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1. Introduction 

I f  X and r are two C ~ manifolds and if Cc(T*(X)\O)• is 
the graph of  a homogeneous canonical transformation from T*(Y)\O to T*(X)~O 
then every AEI~215 C', f2(X• l/e) is L 2 continuous in the sense that it 
defines a continuous map from L~omp(Y, f2(Y) ~/2) to L~oc(X, f2(X) 1/~) (H6rmander 
[3, Section 4.2]). The conclusion is not true for any other real canonical relations C. 
Here f2(X), say, is the density bundle on X; we shall omit the half density bundles 
frequently in the notation. The symbols will be tacitly assumed to be of type 1, 0 
unless otherwise stated. 

Melin and Sj6strand [7] have also proved that every .,4EI~ C') is L ~ 
continuous if C is the graph of  a positive complex canonical transformation in 
their sense. The proof  was based on an extension of  the theory of Fourier integral 
operators to amplitudes of type 1/2, 1/2. This extended calculus shows that A*A 
must be a pseudo-differential operator with symbol in S~ for such A. Now 
A*A can also be computed by the calculus of Fourier integral operators with complex 
phase and S~ symbols, so (locally at least) we have with bCS~ 

(1.1) A*Au(y) = (2~)-" f e~'(Y") b(y, tt)~(tt) dtt. 

Comparison of  the two results shows that if ~p(y, tl)=(y, tl)+t~(y, tl) then e i~' 
must be in S~ which is equivalent to 

(1.2) lOg'(Y, n)lOyl~ll'TI + lOO (y, e)lOel ~ l~l <-- c Im 0 (y, t/). 

In Section 3 we shall prove that (1.2) also follows from a simple and direct geometrical 
argument. The L = continuity of  A is then a consequence of  the standard calculus 
and the Calderdn--Vaillancourt theorem [1]. 

However, there exist positive complex canonical relations C such that all 
ACI~215 Y, C') are L 2 continuous but  C is not  of  graph type. In fact, an important 
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example occurs in the theory of operators of principal type and was studied by 
Duistermaat--Sjtstrand [2, Lemma 4.2]. We shall prove here that every AE 
I~215 Y, C') is L 2 continuous if and only if at every real point of C the projections 
of real tangents of C to T(T*(X)) and to T(T*(Y)) are both injective. More 
precisely, we shall then for AEI~215 C') determine necessary and sufficient 
conditions for an estimate of the form 

(1.3) IIAull <-- (M+0llull +C~,K[lullt-1), uEC~(K, t2(Z)l/Z), ~>0, 

to be valid. Here K is a compact subset of Y, Ilull is the L ~ norm, and llu[l(-1) 
is a semi-norm in the Sobolev space H(-x) of derivatives of L ~ half densities. 
Standard arguments show that for every real point ~=(x0, ~0, Y0, r/o)EC this 
estimate implies another of the form 

(1.4) IlA0u[I <= MLlulI, uEC~(R"~), nr = dimY. 

Here A0 is a localization of A at infinity in the direction ~; it is a Fourier integral 
operator defined by a quadratic form as phase function and a constant amplitude. 
The associated canonical transformation is a linear positive complex canonical 
relation CrcT*(C"x)• ). Estimates of the form (1.4) are invariant under 
real linear symplectic transformations in T*(C "x) or T*(C"~). The corresponding 
equivalence classes are determined in Section 4, and we show that Ao is continuous 
if and only if 

C,n(r*(R"X)X{0}) = {0}, C~n({0}• {0}, 

and then we can also compute the norm. The symbol of Ao defines a positive 
complex half density (or real 1/4 density) on C~. We can therefore consider llAd 
as a norm of half densities on C r The definition is symplectically invariant and 
depends continuously on C~ in a natural sense. It can be described geometrically 
by noting that Cr is the direct sum of a canonical graph in T*(C")• T*(C n') and 

nO u 
strictly positive (negative) Lagrangians in T*(C X)cT*(C"x) and in T*(Cnr)c 

T*(C nY) respectively. In these one has natural densities defined by lifting the 
symplectic form to the graph by one of the projections and by the natural positive 
definite metrics in the strictly positive (negtive) Lagrangian planes. This density 
allows one to identify a half density in C~ with a scalar, and the norm of the half 
density is this scalar multiplied by a product of eigenvalues associated with the 
canonical graph. 

The interpretation of A*A as a pseudo-differential operator remains valid 
under the preceding conditions on C. This makes it possible to use standard local- 
ization arguments for pseudo-differential operators to study estimates of the form 
(1.3) for A*A. In this way we show that (1.3) is valid if and only if for the real 
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part CK of C over any compact set K c X •  we have 

0.5) l i~ II~A(~)I[ ~ M 

where aA is the symbol half density normed as described above. (For the detailed 
definition see Section 4.) The result is of course well known for Fourier integral 
operators with real phase. 

In this paper we shall rely on the techniques of almost analytic continuation 
developed in [6], [7] and we keep the notation used there. For unexplained notation 
the reader should consult these papers. However, it is possible to avoid almost 
analytic continuation by introducing Lagrangian ideals of complex valued functions 
defined on the real cotangent bundle. We shall develop this point of  view elsewhere. 

2. The localized estimates 

Let X and Y be C = manifolds and C a C = complex positive homogeneous 
canonical relation = ( T * ( X ) \ O ) •  which is closed in T * ( X •  
Let A E I ~ 2 1 5  C';  ~2(X• 1/2) be an associated half density of order 0 in 
X •  Y, and assume that A is properly supported and satisfies (1.3). Then q)A~ 
has the same property if ~oECg~ ~ECo(Y ) and ]q~[~ 1 ], ]~,[<_- 1, both considered 
as multiplication operators. We can choose ~o and ~ with small support and 
equal t o  1 near given points xo and Y0- In proving necessary conditions we may 
therefore assume that X =  R"x, y c  R"L and that supp A is close to (x0, Y0) = (0, 0). 
(We identify operators and kernels throughout.) Replacing q) and ~O by pseudo- 
differential operators we may also assume that W F ' ( A )  is in a small conic neigh- 
borhood of  the ray through a given point (x0, 40, Y0, t/0)EC. If  the coordinates 
in X and Y are conveniently chosen we have modulo C = an oscillatory integral 
representation 

(2.1) A(x ,  y) : (2z0 -3"/4 ffe~(<~.e>-<y.,>-"(e.,))a(#. 'I)d~ dq 

where n--dim (X• Y) and aES -"/4 is supported in a small conic neighborhood of  
(~0,%) where ImH~_0.  Choose uECo(R"r), vECo(R"x ) and set 

ut (y) = e it~(y" 70> u (ty) t,~12, vt (x) = e it'<~, ~o> v (tx) t"x/2. 

Since [lut[[=llull , Ilvtll=llvll and ut~O weakly in L 2, hence strongly in H(-a), 
as t ~  ~o, we obtain if (1.3) is valid that 

i ~  [(Au,, v~)l <= M[lu[I Ilvl[. 
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A direct computation gives 

ut(r/) = t-"r/ZU(("n-- f"no)/t), ~t(r = t -nx /~  ((4-- tZ~o)/t), 

(A ut, vt) = (2rc)-3n/4 t,/~ f f e-lmt~o +re, t% + t~) t2 (n) 0 (r ( t  2 ~o + t~, t z.no + t.n) d~ d.n. 

The exponential is bounded by 1 in absolute value, and since 0=x0--H~(~o, n0), 
z 0 =  Y0 = - -H,  (40, no), we obtain 

t2H(~o+~/t, .no+hi t) ~ Q(~, n), t ~ ,  

where Q is the quadratic part in the Taylor expansion of H at (r no)- That 
H((o,  % ) = 0  follows from the homogeneity of  H. When {~l<tf~0[/2, [.nf<t[noI/2 
we have by the mean value theorem 

t n/2 la(t2~0 + t~, t~.no+ t n ) -  a (t2~0, t~no)[ < Ct "/2 t 2(-"/'-~) t(l~[ + In[) 

: ct-~(]~l + I.nl), 
for aES -"/~. When [~[>t[~01/2 or f.nI>t[no[/2 we estimate a by a constant and 
t by C(I~[+ I.nl) and obtain since fi~ is rapidly decreasing 

(2.2) l(Aut, vt)--t"/2a(tZ~o, t2.no)(Ao u, v)I -~ 0 

where Ao is defined by the oscillatory integral 

(2.3) Ao(x, y) : (2~)-~"n f f e '<<~,r162 d~ dn. 

Hence (1.3) implies 

(2.4) li---m t "/~ [a (t~0, t'~q0)[ IlAol[ "< M. 
t ~ o o  

If  we choose A so that the upper limit is not 0 it follows in particular that [[A0[[ < oo 
if A is L 2 continuous. 

Lemma2.1.  I f  the operator A o defined by (2.3) is L ~ continuous, then the 
corresponding linear canonical relation 

(2.5) {(OQ/O~, ~; -,OQ/On, n)} c T*(C"~) X T* (C"0 

intersects T*(R"x)• and {0}• only at O. 

Proof. Assume that (Y, ~; 0, 0) is real and belongs to the canonical relation 
(2.5). Then it is symplectically orthogonal, that is, 

<OQ/O~, ~>-<~, {) = 0 for all (~, .n). 

This implies that with (o(x, r y, "n)= (x, ~ ) -  (y, .n)-  Q(r q) 

(x, 8))Ao y) = f f  ((r (x, 8)) ar a.n 

= (2~)-~"nff(-Dr ~)e '~ d~ d.n = O. 
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Choose uECo(R"Y ) with Aour Since AouEL z and ((Dx, f)-<x,~))(Aou)=O 
we obtain ~=0 if ~=0, for Aou cannot be supported by a hyperplane. If 2 r  
and 0 is a real valued solution of the equation (O0/Ox, 2)=(x, ~) then e-iq'Aou 
is constant in the direction 2 which contradicts that OCAouEL ~. Hence ~7=~=0. 
Taking the adjoint of A0 we conclude that (2.5) cannot have a real element of the 
form (0, 0; y, r/) either. 

The canonical relation (2.5) is the complex tangent plane Tr(C) of C at 
? in the sense of Melin--Sj6strand [7]. We have therefore proved 

Theorem2.2 .  I f  every AE I~ Y, C" ; f2(X)< y)V ~) is L 2 continuous, then 
the real tangent plane T~(C) of C at any real 7=(xo, ~o, Y0, ~/~) has injective 
projections into Txo,r and Tro,,o(T*(Y)). 

The estimate (2.4) also contains quantitative information. We shall return 
to it in Section 4 after developing the linear algebra required to give (2.4) the invariant 
form (1.5). In Section 5 we shall then prove that conversely (1.5) implies (1.3). 

3. A*A as a pseudo-differential operator and L 2 continuity 

In this section we shall prove a converse of Theorem 2.2. To do so we must 
make some preliminary remarks on symplectic linear algebra. Let $1 and S~ 
be real symplectic finite dimensional vector spaces with complexifications Sic 
and $2c. A linear canonical relation from S~ to $1 is a complex linear subspaee 
CCSlc~S2c which is Lagrangian with respect to the difference cr l -a  ~ of the 
complexified symplectic forms o- 1 and o-~ in $1 and in $2, lifted to S~@$2. 
It is called positive if it is positive with respect to this form, that is, 

(3.1) i-l(al(X, X--)-a2(Y, Y)) --> 0 when (X, Y)EC. 

Lemma 3.1. I f  C is positive, (X, Y)EC and i-l(al(X, X)-a~(Y,  Y))=0 
then (X, Y)EC, that is, the radical of  the hermitian form in (3.1) is generated by the 
real elements in C. 

Proof By the Cauchy--Schwarz inequality 

i - l (a l (X ' ,X)-a2(Y ", Y)) = 0 for all (X', Y')EC 

so (~, Y)6C since C is Lagrangian. 
Note that this argument is valid for any positive Lagrangian plane. 

Lemma 3.2. Let CI C Sac@ S~c and C2CS2c@$3c be linear positive canonical 
relations which are transversal in the sense that 

{Yes, c; (0, Y)~cl, (y, 0)cc~} = {0}. 
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Then CloC~={(X,Z)ESxc@S3c; (X, Y)EC1 and (Y, Z)EC2 for some YES~c } is 
a positive canonical relation. I f  (X, Z)ECloC~ is real, then Y is real here. 

Proof. If (X', Y')EC1 and (Y', Z')EC~ then 

~l(x, x ' ) - ~ ( z ,  z ')  = al(x, x')-G~(Y, Y')+~(~, Y')-o3(z, z ' ) = 0  

so CloC ~ is isotropic. The intersection of CI@C ~ with {(X, Y, Y, Z ) } c  
Sic @ $2c @ $2c @ Ssc has eodimension at most dim Szc in C1 @ Cz so the dimen- 
sion is at least (dim Sxc+dim S~c)/2. The dimension of CloC~ is the same so 
CloC2 is Lagrangian. With the notation in the definition of CloC~ we have 

~-lO(x, x)-~(z, z)) = ~-l(~(x, :~)_~(y, y))+ ~-l(~(y, y ) -~ (z ,  z)) 

and both terms on the right hand side are non-negative, so CloC~ is positive. 
If the left hand side vanishes then both terms in the right hand side do, so (X, Y)EC1 
and (Y, Z)EC~ by Lemma 3.1. If X and Z are real, then (0, Ira Y)EC1 and 
(Ira Y, 0)EC~ so Im Y = 0  by assumption. The proof is complete. 

Lemma 3.3. Assume that the projections o f  CR=Cn(SI@S2 ) t o  5;1 and to 
S~ are both injective. Then there is a unique decomposition $1=$11@$12, $2= 
S2x @ S~  in symplectically orthogonal symplectic subspaees such that C = C1 @ )~1 G ~ 
where C1 is the graph o f  a symplectic isomorphism S~ lc~Snc  and 21 resp. 22 are 
strictly positive (negative)Lagrangian planes in SI~ c and in $2~ c respectively. 

Proof. It is clear that 
~1 = {XES~c; (X, 0)EC} 

is isotropic. If  XE21 and i-lal(X, X')=0 it follows from Lemma 3.1 that (X, 0)EC 
so (REX, 0) and (ImX, 0) are in C. Hence X = 0  by assumption. Since 
al(Im X, Re X)=aI(X, X)]2i r  if 0~XE21 it follows that 

Sa2 = {Re X; XE21} 

is a symplectic subspace of  $1 of dimension 2 dim c 21. We have 21cS12 c and 
2dimc21=dimcS~2 c so 21 is Lagrangian and strictly positive in Sa, c. In the 
same way we find that 

~ = {rcS2c; O, Y)CC} 

is a strictly negative Lagrangian subspace of the Complexification of  the symp[ectic 
space $2~ formed by its real parts. Define $11 and $21 as the symplectically 
orthogonal complements of $12 and $22. The component in $12 c (or $2~c) of 
any element in C is symplectically orthogonal to 21 (resp. 22) so it is in 21 
(resp. 22). Hence C=C1@21@22 where C1 is a canonical relation cS~1c@$21 c 
which has injective projections to Snc and $21 c. But this means that C1 is the 
graph of a symplectic isomorphism and the lemma is proved. 
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Lemma 3.4. I f  C satisfies the hypotheses in Lemma 3.3 then 

12-1 = {(Y, X'); (X, Y)EC} c $2c| S,c 

ls a positive canonical relation transversal to C, so 12-aoCcSec@ $2c is a positive 
canonical relation. I f  (YI, Y2)EC-*oC and i-l(a(Y1, Y,)-a(Y~, ~ ) ) = 0  then 
Yi=Y2. 

Proof With the notation in Lemma 3.3 we have /~10/~1={0} since 2, is strictly 
positive and ~1 is strictly negative. This proves the transversality; the positivity 
of 12 -1 is obvious. By Lemma 3.1 it suffices to prove the last statement when 
Y1 and Y~ are real. Then we have (Y1, X)E12 -~, (X, Y~)EC for some real X, 
by Lemma 3.2, so Y~-Y~E22, hence Y~=Y~ since 22 has no real elements. 

The preceding lemmas are essentially the infinitesimal version of the proof of 
the following converse of Theorem 2.2. 

Theorem 3.5. Let X and Y be C ~ manifolds and C a C ~ complex positive 
homogeneous canonical relation c (T*(X) \O)X(T*(Y) \O)  ~ which is closed in 
T* (XXY) \O .  Assume that for every real 7=(Xo,4o,Yo, qo)EC the projections 
o f  the real tangent plane T~(C)R of  C into TXo,r and Tyo,,o(T*(Y)) 
are injective. Then every AEI~ C" ; D(XXY)  112) is continuous from 
Lc2omp(Y, D(Y) 1P) to L~oc(X, D(X)I/~). 

Proof We can localize by multiplying A to the left and right by partitions 
of unity in X or Y. More generally, we can microlocalize by using pseudo-dif- 
ferential partitions of unity, so A may be assumed to have support near a point 
(Xo, Yo) while WF'(A) is contained in a smaU conic neighborhood of the ray 
through 7 = (Xo, 40, Yo, r/o). 

I f  tp(x, y, 0) is a regular phase function of positive type at (Xo, Yo, 0o) 
defining C at ~ (see Melin--SjSstrand [6, Def. 3.5]) we can write A modulo C ~ 
in the form 

A (x, y) = (2n)-(n+2N)/4fe i~(x'r'~ a(x, y, O) dO 

where n = d i m X X Y ,  OER N, and aES("-ZN)/4(R"XRN) has support in a small 

conic neighborhood of  (x0, Y0, 00), 

~o~(Xo, yo,  0o) = 0, ~o'(Xo, yo,  0o) = 40, -~o~(Xo,  yo,  0o) = Oo. 

The kernel of  the adjoint operator 

A*(y, x) = A(x, y) = (2~)-(n+2N)/4 f e -~(~'~'~ a(x, y, O) dO 

is in I ~  (12-1),) where 12-1 is defined by the phase function -q)(x,y,  0), 
so it is obtained from C by taking complex conjugates and interchanging X and 
Y. I f  we apply Lemma 3.4 to the tangent plane T~(C) it foUows that the composi- 
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tion C-"-loC satisfies the transversality condition in [6] so A*ACI~215 Y, (C-loC)'),  
the support of A*A is close to (Y0, Y0) and WF'(A) is close to (Y0, r/0, Y0, r/0). 
The composition C-'-loC is defined by the regular phase function of positive type 

(3.2) ~p(x, y, O)-~o(x, z, ~) 

where z denotes the variable in the copy of Y to the left. We claim that there is 
another defining phase function of the form Co(z, r / ) -(y,  r/), For the proof we 
recall some basic facts on Fourier integral operators. 

Let f(x,  y, 0) be a regular phase function of positive type at (x0, Y0, 0o) 
defining a canonical relation C~, from T*(Y) to T*(X). Thus ~o=~O~,(x0, Y0, 00) 
and r/o = -f~(x0,  yo,Oo) are assumed real and different from 0. Assume also that 
the critical point of if(x, y, 0)+ (y, r/) as a function of y, 0 at (Y0, 0o), when 
X=Xo, r/=r/0, is non-degenerate. Let ~(x, r/) be the critical value of an almost 
analytic extension of f ( x , y ,  O)+(y,r/), that is, the value when 0f /0y+r /=0,  
Of/O0=O. Then ~(x, r / )-(y,  r/) is a regular phase function of positive type at 
(xo, Yo,tlo) which also defines Cg,. In fact, the almost analytic continuation of 
Cg, is the set of (x, Oi/Ox, y, -Of/Oy) with 0f/00=0. On the other hand, ~ is 
of positive type by Lemma 2.1 in [6] and ~(x, r / ) - (y,  r/) defines the canonical 
relation 

(3.3) {(x, O~/Ox, O~/Or/, r/)}. 

Here O~(x, ~l)/Ox--Of(x, y, O)/Ox and O~(x, r/)/Or/=- y when Of(x, y, 0)/00=0, 
Off(x, y, O)]Oy+r/=O which proves that the canonical relation (3.3) is Cg,. Note 
that the non-degeneracy of f (x ,  y, O)+(y, r/) means that at (x0, Yo, 0o, r/o) 

d,,o(Of/Oy+r/) = O, d,.o(Oif/O0) = 0 

must imply dy=dO=O, or equivalently, that (0, dr 0) belongs to the complex 
tangent plane of Cg, at (x0, ~0, Yo, r/0) only when d~=dy=O. 

Let us now apply this to C'-acC with the coordinates in T*(Y)XT*(Y)  
denoted by (z, ~, y, r/). The intersection of lhe corrplex tangent plane at (Yo,r/0,Yo,r/o) 
with the plane dz=dr/=O is equal to {0}, for the intersection is in the diagonal 
by Lemma 3.4 since the plane dz----dr/=O is Lagrangian and its own conjugate. 
Hence C"-aoC is also defined by the phase function Co(z, r / )-(y,  r/) if Co(z, r/) 
is the value of the almost analytic extension of 

(3.4) ~(z, r/, x, y, O, T) = q)(x, y, O)-Co(x, z, z)+(y, r/) 

at the "critical point" defined by 

(3.5) O~o (x, y, o)/Ox-OCo (x, z, ~)/Ox = o, 0~o (x, y, o)/Oy + r~ = o, 

O~o(x, y ,  O)/O0 = o, O(o(x, z, ~)/O~ = O. 
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By [6, Lemma 2.1] we have for real (z, r/) near (Y0, t/o), if x = X ( z ,  t/) . . . . .  "c= 
T(z, t/) at this critical point, 

(3.6) lira (X(z, n), Y(z, n), O(z, n), r(z,  n))[ ~ <_- c Im ~(z, n)- 

The derivatives 0~/02 . . . .  ,0~5/0~ all vanish for real arguments since we have an 
almost analytic extension, so it follows from (3.6) and Taylor's formula that if 
X, = Re X, .... 7", = Re T then 

(3.7) Im ~b(z, t/, Xr(Z, t/) . . . . .  T,(z, r/)) <= C11m ~(z, q). 

For any non-negative C 2 function F we have ]F'I~<_=CF locally. If  we write 
~o=~01+i~o2 it follows from (3.7) that in a neighborhood of (Yo, t/o) 

(3.8) ]~'~(X,(z, t/), r,(z, t/), O,(z, t/))]+ M(X,(z, t/), z, T,(z, t/))] 

~_ C~(Im q3 (z, t/))l/~. 
With the notation 

f ( x ,  y, 0) = (0(px(x, y, O)/O(x, 0), O~o~(x, y, O)/O(x, y, 0)) 

we have in a neighborhood of (Yo, t/0) 

(3.9) ]f(X,(z, t/), Y,(z, t/), O,(z, t/))--f(X,(z, t/), z, r ,(z,  t/))[ 

For the components of f involving q~2 this follows from (3.8). By (3.5), (3.6) 
and Taylor's formula we have 

ko;,(x,, r , ,  o , ) - ~ ' ( x , ,  ~, T,)I + ko;(x,, Y,, o , ) -  ~;(X,, z, T,)I 

-<- C4(Im q3(z, t/)) ~/~ 

which gives the estimate (3.9) of the components of f involving tpl since (3.8) 
estimates the derivatives of  ~%. 

The Jacobian matrix Of(x, y, O)/O(y, O) is injective at (x0, Yo, 00). Indeed, 
if d x = 0  and df=O then dpo=O so (dx, d~, dy, dt/)~T~(C) if =~o~ and t /=  -q~,. 
I f  dy and dO are real then dr/ is also real since f contains O~o~JOy. Thus 
(dx, d~, dy, dt/)=(O, O, dy, dq)=O by our hypothesis on C, which proves the 
injectivity since f is real. Hence Taylor's formula gives in a neighborhood of  
(xo, Yo, 0o) that 

l y - z l + l O - z l  <= c[ f (x ,  y, o ) - f ( x ,  z, z)l. 

I f  we combine this estimate with (3.9) we have proved that 

(3.10) [Y,(z, r / ) - z  I + [O,(z, t/)--T,(z, t/)] _<- C~(Im q3(z, t/))1/2. 

When computing the derivatives of O(z, t/)=~(z, t / ) - (z ,  t/) we shall use that 
the derivatives of �9 with respect to x, y, O, "r vanish at the critical point while 
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the 2, y, 0, ~ derivatives are O((Im qJ(z, r/)) 1/2) by (3.6). Since 

O~lOz-rt = -OCo(x, z, z)lOz-rt, O~lOn-z = y - z  

and ~/= - % ( x ,  y, 0) at the critical point, it follows that 

IOr + lOCplOn- zl <- I~(x, z, T)-~o;(X,  Y, O)l + [Y-- z] + C6(Im r m.  

After another application of  Taylor's formula and (3.6), (3.10) we obtain 

(3.11) 100(z, rl)/Ozl2 + IOr rl)/Orll 2 <= CIm O(z, r/) 

in a neighborhood of  (Yo, r/0). Taking the almost analytic extensions homogeneous 
we obtain a homogeneous function r and conclude that 

(3.12) lO@ (z, rl)lOzl21iq[ + IO@ (z, ~/)/0~/l~lr/I =< C Im @ (z, ~l) 

in a conic neighborhood of  (Y0, t/o). This is the inequality (1.2) of the introduction. 
The important consequence of  (3.12) already referred to in the introduction is 

that in a conic neighborhood of  (Y0, t/0) 

(3.13) lOy'D~elO(',") I <_~ C~lllrl[(l'l-1#l)/2e-IrnO(Y'n)/2, lrll =~ 1. 

In particular, o~c r ~ a ir DyDne is linear "-~'112.112" To prove (3.13) we observe that a 
combination of  terms of  the form 

(D],~Dg ~ O)... (D~,~D~ tp) e'*. 

When lej+flj[_->2 we just use the estimate 

]D~,D~,OI <= I <-- Inl : >  1, 

and when ]cg+/~jl=l we use that by (3.12) 

[D~JD~t~I ~_ C[~l[(l~fl-lPjI)/~(Imt~)x/~. 

Since (Im~k)Ne -([m~')/z is bounded for every N, the estimate (3.13) follows. 
(Conversely, it is easy to see that (3.13) with [c~[+ 1/31= 1 implies (3.12).) 

Summing up, we have now proved that A*A is a pseudo-differential operator 
of  order 0 an d  type 1/2, 1/2. By the Calder6n--Vaillancourt theorem [1] ,this 
implies that A*A is L 2 continuous, which completes the proof  of  Theorem 3.5. 

The preceding proof  only shows that A*A is a pseudo-differential operator 
when AEI~215 Y, C') and WF'(A)  is in a small conic neighborhood of  a given 
point. In general there may for real (x, ~)E T*(X) \O  exist several distinct (y, r/)E 
T * ( Y ) \ O  with (x, ~, y, r/)EC although the local results on C-~oC proved above 
show that the set of  such (y, r/) is discrete. However, we have 

Theorem 3.6. I f  in addition to the hypotheses o f  Theorem 3.5 we assume that 
the map CR~  T*(X) \O  is injective and that A is properly supported, then A*A 
is a pseudo,differential operator o f  order 0 and type 1/2, I/2. 
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Proof Since WF'(A)cC R the hypothesis implies that WF'(A*A) is contained 
in the diagonal of T*(Y)\O. In fact, if (x, 4, Y, tl)EWF'(A) and (y', t/', x, ~)~ 
WF'(A*) then (y, t/)= (y', t/') by assumption. To determine A*A at a point 
(Y0, %, Y0, %) on the diagonal, we introduce 

(3.14) {(x, 4)C T*(X) \0 ;  (x, 4, Yo, tlo)E WF'(A)}. 

Since the local composition CoC -1 only has real points in the diagonal, the set 
(3.14) is discrete so it can only have finitely many points (xj, 4j), , /= 1 . . . . .  J.  Hence 
we can write 

A = ~ s  Aj+R 

where (x, 4, Yo, %)r for all (x, 4), and WF'(Aj) is in such a small 
conic neighborhood of  (xj, 4j,yo, tlo) that A*AkEC ~ if j # k  and Aj*Aj is 
a pseudo-differential operator of order 0 and type 1/2, 1/2. Since 

(yo, ,70, yo, ,10)r wF' (A*A - Z;" AjAj)* 

the proof is complete. 
Note that if the projection C~T*(Y)  is also injective then the proof of 

Theorem 3.6 simplifies since (3.14) consists of a single point (xo, 40). Thus A*A 
is microlocaUy equal to A[A1 at (Y0, q0, Y0, %) if A is microlocally equal to 
At at (Xo, 40, Yo, %). 

4. Normal form for positive linear canonical relations 

The study of the estimate (1.3) requires a rather complete description of positive 
linear canonical relations. This will be the subject of the present section. As in 
Section 3 we let St and $2 be real symplectic vector spaces with complexifications 
Sic and S~c. Denoting by C a positive linear canonical relation satisfying the 
conditions in Lemma 3.3, we wish to introduce coordinates in the various spaces 
defined there so that C obtains a simple form. It is well known that one can 
introduce symplectic coordinates x, 4 in $12 such that 2 t is defined by the equa- 
tion" 4=ix with the corresponding complex coordinates in Slzc. Similarly 2, 
can be defined by t /=  - iv .  When we now pass to the choice of  appropriate coordi- 
nates in Sit and S2t we shall simplify the notation by assuming temporarily that 
21 and 22 do not occur, thus that 

c = {(JY, Y), Y~ &c} 

where J is a symplectic isomorphism $2c~$1c.  We want to find (X, Y)EC 
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so that (pX, Y)EC" for some pC C, or in terms of J 

(4.1) X = JY, p X  = JY, that is, /TX = JY, 

for then the space spanned by Re Y, Im Y is sent by J in a simple manner to that 
spanned by Re X, Im X. Eliminating X we write (4.1) in the form 

(4.2) # T Y  = Y 

where T = J - 1 J .  Thus #-1 must be an eigenvalueof T with eigenvector Y 
unless Y = 0 .  Since (4.1) can be written 

X=J~, pX=JY 
we obtain T Y = f i Y  so /7 must also be an eigenvalue with eigenvector Y. Since 
J is symplectic we have 

i-l(al(X, X)- a2(Y, Y)) = i-l(a! (JY, J Y ) -  ~r2(Y, Y)) 

= i- l(a~(TY,  Y ) -a~(Y ,  Y)) -= i - l ( # - l - 1 ) a 2 ( Y ,  Y) : 2 (#-1-1)a2( Im Y, Re Y). 

If  a2(Y, Y ) = 0  it follows from Lemma 3.1 that (X, Y)EC so # : 1  then. If  # ~ 1  
we conclude that /z is real and that 

(#-1_  1)a2(i m y, Re Y) > 0, a l(Im X, Re X) : #- la2(Im Y, Re Y). 

Since JY:/~X" we may replace # by 1/# and Y by Y here which gives 

(p-1)a2 (Ira Y, Re Y) < 0, 
hence p>0 .  

If  # <  1 we can normalize Y so that az(ImY, R e Y ) =  1, hence al(ImX, R e X ) =  
# - l = e  z~, z>0.  Then Re Y, Im Y resp. e-eRe X, e - r im X are symplectic bases 
in two dimensional subspaces S~ and S~ of $2 and S~ such that J S'2cCSlc. 
With the corresponding coordinates y, t/ and x, ~ we have J(1, i)=e~(1, i), 
J ( 1 , - i ) = e  -~ (1, - i )  so J has the matrix 

(4.3) R (~) = (c~ ~ - i sinh z ] 
l,i sinh z coshz)" 

As in the proof of Lemma 3.3 we find that the canonical relation C is the 
direct sum of the graph of R(z) and the graph of a canonical transformation 
between the complexifications of the symplecticaUy orthogonal spaces of S~ in 
$2 and S~ in $1. We can repeat this procedure and split off two dimensional 
spaces until we reach a situation where T only has the eigenvalue 1, that is, T - I  
is nilpotent, which we now assume. 

Write T=T~+iT2  with Tj real. Since T = J - 1 J  we have T T = I ,  that is, 

(4.4) T~+T~ = 1, T~T, z = 7"21"1. 
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If  T = I  then J is real. We choose a symplectic basis in S~ and map it by the 
real symplectic map J to a symplectic basis in $1. With these bases J becomes 
the identity. Assume now that T - - I  is not  0. We can then choose Y so that 
( T - - I ) Y r  but (T-I)~Y=O. The relations (4.4)give 

( T - I )  ~ = T~--T~ + 2iTIT~+ I - 2 T  = 2 T ( T I - I )  

and since T is invertible it follows that ( T I - I ) Y = O ,  hence T~Y=O by (4.4). 
The real or imaginary part  of  Y must therefore have the same properties as assumed 
for Y so we may assume that Y is real. The positivity of  J gives then 

0 <= i-l(trl(JY, JY)-o '2(Y,  Y)) = i-la2(TY, Y) = 0"2(7"211, Y). 

I f  this is 0 then Lemma 3.1 shows that (JY, Y)~C so J Y = J Y  and T Y = Y .  
This is against our hypothesis so a2(T2Y, Y)>0.  We can normalize so that 
a2(T2Y, Y)= 1. Now 

y - l j y  = (I+iTz)Y, J-1JT~Y =- T2Y 

so JT2Y=JT2Y is real and J Y - J Y = i J T 2 Y .  For  X = R e J Y  we have 

cr~ (X, JT2 Y) = (r (JY, JT2 Y) + trl (JY, JT~. Y))/2 = a2 (Y, 7"2 Y) = -- 1 

so we can take Y, T2Y resp. X, JT2Y as elements in symplectic bases in two 
dimensional subspaces of  $2 and of  S~. Since 

J Y  = X+iJT2Y/2, J(T2Y) = JT~Y 

it follows that J reduces to a map in the complexification which sends (1, 0) to 
(I, i/2) and (0, 1) to (0, 1). Hence J has the matrix E(1/2), if 

(4.5) E(a) = [il a 01}. 

(These are symplectically equivalent when a > 0  so the parameter a is superfluous. 
However, it will be useful later on.) Summing up, we have now proved: 

Theorem 4.1. Let $1 and S~ be real symplectic fn i te  dimensional vector 
spaces and C a positive linear canonical relation c Sic @ $2c such that the projec- 
tions of  Crt to $1 and to $2 are injective. Then there exist symplectic coordinates 
xj,~_j, j<-nl in $1 and yj, qj, j<=n2 in $2, integers vo<-v<-min(nl, n~) and 
numbers zj>=O,j<=vo, such that C is definedby 

(4.6) (xj, ~j) = R(zj)(yj ,  rlj), j <- v0; (xj, Cj) = E(1)(yj, qj), 

Vo < j <= v; ~i = ixi, v ~ j <- nl; tly = - i y i ,  v < j < - n 2 .  

Conversely we shall see from the following discussion of  R(~) and E(a) that 
the hypothesis follows from the conclusion. First we observe that R(z) is rotation 



296 Lars HSrmander 

by the angle iv, so z-,-R(r) is a one parameter group of symplectic maps, R(z' + z) = 
R(z')R('r), which implies R'(z)-= R'(O)R(z). With o- denoting the standard symplectic 
form in T*(C) we have 

(4.7) a(X, R'(O)Y) =- i ( xy+~q) ;  X, YCT*(C) 

so R'(0) is the Hamilton map of the quadratic form - i ( x 2 + ~  2) and 

i - l (~(R'(0)Y,  ? ) + ~ ( r ,  R'(0)Y)) = 2(lyre+ fql~); r = (y, n). 

This implies that 

i-l(o(R(~)Y, R(~)Y)-,r(Y, Y)) ~= o, r~T*(C), �9 >= O, 

for the left hand side vanishes when z = 0  and the derivative with respect to z is 
2[R(z)YI ~. Thus R(z) is positive. It is also clear that E(a) is a one parameter 
group of symplectic maps, and we have 

a(X, E'(O) Y) = - ixy, 

i-~(,r(E'(O)Y, Y ) + a ( r ,  E'(O)Y)) = 21y[ 2, Y = (y, ~), 

which proves that E(a) is positive when a>0 .  The maps R(z) and E(a) can 
also be regarded as the exponentials of - i  times the Hamilton maps of the quadratic 
forms z(x2+~ 2) and ax ~ respectively. 

We shall now discuss Fourier integral operators associated with the various 
canonical relations in Theorem 4.1, and also study the corresponding half den- 
sities. By a half density in a complex vector space we shall mean a number associated 
to each system of complex linear coordinates w, such that aldw[ 1/2 is invariant, 
that is, a is replaced by a'=a[Dw/Dw'[ ~/~ if  new complex coordinates w" are 
introduced. It is convenient to keep the transformation law in mind by using the 
notation a[dw] 1/z for the half density. We shall only consider absolute values of 
symbols of Fourier integral distributions in order to avoid lengthy discussions of 
powers of the imaginary unit. 

The polynomial Q~(x, ~1) is a generating function of R(z) if 

R(~)(OQdOq, q) = (x, OQ./Ox); x, r/EC; 
that is, 

OQdOq cosh ~ -  iq sinh ~ = x, iOQJOq sinh z + r/cosh ~ = OQJOx. 

The solution of these equations is 

(4.8) Q, (x, t/) = (x,  + i (x 2 + r/z) (sinh ~)/2)/cosh z, 

where we observe that Im Q,_->0 which verifies the positivity again. Set 

(4.9) A~u(x) -~ (2n)-la('r) f eia,(~,")a(rl) d~l, u6C~'(R). 
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We choose a(z) so that the symbol a(z)ldxdq[ 1/2 agrees with the symplectic half 
density [dx d~l 1/2, that is, 

a (T)(D(x, rl)/D(x, 4)) 1/2 = a (z)(O2QJOx 0q) -1/2 = 1. 
Thus we set 

(4.9)' A~u(x) = (2z)-l(coshz)-l/~fe~Q,(x,")~(~) drl, uEC~. 

The infinitesimal version of  the calculus of  Fourier integral operators with complex 
phase shows that A~+~, can only differ from A~A~, by a power of  i, for R ( z + z ' ) =  
R(z)R(z').  Since a simple calculation shows that the kernel of  At is positive, we 
must have A~+~,=A~A~,. By the formula 

A~u(x cosh z) = (2zr)-l(cosh z)-l/2fe-x~(~i"h2~)/4ei~-"~('a"h')/2~(tl)dq 

it is clear that the norm of  A, in L 2 is at most 1. When z ~ 0  we obtain 

(A~ u(x) - u (x))/z ~ - (2~) -1 f e,X,(x~ + ,~) a(q) dq/2 = - (x ' + D  ~) u/Z, 

if uEC o, so the infinitesimal generator of  the semigroup A,, z ~0 ,  is the harmonic 
oscillator divided by - 2 .  Thus 

(4.10) At = exp ( -  z (x 2 +D2)/2) 

which is also easily verified directly and well known. For  the L 2 norm we obtain 

(4.11) llA,II = e -~/2, 

for the lowest eigenvalue of  the harmonic oscillator is 1, the eigenfunction 

being e -~/2. i 
Similarly the generating function P,  of  E(a) is defined by 

OPt(x, q)/Orl = x, OP,(x, tl)/Ox = iax+tl ,  
so we have 

(4.12) P,  (x, t/) ---- xq + iax~/2. 

The corresponding semigroup of  operators is 

(4.13) E.u(x) = ( 2 ~ r )  - 1  f e~"-"~'/2a(q) dtl = e-"~'~/~u(x), uEL 2, a >= O. 

The norm of  E ,  is of  course 1. 
For  the canonical relation 

{(x, ix; y, - - iy)}  c T*(Cn~)• 

a defining phase function with no parameters is i([xl2+ [y[~)/2. The corresponding 
operator with kernel 

(2~z)-(na+n~)/4e-(lxl2+ [Yl~)/2 
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has symbol ldxdy] 1/2, and the norm is 

(2~z)-(,~ +,,)/~ (f f e-lxl"-J,J  dx dy) 1/2 = 2 -("~+"~)/4. 

It is natural to compare Idxdy] 1/2 with the half density defined by the Hermitian 

metric i-~(~((x, ix), (x, ix))--~((y, - iy) ,  (y, -iy)))=2(Ixl~+ ly[ 2) in the two 
Lagrangian planes. This is 

]d(x V~) d(y ~2~] x12 = 2("~+"~)/aldx dy] a/z, 

so the principal symbol is this half density multiplied by the norm. To sum up the 
preceding results we make a definition. 

Definition 4.2. I f  C is a positive linear canonical relation satisfying the hypotheses 
in Theorem 4.1, then dc will denote the half density 

(4.14) dc = I/ / ;  dxj d{j e', II~"~-i 21/2 dxj II"~-~ 21/2 dyjI 1/2. 

Equivalently, with the decomposition in Lemma 3.3, one can describe dc 
as follows. The canonical relation C1 corresponds to a map J such that J-13" 
has positive, pairwise reciprocal eigenvalues. If the eigenvalues larger than 1 are 
denoted by /'1, #~ . . . .  then dc is the product of H#}/4, the half density defined 
by the symplectic form in $1~, lifted to C1, and the half densities in 21 and 22 
defined by the positive hermitian metrics i-lal(X, X) and ia~(Y, ~). In particular 
this shows that Definition 4.2 is independent of the choice of coordinates in $1 
and in $2. The definition has been chosen so that we have 

Theorem 4.3. Let C c T*(C"*)XT*(C"=) be a positive linear canonical relation 
with no real element having only one projection equal to 0, let Q(x, y, O) be a quadratic 
form which is a positive non-degenerate phase function defining C, and set for some 
constant a 
(4.15) A (x, y) = a f e ia(x, Y' o; dO. 

Then A is the kernel of  an operator which is L 2 bounded, and the absolute value 
o f  the symbol is the half density IIAlldc on C. 

Proof. The statement merely rephrases Definition 4.2 and the calculations 
preceding it if C has already the form in Theorem 4.1. Otherwise we can find real 
linear symplectic maps Z~ and Z2 in T*(R"0 and T*(R"~) such that if C1 and 
C2 are the complex extensions of their graphs, the composition C~oCoC2 has 
the form in Theorem 4.1. With C1 and Ca are associated unitary operators 
UI and U2 (see e.g. H6rmander [4, Th. 4.3]). The product U1AU2 is associated 
with C~oCoC2 and the symbol is that of  A transported from C to CloCoC2 
by the identification given by the composition. This is just the infinitesimal form 
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of  the composition rules for Fourier integral operators when all except one of  them 
corresponds to a canonical transformation. The norm of  U1AU2 is equal to 
IIAll so the absolute value of  the symbol is dclo c o cJIA[I, which proves the theorem. 
Note that it contains a converse of Lemma 2.1. 

We shall now study what happens when C varies. To do so we shall first 
look at the general form of the eigenvalue problem studied above when C is a graph. 
RecaU that the problem was to find (X, Y)~C with (#X, Y)CC. First of  all we 
homogenize to the problem of  satisfying the conditions 

(X, Y)EC, (#'X, #"Y)EC and (X, Y) r 0, (p',/z '~) ~ 0. 

Let n = d i m C  and let T:  Cn~C be a linear parametrization. The problem is 
then to find u, vEC n such that 

(~ ' (T,) I ,  ~"(ru)~)+Tv = 0. 

Here (Tu)j is the component of  Tu in Sic. These 2n equations for (u,v)EC ~ 
have a solution ~ 0  if and only if the determinant Dc(#', #") of  the system 
vanishes. Apart  from a factor the determinant is independent of  the parametriza- 
tion, for any other is of  the form TT" where T'EGL(n, C). It  is clear that Dc is 
homogeneous of  degree n in (p', p"). To compute Dc we may assume that C is 
of  the form in Theorem 4.1 and parametrize by yj ,  rlj,j<=v, and x j , j > v ;  yj , j:>v. 
Thus for example x,+l=u2~+l,  ~v+~=iuz~+l in the parametrization of  C and 
xv+l=v2~+l, ~ + 1 =  -iv2~+~ in the parametrization of  C, so the equations 

p'u2v+~ +vz,+l = O, p'iu2v+l-iv~v+z = 0 

and no others contain u~,+l and v2,+~. This gives a factor - 2 i # '  in the deter- 
minant. We can argue in the same way for each of  the variables xj and yj with 
j > v ,  and for the others we have a graph, so 

Dc(#', #") = K l~2' ( (# ' - e - ' J  #')(e-~J#'-#"))l.t'"'-" # "'-~. 

Here K is a constant #0 .  
The polynomial Dc(#', #") varies continuously with C so the rj also vary 

continuously apart from the fact that some , j  may tend to co giving rise to an 
additional factor /z'#". We must therefore examine what happens to dc if  say 
%-~ co in (4.6). The graph of  R(r,) is defined by 

x,  = Yl cosh Z l -  it/1 sinh T1, {1 = iyl sinh T 1 -q-/71 cosh z1 

or equivalently 

Yl = Xl c o s h  T 1 -[- i~1 sinh zl, rh = -- ixl sinh T 1 "~ ~1 e o s h  T 1 

so the graph converges to the plane defined by 

~1 = ixi, tli = -- iyl. 
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The  half  density in the graph is 

]dxl d~le~,] 1/2 = Idxl dqle~l/cosh zll 1/~ -~ 21/2 Idxx dyll x/z 

so the limit is the product  of  the densities in the two limiting Lagrangian planes. 
This is the basic reason for the continuity of  d c but before proving it we have to 
give a precise definition. 

The canonical relations CCS~c |  form a compact  analytic manifold ~ ,  
the positive canonical relations form a closed subset cg+, and those which satisfy 
the hypothesis in Theorem 4.1 form an open subset cg~_ of  cd+. The half  densities 
form a complex line bundle f2 ~/2 over ~r In fact, if wl . . . . .  w, are linear foims 
in Sac@S~c which restrict to a coordinate systems in some CoECd, then this is 
true for all C E cg in a neighborhood U of Co. The map 

U X C  3 (C, z) ~ z]dwl...dw,]~ 2 

gives a local trivialization of  /2 x/2 which clearly makes f21/2 into a line bundle, 
with real valued transition functions. The continuity of  dc can now be stated as 

follows: 

Theorem 4.4. The map C ~ d c  o f  Definition 4.2 is a continuous section o f  
f21/2 over ego+ which tends to 0 at the boundary o f  ~ + in cg +. 

Proof Let CvEfK~_ be a sequence with Cv~CoEC~~ as v ~ .  It  is sufficient 
to prove that dcv has a subsequence converging to dco. In doing so we may assume 
that the theorem is already known for lower dimensions. 

a) Assume first that  there is a non-zero element (X~, 0)EC~ for every v. 
After suitable normalization and passage to a subsequence we may assume that  
l imX~=X0 exists and is not  0. Then o'l(X0, X0)~0 so al(ImX~,ReX~)- , -  
a~(Im X0, Re Xo)~ 0 as v ~ oo. We may even assume that  

o1 (Im X~, Re X 0 = o'1 (Im X o, Re X0) ~ 0. 

Then there exists a sequence ofcomplect ic  maps Z~ in ,71 converging to the identity 
as v ~ co such that  z~X~ = X0. I f  we compose C~ to the left with the complexifica- 
tion of  the graph of  g~ we obtain new C~ECd+ converging to Co as v-~oo such 
that (Xo, O)EC~ for all v. But then C~ and Co are direct sums of  the Lagrangian 
plane generated by Xo in the space spanned by X0 and -~0 and canonical relations 
in fewer variables, so dc;~dco,  hence dc-,-dco. 

b) The same argument is applicable if  there is a non-zero element (0, Yv)EC, 
for every v. 

c) Now assume that each C~ is the graph of  a canonical transformation and 
that  some of the zj~ in Theorem 4.1 tends to ~.  Then we can find 0r  Y~)ECv 
and /t~-~ oo such that (/z~X,, Y0E C~. We can normalize so that (X~, Y~)-,-(Xo, Yo) ~ 0  
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as v-~oo. Since (Xo,0)CC o and (Xo, Yo)CCo we must have al(Xo, X o)=0 so 
(Xo, 0)~Co by Lemma 3.1. But this implies Xo=0, hence a~(Yo, Yo)~0. It  is 
no restriction to assume that 

a~(Yv, Yv)= ~(ro,  Yo). 

Since (p~X~, YOECv and (X~, Yv)~C'v we obtain in the same way that there 
is a sequence a~ such that a,Y~-~0 and a,mX~=x~-~Xo#O, o#al(Xo, Xo). 
We may of course assume that 

~l(x~, ~ ')  = ~l(Xo, ~ ) .  

We can then compose C~ left and right with symplectic maps g~ and Z2~ in $1 
and $2, extended to Sic and $2c, chosen so that z2~Yo=Y~, x~vX$=X o and 
Zj~ tends to the identity when v ~  ~o, j ~" 1, 2. We then obtain canonical relations 
splitting into the sum of the graph of an operator R((log #~)/2) from the space 
spanned by Y0, Y0 to that spanned by X~, X0, and a convergent sequence of  
canonical relations in the symplectically orthogonal spaces. Hence the continuity 
follows as in case a) from the inductive hypothesis if we also recall the special case 
discussed before the statement of the theorem. 

d) It remains to consider the case where each C~ is the graph of  a canonical 
transformation Yv and the eigenvalues of  Y~-~Jv remain bounded as v~oo. Then 
it follows from the general discussion of  the eigenvalue problem above that Co is 
also the graph of  a canonical transformation Y0. Since zj~-~zj as v ~ o ,  if zj~ 
are ordered increasingly, and since the symplectic half density in C~ converges to 
that in Co, it follows that dc~dc.  

On the other hand, if C~CCg ~ and C~oCo~Cg ~ it follows from Theorem 4.3 
that dc~O. In fact, we can take operators Av as in Theorem 4.3 associated to 
C~ such that A ~ A o # O  when v ~ o .  Then the absolute value of  the principal 
symbol of  A~ has a limit # 0  but [[A~][~oo since A ~ A o  as operator in 5 e and 
][A0][ = oo by Lemma 2.1 since A0 is associated to Co. This completes the proof. 

The definition of  dc depends on the symplectic forms a~ and as. If  they 
are replaced by ta~ and ta~, t > 0 ,  then dc is multiplied by t ~/4 where n=d imcC.  
This follows at once from Definition 4.2, for the numbers , j  do not change while 
dxjd~j is replaced by tdxjdr when j<~v whereas dxj and dyj are multiplied 
by t ]1~ when j >v.  

If  d is any half density in CE~_  we define I]dlJ = Jd]dcl, that is, we introduce 
a norm such that the norm of  dc is 1. With this notation we shall now give (2.3) 
an invariant form, so let C now as in Section 2 be a positive homogeneous canonical 
relation c(T*(X)\O)• The symbol of  the kernel A in (2.1) in the 
local coordinates used has absolute value [a(~, q)] [d~dq] 1/~. We wan t  to calculate 
the norm at the real point parametrized by (t2~0, t~qo). To do so we note that the 
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quotient q between the half density ]d~dr[1/2 in the tangent space of C at a real 
point 7=(OH/O~,~;-OH/Og, q) in C and dr(c) is homogeneous of  degree 
n]2-n/4=n/4  in the sense that Mr*q=t"/4q if M r denotes multiplication by 
t in the fibers of  T*(X• Y). This follows from the fact that Mr*e= te and the 
remarks above on how dc depends on the symplectic form. Hence 

M* ([a (4, r)[ Id~ dr 1'12/dc) = [a (t~, tr)[t "/a Id~ d r 11/2/dc. 

When (~ , r ) : (~o ,  qo) we have Id~dr[~t2=llAo[ldc by Theorem 4.3, if Ao is 
defined by (2.3), so (2.4) means that 

(4.16) ~ ]l~A(t2~0,tZqo)]] <= M 

if ~a is the symbol half density of A. It is invariantly defined modulo lower order 
symbols and factors i, so (4.16) is coordinate free. The proof shows that (4.16) 
is locally uniform in (~0, r0) which is also a consequence of Theorem 4.4 and the 
fact that a(~, r)ES -"/4. Hence we have proved that (1.5) follows from (1.3). 

The relation (2.2) means that the difference between t"/~a(t2~ o, t2qo)Ao and 
the pullback of e~t'((Y'~o~-(~'eo~)A(x, y) as a half density by the map (x, y)~(x]t ,  Tit) 
tends to 0 in ~ '  as t ~ oo. By the description of the principal symbol of a product 
in [7, Section 7] it follows that the difference between [t"/~a(t2~ o, t~ro)]2Ao*Ao and 
the pullback of  e~r~(Y-~'~o~A*A (z, y) also tends to 0, thus 

(A*Au~, ur)-c(t)(A~Aou, u) ~ O, u~Cg(R"O, 

where c( t)= [t"/~a(t2~ o, t~r0)] z. I f  (2.4) is valid then 

(2.4)' ~ c(t)[lA~Aoll <= m 2, 

which means that the analogue of (1.5) is valid for A*A with M replaced by M s. 

5. Precise L ~ estimates 

In this section we shall prove th e equivalence of  (1.3) and (1.5) stated in the 
introduction, assuming the condition on C in Theorem 2.2 and a related global 
condition: 

Theorem 5.!. Let X and Y be C ~ manifolds and C a C ~~ complex positive 
homogeneous canonical relation c ( T * ( X ) \ O ) •  which is closed in 
T*(XX Y ) \ 0 ,  and assume that 

(i) the maps C R ~ T * ( X ) \ O  and CR-~T*(Y) \O from the real subset C R are 
injective, 
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(ii) for every ?=(Xo, 40, Yo, r/o)ECrt the maps from Tr(C)rt to the tangent spaces o f  
T*(X) and T*(Y) at (xo, 40) and (Yo, r/o) are injective. 

Let AEI~ C'; Q(XX Y) 1/2) be properly supported. Then (1.3) is valid with 
some C,, K for every compact set K c  Y and every 5>0, i f  and only if(1.5) is valid. 

Proof. That (1.3) implies (1.5) was proved in Section 2 combined with the 
reformulation of (2.4) given at the end of Section 4. It follows from Theorem 3.6 that 
A*A is a pseudo-differential operator, of  order 0 and type 1/2, 1/2. The theorem 
will be proved if we show that for every (Y0, r/o) with yoEK and r/0#0 there is 
a pseudo-differential operator 7,(y,D) with principal symbol ~(y,r/)  equal 
to 1 in a conic neighborhood of (Y0, r/o) such that 

I[AT,(y, O) ull ~ <-- (M+e)~ll nile+ C~,KI[ ull~-a)- 

In fact, we can then choose pseudo-differential operators ~j of order 0 with 
principal symbol ~oj supported in the set where the principal symbol ~j of some 
such 7,j is equal to 1, and Z]q~j[Z=l in a neighborhood of K. Since 

I1A 7" i (y, D) ~j (y, D) u[I ~ <-- ( M +  5) 3 [I ~j (Y, D) nil m + CL ~: I[ nil ~- 1) 
and 

is of order - 1 / 2  and type 1/2, 1/2, we obtain by summation 

(A*Au, u+ Ru) ~ (m+e)2(u+ Ru, u)+C~SK(IluII<-lmllull +IlulI~-~)) 
where 

R = 27q~*q~j- I 

is of order --1 at K. This gives (1.3) since Ilull~_lm<-Cllull~_x)llull. 
When WF(7,(y, D)) is in a small conic neighborhood of (Y0, r/o) then 

WF'(AT,(y, D)) is either empty or contained in a small conic neighborhood of  
a point (Xo, ~o, Y0, r/0)EC. The principal symbol of AT,(y, D) is aAr SO it satisfies 
(1.5). Changing notation so that AT,(y, D) becomes A it is therefore sufficient 
to prove that (1.3) follows from (1.5) when A has support near (0, 0)~R""XR "Y 
and WF'(A) is in a small conic neighborhood of (0, r 0, r/o). We can then write 

A*A u (z) = (2r 0 - "~" f eie (~, ~) a (z, r/) a (r/) dr/ 

where 6ES ~ has support in a small conic neighborhood of (Y0, r/0) and ~k(z, r/)= 
q3(z, r / )-(z,  r/) satisfies (1.2). We have 

(5.1) ~ la(Zo, t~r/o)lllB011 <-- M 2 if ImO(z0, r/o) -- 0, 

which implies ~O'(z 0, r/0)=0 by (1.2); here 

(5.2) Bou(Z ) = (2~z)-"~ f e'~",.~a(n) dr~, uEC~(Rnr), 
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denoting the quadratic term in the Taylor expansion of  ~ at (z 0, r/0)- 
proof we may assume z0=0 

In the 
to simplify the notation. As in (2.2) we set 

ut (Y) = e it2(y' %) U (ty) t"Y/2, UE C~ (RnY). 
Then 

A*A ut (z) = (270-nY f ei,~(z, ~) a (z, r/) ~((r/-- t 2 r/o)/t) t-"~/2 dr/ 

= f eiO( z, ,~ ,o + t,)t7 (z, tr/+ t ~ r/0)a (r/) dr/, 
hence 

(A*Au,, u,) = (2n)-.. f u -~  dzfe'(~(~#.,',o+,,)-,',#.,o>)a(z/t, t2r/o+tr/)a(r/)dr/. 

Here the exponent t2((o(z/t, rlo+O/t)-(z/t,r/o)) converges to Q(z,r/) when t~o~ 
since (o(z, r/o+r/)-(z, r/0)=(z, r/)+r r/0+~/)' differs from Q(z, r/) by terms of 
higher order at (0, 0). As in the proof of (2.2) it follows that 

(A*A~,, u , ) -a(0 ,  t~r/o)(aoU, u) -~ 0 

so (5.1) is a consequence of (1.5) and the remarks at the end of Section 4. 
I f  q is any quadratic polynomial with principal part O and Im q=>0, and if 

bo is defined as B0 with Q replaced by q, then 

(5.3) lib011 -<-IIB01l. 

In fact, we can find real z 0, r/0 such that Im q(z+zo, r/+r/o) has no first order terms 
in (z, r/), hence is equal to Im (~(z, r /)+t for some t ~ 0 .  Thus 

q(z, r/) = O ( z -  zo, rl-r/o)+(yo, r/)+(z, ~o)+ s+ it 

for some real Yo, (o and s, so bo is equal to B 0 multiplied by e i~-t and by 
unitary factors to the left and right, consisting of translation or multiplication by 
a character.  Since t ~ 0  the inequality (5.3) follows. 

We can now prove (1.3) by a conventional localization argument. Let g be 
the metric in T*(R"), n--dim Y, defined by 

(1 + [r//)Idyl2 + (1 + Ir/l)-Xld~ll2; 

thus ST/~,~/~(R"• in the notation of [4]. Let R be a large 
positive number, and choose a standard partition of  unity {~Oj} as in [4, Section 2] 
such that 

,V~,j(y, r/) 2 = 1, 

the diameter of the support of  ffj is uniformly bounded in the metric g/R 2, only 
a fixed number of  supports can overlap, and finally {if j} is a uniformly bounded 
symbol in S~ g/R 2) with values in l 2. Then the calculus gives that the symbol of  

X~j (y, D)* ~ j (y, D ) -  I 
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is bounded in S(R -2,g/R2), so the norm is O(R-2). We can regard A*A as a 
pseudo-differential operator with symbol in S(1,g). Hence a minor extension 
of the calculus results in [4] shows that 

~j(y, D) A*A-- A*A,I, j (y, D) = q,j(y, D) 

where {cpj} is bounded in S(R -1, g). (The gain in the weight here is the geometric 
mean of the gains in the calculi corresponding to g and to g/R2.) Hence, writing 
Oj instead of ~pj(y, D) for the sake of brevity, we have 

(5.4) tlAuL[ z = (A*Au, u) <- S(A*Au, t~*Oju)+Cl[A*Au[I Ilu]I/R 2 

<- S(A*A~ju, 4,ju)+Clllull2/R. 

Choose zjECo(R 2") so that gj= 1 in supp ~j ,  the support has uniformly 
bounded diameter with respect to g/R ~, and {g j} is a vector valued symbol in 
S(1, g/R 2) with uniform bounds. The estimate (1.3) will follow if we show that 
there is a constant C such that 

(5.5) IIA*Azj(y,D)I] <-- M2+C/R, j >JR. 

In fact, then we have 

].~ i> ja(A*Azj(y, D)t~ j(y, D) u, C j(y, D) u)[ <= (MS+ C/R) SII tp j(y, D) nil 2 

<-- (MS+ C/R)(1 + CI/R 2) II u][ 2- 

Furthermore, {(1 - z j (y ,  D))~j(y, D)} has symbol bounded in S(1/R ~, g/R2), so 

[S,(A*A(1-Zj(y, D))~,j(y, D)u, ~,j(y, D)u)] <_- frail ulIm/R, 

and these estimates combined with (5.4) prove (1.3). 
The operator A*Azj(y, D) is the sum of  the pseudo-differential operator with 

symbol 

(5.6) bj (y, rl) = a(y, rl)e ig'~r''~)Zj (Y, 11) 

and an operator of norm O(1/R). Hence (5.5) follows if we show that there is 
a constant C '  such that 

(5.7) ][bj(y,D)]l ~= M2+C'/R, j >JR. 

Assume that (5.7) is false for some C '  and  R. Then we can find an infinite sequence 
J such that 

(5.8) [Ibj(y,/9)11 > M2+C'/R, jEJ. 

Choose (yj, t/j)Esupp bj. Since ~ has compact support in y the sequence yj 
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is bounded so passing to a subsequence if necessary we may assume that yj and 
r/j/Ir/j[ have limits Y0 and r/0 when j)j-~oo. The sequence 

(y, r/) ~ bj(yj+ y/tj, r/j+tjr/), tj ---- tr/j] x/2 

is bounded in C O since aeriES(I, g), so we may also assume that this sequence 
of  functions has a limit b~C o. The norm of  bj(y, D) is equal to the norm of  
bi(yj+y/t  i, qj+tjD) so it follows from (5.8) that 

(5.9) lib(y, D)I[ =~ M2+C' /R  

for convergence of  the symbols in C o implies norm convergence. We may also 
assume that the bounded sequense a(yj ,  r/j) has a limit c when J)j-+o~. Then 
a(yj+y/t j ,  r/j+tjr/)~c in C = since aES ~ By Taylor's formula 

Z +~+~t ~-~ (p~ (Yi, @ t~ ~1- IPl y~r/,/~ t/~t 

+o((lyl+lnl)a/tj), lyl+lql < tj/2. 

The homogeneity of  ~k gives 

(a) t',, *, ~tl~]-I#l ._~ ,/,(~) t',, tlj/lr/j[)l~-t~l-lal ..~ ,I,(~) (,, (p~ ~..Yj, "tj., j v" (p) ' . . " i ,  v" (p) ~..ro, rio) 

if I~+~l  = 2, J~j - - ~  ~ .  

When Ic~+fll=l the square of  this coefficient can be estimated by C Im ~0(yj, r/fl 
in view of  (1.2). I f  I m ~ ( y j , r / j ) ~  it follows that Im~(y j+y / t j ,  r / j+t jr / ) -~ 
which contradicts the fact that b # 0  by (5.9). Hence we may assume that 
Im ~Oj(yj, r/j) has a finite limit as J 3j  ~ ~o and then we obtain 

b(y, rl) = ce~(~(r'~)-(r'~))Z(y, r/) 

where Z(Y,r/) is a limit of  Xj(yj+y/tj ,  r/j+tjr/) and q is a quadratic polynomial 
with Im q ~ 0  and principal part equal to the quadratic form in the Taylor expansion 

o f  q3 at (Y0, r/o). We have d(yo, t~r/o)~e since Yj~Yo and Irlj-t~r/ol=o(t~). 
From (5.3) it follows that lib011--<M 2 if  

bou(y) = c(2z)-" f ef"(Y,")a(r/) dr/, uC Cg'. 

Now 0~Z--<I and Z is uniformly bounded in S(1, (dyZ+dr/~)/R2), This implies 
that IIZ(Y, D)I} <- 1 +Co/R by [4, Th. 6.1 1] for example. Hence 

[I boZ(Y, O)ll <-- M2( I + Co/R). 

We may regard b0 as a pseudo-differential operator, and the symbol ce*(q(r,~)-~, ,>) 
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is uni formly bounded  in S(1, dx2q-d~2), for it is a l imit  of  ae~'ES(1, g) after 

a change of  scales making  g Euclidean.  Hence  the symbol  of  boX(y, D)--b(y ,  D) 
is b o u n d e d  in S(1/R,  dx~+d~ ~) which proves that  

lib(y, D)II ~ M2+C~/R.  

I f  C '  > C  o this gives a cont radic t ion  with (5.9) which proves (5.7) and  the theorem. 
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