Therefore Gm (x, y) must be symmetric and its total positivity follows from the general 
theorem in [3]. Actually the symmetry of Gin(x, y) can be seen also from (2.7) and 
(2.8) and the total positivity can be proved by Sylvester's determinant identity and the 
Schoenberg--Whitney theorem [1]. 

Let us also point out that since any S(x)~ S~,.-1 satisfying S(i)( - 1)= S(~ 
(i=0,  1 . . . . .  m - 1 ) ,  can be written as a linear combination of the kernel K,.(x, y), 
i . e ,~  

S(x) = .~]=1 CjKm(x, x i), 

it follows from the uniqueness of complete spline interpolation that 

Ix1 . . . .  , x . ]  det Km(xi, x j)  > O. K,. I, xl . . . .  , x j  = i,j=l ...... 

More strict positivity properties of this sort appear in [2]. 

3. Kernel Tin(x, y) 

We now introduce the Cauchy--Szeg6 kernel 

1 
(3.1) r~(z ,  0 = 1 _ - ~ ,  Izl, I~1 < 1- 

This kernel is known to be the reproducing kernel for the Hardy space on the unit 
disk (see [2]). 
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Lemma 3. For x, yC[-1 ,  1] with x y ~ l ,  we have 

(3.2) 

because 

IT~(x, y)-T=(x, Y)I <= 7"=(x,y) 
m - 1  

Proof. Using (2.6) and (2.7), we have 

m - ~  2 V  v 

T, (X, y ) -  om_lZ____12,tmm__ J (1-x~)(1 ~y~ 

2y 0, ] (-- 1)"(1 --xy) [' Ill --4~ 

(1 +4~) -1/2= ]x-yl / (1-xy) .  By Taylor's formula with remainder, we get 

(1+ 40)-1t=--~'~'__~a (2v) (--0)~= m (2m)(_  o)mf~ (1 +4ot)-,.-*/z (1_  t)m-* dt, 

so that 

Tm(x,y) = m 1 -  ( l_x~)0_yZ) fo (l+4aO-m-a/=O-O~"-*clt. 

By a suitable change of variable, we obtain 

which yields the following inequality 

IT.,(x, y)-T=(x, y)[ ~ T=(x,y){m f~ vm-~ (1(1+40)~/~+4~0V) 1/2 l dv 

q- (1 +4Q) ~/2 } 
2 f~  vm-l(l +4or) -1/2 dv . 

Since the upper bound for T , , -  T= as a function of 0 is increasing, we see that 

[Tin(x, y)--T= (x, y)[--<_ T=(x, y){m f~v"~-l(v-1/2-1)dv+} f~o vm-a/=dv} 

2 
-- 2 m - 1  T=(x,y), 

which proves the lemma. 
For the convenience of the reader, we record the following fact which will be 

useful later. 
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Lemma 4. The kernel 
T=(x, y) = 1 / (1 -xy )  

is extended totally positive on ( - 1 ,  1 ) X ( - 1 ,  1). 

Proof. This a well-known result (see [2]) and follows from the Cauchy determi- 
nant identity 

(3.3) T= .... Y. Hj",k=l (1 --XjYk) 

We shall denote by R . f  the interpolant to f at xl . . . .  , x. by the rational functions 
T=(x, xO . . . . .  T=(x, x.). It is easy to see that 

(R , f )  (x) = ~ n = l  f (x , )  li (x) 

where the fundamental functions li(x) are given by 

n X - -  X i 

( x -  x,) B~ (x3 ' 

Lemma 5. I f  F , , ( x ) = ( 1 - x 2 ) ' f ( x ) ,  then for each n we have 

(3.4) lirn= (1 - x~) - m (S,,,, F,,) (x) = (R , f )  (x), 

uniformly on [--1, 1]. 

Proof. Since F~)(+__I)=0, i=0 ,  1 . . . . .  m - l ,  we can write 

(S,,, ,r,,)(x) = Z~'=I d} m) M(xl(-1) m, xj,  lm), 
where 

(1--x~)mf(xr) = Z~=~ d} =) K,,(x,,  x j). 

Recalling the definition of  Tin(x) in (2.1), we obtain 

(1 x 2 ~ - 1  
-- ~) f (x , )  = Z "  d}m) Tm(x,, x j). 
Kin(x,, xr) J=' 

By Stirling's formula, we can see that 

,, 1 t '2m-2h 
4 -  + [ m - 1  ]~l/]/~-mm, 

/ 

so that by (2.6), we have 

(3.5) Kin(x, x) ~ V  ~-  (1 --x2) m-1. 

Therefore 

(3.6) lim j i m  d}m) = d ~ )  ' 
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where f (x ,)=~,y.=ld}=)T=(x, ,  xj), ( r = l ,  2 . . . . .  n). Hence 

(1 -- X2)-m(Sm, nVm)(X) =- Kra(X , x)(1 --X2)--rn+l ~ ; =  1 d} m) Tin(X, X3). 

From the above we get (3.4) by using equations (3.5) and (3.6). 

Remark. When f E H  ~, i.e., Hardy--Szeg5 space on the unit disk, it is well- 
known [2] that ( R , f ) ( x )  is the minimal interpolant to f at Xl, x=, ..., x, .  In other 
words, 

f~_~ ](R.f)(d~ 2 dO ~ ~ f ~  2n -- 2n -= [g(ei~ 

for all gEH 2 such that g(x~)=f(xi)  ( i = l ,  2 . . . .  , n). On the other hand, complete 
spline interpolation also has a similar extremal property [4], namely 

--  < 1 fll [(Sm'"f)(m)(x)12dx = f-1 [g(m(x)[2 dx 

for all g with g(")CL2[ - 1, 1] and g interpolating f a t  Xl . . . .  , x, .  Lemma 5 ties these 
two properties together. 

4. Proof of  Theorem 1 

Let (P , , f ) (x )  be the polynomial of  degree 2 m - 1  satisfying the conditions 

Then 

(4.1) 

(Pmf)(O(•  = f ( O ( + l ) ,  i = O, 1 . . . . .  m - 1 .  

f (1-x~) " f(~)dz, f ( x ) - - ( P m f ) ( x )  = 2hi r (z - -x) (1--z2)  m 

where F is any contour containing D l={z :  t z2 -1]< l} .  
CE[-1 ,  1], we have 

(1 - x ~ )  ~ 
f~(x)--(P,, fc)(x) = (C_x)(I_C2),  . �9 

Thus 

where 

In particular, for any 

1 
f d x ) - ( S , , , , f ~ ) ( x )  = f d x ) - ( P , , A ) ( x )  0_C9 m (S,,,,F,,.c)(x), 

( 1  - - X 2 )  m 

F " ' d x )  = C -  x 
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By Lemma 5, we get 

iX __ff2)m 
(4.2)  li+rn ( ]- - -  X2) ra [A (X) -- (Sm, n A )  ix)]  = A ix)  --  ( R nA )  (x). 

Since (R. f~)(x)  interpolates f~(x) at xl . . . . .  x,,, we conclude that 

B.(x) 
(4.3) A (x) - (R. A) (x) = (~ _ x) B. (4)" 

This proves (1.5). 
In order to prove (1.4) we use (4.1) with F replaced by Fo={z:  I1--z21=Q}, 

~>1  and consequently we have 

f ( x ) - - ( P m f ) ( x  ) = aj.q -m. (4.4) 
Again 

f ( x ) - ( S m , n f ) ( x )  = f ( x ) - - ( P m f ) ( x )  - - ( & , . ( f - -  P. ,))(x) 

1 f(z) (S~,. Fm, z)(x) dz ,  =- f ( x ) - -  (P,, , f)  (x) - ~ fro (1 Z2) m 

where F m , ~ ( x ) = ( 1 - x 2 ) m / ( z - x ) .  By Lemma 4, (Sm,nF,,,,z)(x) is clearly uniformly 
bounded for x 6 [ - 1 ,  1] and z 6 F  e, Q>I .  This together with (4.1) gives (1.4) and 
completes the proof  of  Theorem 1. 

Remark.  Combining Lemma 3 and (3.5) we have M ( x I - l m ,  y, lm) ~-, �9 

(1- -x~)m-1/ i l - -xy) ,  as m-,-~,. If  we introduce the kernel H , ( x l x  o . . . .  ,x, , )= 
(1-x~)"/H~=o (1 -xx i ) ,  then it is easy to verify that 

H(xlxo ,  ..., x .)  - x . - x  H(x Ix l  . . . .  , x . ) +  x - x o  H(x[xo . . . . .  x . - O  
x .  --Xo x . - -Xo 

and so repeated appliciation of  (2.3) gives 

M (xl - 1 m, xo . . . . .  x . ,  1 " ) ~ ] / - ~  (1-xZ)"H(xlxo, ..., x.).  
[ rc 

5. Remarks on Schoenberg's quadrature formula 

(a) Asymptotics of the weights B~ m). Here we add some remarks 
berg's quadrature formula 

(5.1) Qm, n f  = if-1 (sm,.j)(x) dx 
a(i m) 

= z/m--~ i! {fq)(-- 1) +(--  1)(0/(0(1)} %27=1BCim)f(xi) . 

on Schoen- 
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Its extremal properties are discussed in [4]. Theorem 1 shows that for any n 

i lim t" (x) dx. ,~-~ Qm, J = 3 _ 1 f  

if f is regular in a neighborhood of D~={z:  I z~ - l l~ l}  and that moreover this 
region is best possible for each n. 

Let us also point out that since the quadrature formula (5.1) is equal to 
f ~ l f ( x ) d x  for fES2m-~(x~ . . . .  , x,) it follows that the weights of the quadrature for- 
mula satisfy the following equations 

(5.2) Z " ,  B}')~;~(x,,  xj) = 1, j = ~, 2, ..., n. 

The matrix of this system of linear equations is non-singular by the remarks follow- 
ing Lemma 3. To obtain an asymptotic formula for the weights for large m, we set 

thereby getting 
c~") = g~ (') (1 - x~) K,. (x~, x3 

Zi=a Ci (~)Tm (xi, x j) -= 1, j = 1, 2 . . . . .  n. 

Now, if we let m ~ ~, and use Lemma 4, we see that lJm,~_~ C} ")= C} ~) where 

~i~1 C~ (~) T~ (x~, xj) = 1, j = 1, 2 . . . .  , n. 

Next we identify the constants C~ by observing that T~ (0, x j)  = 1, so that for any 
flmction f we have 

Zi"=l G(~) f ( x i )  -=- (Rnf)(O). 

In particular, choosing f ( x ) = f ~ ( x )  and using (4.3), we observe that 

1 . c [  ~) 1 B . ( 0 )  

T - ~ I = 1  { - - X l -  ~ B , ( t ) '  
whence we easily see that 

_ ( -  1)"-~ ] .  llj~i xj lIj,~ (t l -  x~xj C[ ~) 
1 - x ~  ) X i - -  x j  

This shows that for m large enough, the B~ m) are not of the same sign. 

(b) Numerical  computation of A} m) and B~ m). We end this section with some 
remarks about the numerical computation of the A~ m) and B} '~). First the weights 
B~ ") can be computed by solving the system (5.2). Then the coefficients A[ m) can be 
evaluated from the following equations: 

(5 .3)  ~ 7 : 0 1 A ( m ) c i ~  m) = E i - - ~ ; ' = l g ( l m ) f i ( x l )  , i = O, 1 . . . . .  m - l ,  
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where we set 
f/(x) --=- (1 -t-x)m-f-l(1 --X) ~n-i, 

u 1 . I r a - i - l ]  C.q":} = ~ {f~r ( -  1 ) + ( -  1)Jfi ~J~ (1)} = 2 " - ' ( -  1) j -"+ '  ~j~rn+i]  
and 

4 "- i  1 
f l  ,j_lf~tx)dx = ( m - - i ) ( 2 m - 2 i  I " Ei = 

~ m - i )  

Note that C(. ~ ) is non-zero only for m-i<=j<=2m-2i - I and so the linear system tJ 
(5.3) can be solved by back substitution. Moreover the elements of the matrix 
( ('~(m)'~m-- i - u  ,~.j=0 can be easily computed from the recurrence 

(5.4) c(m~ 1 , ,j+~ = -~  ( c , ~ l , j + ~  - c , ~ l , j ) .  

6. An alternative to complete spline interpolation 

It is interesting to point out that a suitable modification of complete spline inter- 
polation allows us to give an affirmative answer to Conjecture 1. For example, let 
~ , , , , f  satisfy the following requirements: 

(ii) (~,,,,f) (x) E C"-1 (R), 

(iii) 

Then by (4.1), lira,,_.= (Sm,, f ) (x)=f(x)  uniformly on [0, 1] when f is analytic 
in a neighborhood of the set D* defined by 

.-1{ [( 1 ) (  i+nl)l 1 } D * =  U z: z-- z-- <~ 

Since D*~[0, 1] as n-~oo, because it is contained in the rectangle 

[ I /2 -1  ~ ]  [ 1 1]  
2n , 1 +  X 4 n ' 4 n  ' 

it follows that given any function f analytic in a neighborhood of [0, 1], there is an 
n = n (f) such that 

lirn (g,,,,f) (x) = f(x) ,  

uniformly on [0, 1]. 
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This simple observat ion suggests the following conjecture.  

Conjecture. Let S m , , f  denote the complete spline interpolant to f on [0, l] at the 
i 

knots ~ (i= 1, ..., n). I f  f is holomorphic in a neighborhood o f  [0, 1], we conjecture 
n + l  

that there exists an n such that 

lira Sin, ran f :  f 
m ~  

uniformly on [0, 1]. 
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