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O. Introduction 

Let 0 < a r  b_<-l, yER, and consider the kernels 

Ka, b+iy(t) = exp (iftla)(1 + [t[) -(b+ty), tCR. 

The convolution operators K,,b+~y*f and closely related weakly singular operators 
and multiplier operators have been studied by many authors. It is well known that 
these operators satisfy the following norm inequalities [5, 8, 10, 12, 13, 14]: 

(0.1) [[g,,l*fllp -~ C[[fllp, 1 < p <oo 
and 

a a a 
(0.2) IlK,,b*fl[p~=Cllfllp, b < l ,  ~ -+b=>l ,  -<_p< 

a + b - 1  = l - b "  

In addition, Ko,1 maps H 1 into L 1 and, by duality, L ~ into BMO. 
The purpose of this paper is to consider norm inequalities of the form 

[Ig,,b+iy*fH~,w --< Cllfllp, w, 

where [Ifllp,w=(falf(x) l~w(x)dx)l/p. Our approach is to consider these operators 
as convolutions, although they can be treated as multipliers and many of our results 
originated from this latter point of view. 

Our first result is 

Theorem l. Let 0 < a ~ l ,  b_-<l, a n d - - + b = > l .  Let 
2 

a a 
and a + b - 1  ~--P<---~ when b < l .  Let wEAp and define 

and ~ = 1 - ~ " Then, 

IIg,,b+~, *lily, w, -~ C(1 + ]Yl)Ilfllv, w". 

l < p < ~  when b = l  

1 1 a 
~=a  p - 7  + 1 - 7  
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This result is a consequence of the fact that the sharp function of  Ka, l+iy*f is 
controlled pointwise by the Hardy--Litt lewood maximal function of  f .  This 
implies the LP~ norm of Ka, l+iy*f is bounded by the L~ norm of f *  for any 
A~ weight, w, and by the L~ norm of f for any Ap weight. The use of the 
sharp function is motivated by Theorem 1 of [6] where it is used to show that singular 
integral operators map L = into BMO. See also [1, 4, 9]. The result extends to 
b < 1 by interpolation of analytic families of operators. 

Next, we consider weights of  the form w(x)=(l+lxl) ~. Such weights are 
particularly well suited for these kernels. These operators are shown to satisfy 

a 
Theorem2. Let a > l ,  b<=l, ~-+b=>l, and w(x)=(l+lx]) ~. Let l < p < o o  

a a 
when b = l  and <=p<- when b < l .  Then, 

a + b - 1  1 -b  

[]K~,b+ty * fllp, w <= C( l + ]y[)[lfl]p,w 
i f  and only i f  

m a x [ - a + p ( 1 - b ) ,  a - 2 + p ( 2 - a - b ) ]  <= 

<_- min [ a ( p - 1 ) - p ( 1 - b ) ,  bp+a-2].  

The conditions on ~ reduce to a-2+p(2 -a -b )<=~<-a(p -1 ) -p (1 -b )  for 
p<=2 and - a + p ( 1 - b ) < = ~ < = b p + a - 2  for p_->2. Theorem 2 is proved in several 
steps. A three parts proof is used to derive the weighted L 2 result for K,,b+iy. 
The rest of the proof uses interpolation with change of measures, interpolation of 
analytic families of operators, and a three parts proof. 

We wish to point out that the range on ~ in Theorem 2 is closed, which is 
quite unusual for a single weight problem. The weight (1 + [x[)'EAp if and only 
if - l < ~ < p - 1 .  When b = l  and p = 2 ,  therangeon ~ in Theorem 2 is --a<=~<=a. 
Thus, for a > l ,  there are weights (l+]x])" not in Ap for which Ka, l+iy defines 
a bounded operator on L~. This is not the case for powers of ]x]; we only get 
norm inequalities for [x[~CAp. (See the end of Section 2.) Finally, Theorem 3.3 
shows that for weights which are bounded away from 0, grow no faster than [x]~ + 2b- 3, 
and are essentially constant on annuli, Ka, b+iy defines a bounded operator on L~. 
We construct such a weight, neither in A2 nor a power of 1 + Ixl. In Section 4, 
Theorem 3.3 is generalized to other values of p if w satisfies, in addition, a 
smoothness condition. 

We will consider the question of weak-type (1, 1) estimates for K,,~ in a 
forthcoming paper. In particular, for 0 < a ~ l  and w~At, we wiU show 

w( x: > f lS(x)lw(x)dx. 
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The paper is divided into six parts. Section 1 Contains background information. 
The proof of Theorem 1 is begun in Section 2 with A~ results for K,,l+,y. The 
sufficiency of  the range of a in Theorem 2 for K,,~+~y is contained in Sections 3 
and 4. The results are extended to K,, b+*y in Section 5 and norm inequalities for 
related operators are mentioned. The necessity of the range of a is considered in 
Section 6. 

We assume all functions and sets are measurable with respect to Lebesgue 
measure. By the letters B and C we denote constants which may vary from line 

1 1 
to line but are independent of f and we define the conjugate of p, p',  by - - + - - =  1. 

P p'  
The authols would like to thank C. Fefferman for some helpful discussions. 

1. Preliminary results 

In this section we wish to collect facts which will be useful in the sequel. We 
begin by discussing the space H 1 and  complex interpolation. 

A real-valued function b(x) is called a (1, 2)-atom if 
i) b is supported in an interval, I, 

ii) f b~(x)dx<= II[ -1, 
iii) f b(x) dx= O. 

We say a function f~H 1 if and only if there exist (1, 2)-atoms, {b~}, and constants, 
{2j}, such that f (x )~  Z2~bj.(x) and s + co. Set [[fl[m=inf Z 12~I, the infimum 
taken over all such decompositions of f (see [3]). 

Let D={z=x+iv:O<=x<= 1}. We say a function F(z) is of admissible growth 
if there is an a < ~  such that e -"l~l log IF(z){ is uniformly bounded on the interior 
of D. Suppose for each zED we have a linear operator Tz such that (Tzf)g 
is integrable whenever f and g are simple functions. The family {Tz} is called 
an analytic family of  operators if the function F(z) = f (T~f)g is continuous on D, 
analytic on the interior, and of admissible growth (see [17]). The following is well- 
known [3]. 

Theorem 1.1. Let T~ be an analytic family of linear operators. Suppose that, 
for all ~, 

i) [[T~fI/1 -< B,(v)]IfI[m 

ii) [[Tl+~f[[~ <= B~(y)IIfII~ 

where log Bj(v)<=Ce ~l~l, j = 1, 2, C =>0 and O<d<~ .  Then 

[IT~flIp <= BIlflIp, 

where 1/p=(1-t)+t/2,  with O<t<- l .  
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Let Tz be an analytic family of operators and w(x) be a positive function. 
Consider the family of operators 

(1.1) Uzf (x )  = w(x)~T~(fw-Z)(x).  

If  w is nice enough, then Uz is also an analytic family of  operators. Our interest 
in U~ is that weighted norm inequalities for T, follow from norm inequalities 
for Us. 

The idea of regular kernels, which has been considered by one of  the authors [8], 
wiU be useful to us. 

Definition 1.2. A kernel K is called regular i f  it can be written as K(t)--  
k ( t ) g ( t )  such that 

i) lg(t)[ <= f ig(x)[  for  Ixl/2 --< It[ <-- 2lxl, 

ii) f { lx l>21t l}[k(x-O-k(x) l lg(x) ldx  <= C for  t ~ O, 

iii) K maps L 2 into L 2 (i.e., /~EL~). 

It was shown in [8] that the kernels Ka, 1, 0 < a # l ,  are regular. I f  0 < a # l  
and u_>0, then Ka, l+~(t; u)=ga, x+~y(t)Z({[tl>u}) is also regular for all yCR. 
To see this, set g ( t )=exp  (ilt[~)(l+ltl)-ir; (i) and (ii) are then trivial. We note 
that (0.1) and (0.2) can be generalized to 

(1.2) IIg,,b+~y( �9 ; u) *flip <= C(1 + lYl)Ilfllp. 

In particular, the constant, C, does not depend on y and u. Applying the proof 
of Theorem 5 of [8] to the kernel 12,(t; u)=exp(i l t l") ( l+[t[)  -(l+iy)-z"/z, (1.2) 
follows. Note that Ka, b+ir(t; O)=K,,b+ir(t) and that p is restricted as in (0.1) 
and (0.2). For (iii), we use (1.2) with b = l  and p = 2 .  

We recall the following result for later use. 

Theorem 1.3. Let K = k g  be a regular kernel and wEL ~. Then 

IlK *( fw) lh  <= CIIf[In, 

i f  and only i f  there is a constant B such that 

ftI,-=l>e!,l) Ik(t-~)[ I{g* (wb)}(t)] dt <- n 

for all (1, 2)-atoms b, with support I=[~ ,  8]. 

Theorem 1.3 is a generalization of Theorem 1 in [8]. The proof is essentially 
the same. We note that C <-B+c(K), where c(K) depends only on the constants 
in the definition of regular kernels and the L 2 norm of K. 

Our first results will deal with Ap weights. 
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Definition 1.4. A non-negative, locally integrable function, w, is in Ap, 1 < p< oo, 
i f  there exists a constant, C, such that for all intervals, L 

(IZl-lf, w(x) ax) (tSl-1 f, w(x)~-," dx) "-1 <= c 

For a discussion of Ap weights see [11]. We will need 

Theorem 1.5. Let wCAp, p > l .  Then, there exists an r, l < r < p ,  such that 

wEA,I,. 

In proving results for Ap weights, we will use a generalization of the Hardy- -  
Littlewood maximal function and the sharp function of C. Fefferman and Stein. 
These are defined as 

/" I \ l / r  

/,* _-- sup f ,  li y)l,< y j 
and 

1 " 1 
f ~ + ( x ) = ~ p ~ f s l f ( y ) - a v , f l d y ,  av, f =  ~ l f s f ( y ) d y .  

The following theorems are easy consequences of results in [4, 11]. 

Theorem 1.6. Let 0 < r < p - < ~  and wCAp/,. Then I}f*llp.w<=fllfllp, w. 

Theorem 1.7. Let wEAq for some q. For l<--p<:~, i f  f*EL~ then 

Ilfll~,,~, ~ Cl l f* l lp,~.  
We will make repeated use of interpolation with change of measures [16]: 

Theorem 1.8. Let T be a sublinear operator and l N p<=q<~. I f  

i) II(Zf)u~ll~ <-- CIIfu~ll~, 
and 

ii) II(Tf)v~llq <= Cllfv~llq, 
then 

II(Tf)wllls <= CIIfw~tls , 

where 1/s=Olp+(1-O)/q, for 0~0<_-1, and . _ . o . l - o  i = 1 , 2 .  W i - - U  i U I 

The following result is useful in obtaining the optimal range of ~ for weights 
of  the form (1 + Ixl)=. Its statement and proof mimic those of a theorem of Hardy, 
Littlewood, and Paley. 

Proposition 1.9. Let a>0 ,  p_->2, and T be a linear operator satisfying 

i) Ix l~2-") l ' lZf(x) l  <= QIIf l l~ 
and 

i i) IITfll2,1~it~-<=/-n< <,-,> ~ C211fll,, 
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Then, there is a constant, C <=Cp max {C1, Cz}, such that 

IlTfllp ~ Cllfll~,l.l~-=. 

Proof  Consider the adjoint of T, T*, defined by f g T f = f ( T * g ) f  (The 
existence of T* is guaranteed by (i) and the Radon--Nikodym Theorem.) From (i), 
we get 

(1.3) IT*f  (x) I <= c~ f If(x)l lxl ("-2~/p dx. 

Notice that (ii) implies 

[[r*(g(.)ltltl-(2/P)]r(a/2)-al)t[2 <= C2Hg[]2; 

setting f ( t )  = g(t)[t I t~-<z/p)J u.m-*J,  we have 

(1.4) 

Fix p ~ 2  and 
dlt = [xla-2 dx. 
that 

define 

By (1.4), 

~'f(x)=lxlT*(f(.)ltlCa-~)/P')(x), dv=lxl-2dx, and 
Since fffh, d,=f([f(x)l ]xl("-2)/P')[x[("-=)/Pdx, it follows from (1.3) 

v({x: l~'/(x)l >4}) _-< v({x: q Ixl IJfll,,d. > ~}) 

-- 2 f s a~, <-- x -~ dx = (2C~/2)I[flll, a~. 

f ]{[xlr*(f(. )ltl('-~'/p)(x)}[2[xl -~ dx = f lT*(f(. ) ttl'a-~'/P')(x)[ ~ dx 

<= c, f If(x)l'lxl a"-`)/p" [xl(1-2/~)c '-") dx = c, f Jf(x)? Ix[ " - '  dx, 
o r  

I[ ~/l[2,av ~ Cz Il f lh, au , 

By the Marcinkiewicz Interpolation Theorem [17; II, p. 112], 

l[ ~fllp',av <= CII fl[p,,a,, 

with l < p ' < 2  and C_~Cfmax {C1, C2}. Thus 

frr*(f()[t](a-2)/") ( )t I I cfff( ) r r l  �9 X p' x f - 2 d x ~ =  x p" a--2 x dx. 

Setting g(t)=f(t)It l("-~)/p" yields 

f [T*g(x)l" Ixl 9'-2 dx = c f  lg(x)!" ax 

and the proof is completed by duality. 
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2. The kernels K~,~+iy(t) and Ap weights 

In this section we will consider the kernels 

K,,,+iy(t) = exp (ilt]9 (1 + [tl) -x-~y. 

We begin by deriving an estimate on the sharp function of K,,t+iy*f, from which 
norm inequalities for Ap weights follow. We will see in the next section these 
kernels define bounded operators on weighted L p spaces for weights in a class 
much larger than Ap. 

To get the sharp function estimate we will need the following result which 
appeared in [8; Remark 2, p. 410]. 

Proposition2,1. Let K~(t)=exp (iltl')(l +ltl) (a-~')/f, where O < a # l  and 
1 <=p~2. Then 

IlR,* fIlp, <= CllfIlp. 

Notice that when a=2,  (K2~f}(x)=(Ki, o , f ) (x )=exp  (ix2){exp (it2)f(t)}^(x), 
where f (x)= fRe-2ix'tf(t)dt denotes the Fourier transform of f In this case Prop- 
osition 2.1 says that the Fourier transform maps L p into L p' for l<_-p<=2. 
We can now prove 

Lemma2.2. Let Ko, l+iy(t)=exp(iltla)(l+ltl) -1-iy, 0 < a r  and l < r < ~ .  
There is a constant, C=C(r), such that for any bounded function f with compact 
support and almost every x, 

(Ka, x+iy. f )~  (x) ~__ C(1+ ly[)f,*(x). 

Proof Without loss of  generality, we may assume x = 0  and r~2 ,  Let 
I = ( - 6 ,  6), O>0. We want to show that there is a constant, ei, such that 

we get 

(2,2) 

1 _ _  
(2.1) -~ j ' ,  IKa, l+fy, f )(O-ci l  dt <- C(1 +]yl)f~*(0). 

Set A(x)=f(x)z({lxl<2a}) and A = f - A .  By H61der's inequality and (1.2), 

~= G( l+ lyJ )  Ixl~-2~} If(x)J'dx ~ G(l+ly)f ,*(O).  

Next, write K,,l+iy(t)=k(t)h(t), where k(t)=exp(iltl")(l+ltl) -~ and 
h(t)=(1 + It I) ~-I-iy, 7< 1 to be chosen. If g is any function with support contained 
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in {Ixl ~2~}, 

(2.3) (K,,~+,,. g)(O = f k(x-O{h(x-O-h(x)}g(x)dx 

+ f k(x-Oh(x)g(x)dx = A+B. 

If tEI and xEsupp(g), then lt[<a and [xl_->2& so t  hat 

[h(x- t ) -h(x)]  <= C(l +lyl)ltllx[ '-2 and ]k(x-t)[ <_- ]xl-L 

Therefore, if Ek = {2ka <= [xl < 2k+14}, 

[A[ -<_ f c(1 + [Yl)[tl lxl-2 Ig(x)[dx <= C (1 + lyl)a f{ix I <2~} Ig(x)[ Ix[ -z dx 

_-< c (1+ [y[)a 2;~:1 (2ka)-2f~ Ig(x)l dr. 

Since (2ka)-If{l~l<z~+@g(x) Idx<-Cg*(O), IA[<_-C(I+ [yl)(Z2~ and 

(2.4) 1 / .  IA[ <-- C(1+ lY[) g* (0). 
i l l - -  

We consider four cases: 
1) a > l ,  l_-<a, 

2) a > l ,  0 < a < 1 ,  

3) 0 < a < l ,  l<_-a, 

4) 0 < a < l ,  0 < a < l .  

2 - a  
Case l: a > l  and l<_-a. Choose ~= By (2.4)with g=f2,  we get 

r p 

~ f i  [ A 1  [ -<- C(1 + lyl)(fz)*(0) <= c ( 1 +  [y])f*(0). 

Since B = K , ,  (hf~), using Proposition 2.1, we get 

l I 5,1/r" 

I~l f l [BI <-[~I1 f* [{ga* (hf~)}(t)[r" dtJ <= Ca -1/'' Hhf2[lr 

<- ca-l/" [f{Ixl>2a} [f(x)l'(1 + ]xl) -tl+<"-2)/''a~ dx) 1/" 

Note that l + - - - ~ r = l + ( a - 1 ) ( r - 1 ) ,  where ( a - 1 ) ( r - 1 ) > 0  since a > l .  

Arguing as in the proof of (2.4), we see 

i lf, IBI <-- ca-~/"a-("-~)/"f*(o) ~- cf,* (0) 

since a =  > 1. Combining (2.2) with the above estimates finishes the proof of Case 1. 
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Case2: a > l  and 0 < b < l .  Set f l -  
a - 1  

Let A(x)=A(x)z({a<=lxl<ap}), A = A - A ,  and define 
c , = j e x p  (ilxla)(l + Ixl)-~-~f3(x)dx. Then 

](Ka, x+iy *f2)(t)--ci1 <- ](K~, 1 +,y *f3)(t)-- ci[ + [(K,, 1+ ir *f4) (t) 1. 

By (2.3) with 7 = 0  and g=fa,  

[(ga, l+iy*f3)(t)-cz] <= [AI + l g -c , l  <= C(1 + lYl)(f~)*(0)+ Ig-c,I ,  

where B-c ,=f{exp( i lx - t ta ) -exp( i lx l~)} ( l+lx[ ) -*- ' r f3 (x )dx .  By the 
Value Theorem, [exp ( i lx--t  l")--ex p (i[xl")[<=clt l lxl "-1, so 

IB-c,I -< ca f{,<j~<,.~ Ix[~-z]f(x)l dx <= Ca Z~=o (2~a)~ If(x)[ dx 

<-- calYX= o (2ka)~ --< Cal+P~~ --<_ Cf*(O). 

1 
- -  and define L by 2L6~6#-<2L+1~5, 

Mean 

Thus, l(K,,,~+J3)(t)-ciI ~C(1  -~ lyl)(f3)*(O)+Cf*(O)<--C(1 + ]Yl)f*(0)- 
2 - a  

Setting ~,= r" in (2.4), ](K~,l+,rf4)(t)] is handled as in Case 1. Putting 

these estimates together, 

~ f ,  IKo, i+,~.fO(t)-citat c0+lyl ) f ,*(0) .  

This completes Case 2 and proves (2.1) when a > l .  

Case3: 0 < a < l  and 6->1. Define fl, L, f3 and f4 as before. Set 
cz= fexp (ilxl")(1 + Ixl)- l -"Afx)dx.  Then 

[(Ka,~+~,. f~)(t)-cz[ ~ [(K,,l+,y*A)(t)[+ {(K,,,+~r*A)(t)-ciI. 

The arguments here mimic those in Case 2, with the roles of fa and f4 reversed. 

Case4: 0 < a < l  and 0 < 6 < 1 .  In this case, set 
Cl= fexp (i Lxla)(1 + Ixl)-x-iyf2(x)dx. We have 

I(ga, l+iy*A)(t)-c,I <= IAI + If {exp (ilx--t]")-- exp (i[xla)}(1 + [xl~)-l-'Yf~ (x) dx I. 

IA] is handled as before and the second term is estimated by a constant times 
fiaf*(0)_<-f*(0), since a < l .  Adding all the estimates proves (2.1) and completes 
the proof of the lemma. 

Using Lemma 2.2 we easily prove Theorem 1 for K,,1+,r. 

The0rem2.3. Let l < p < o o ,  0 < a r  and wEAp. Then 

[[K~,l +~, * f [lp, w ~ C(1+ [yl) fl fllp, w. 
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Proof. By Theorem 1.5, there is an r, l < r < p ,  so that wEAp/r. Let f be 
a bounded function with compact support and apply Theorems 1.6 and 1.7 and 
the previous lemma, to get 

I}g,,l+~y*fllp, w <= CIl(ga, l+~y*f)~llv, w <= C(1 + lyl)l[f~*llv, w =< c(1 + [y[)[[f[lp, w. 

Since bounded functions with compact support are dense in L~, the result follows. 

A consequence of  Theorem 2.3 is that K~,l+~y defines a bounded operator 
on Lv~ for w(x)=(lq-[x{) ~, - l < a < p - 1 .  However, a much wider range of 

is allowable when a > l ,  which we prove in the following sections. We note 
that these weights are peculiar to this kind of kernel (i.e., with denominator (1 + Ix[)) 
and that consideration of powers of Ixl does not lead one out of Av. In particular, 
fix a, 0 < a # l ,  and choose e<(21/"3)-L Let f(x)=z({~<x<2e}) and Ixl<8. Then 

* f )  (x)l : f ~  exp (i Ix-- t l ~) (1 q- Ix -- t I)-* at[ l(Ka,1 

_-> f? cos (Ix- t[')(1 + I x -  t[)-I dt I >= ~ cos (1/2) 

since [x - t  [~=<(38)~< 1/2. Thus, if w(x)= Ix] ~ with ~ <= - 1,jr while K.,~*f~L~. 
By duality, we see that for ~_->p-1, K~,, does not define a bounded operator 
on L~, w(x)= Ix[ ". Hence, for powers of Ix[, one must have Av. 

3. The weights w ( x ) = ( l + I x ] )  ~ and L z 

This section contains results for the kernels Ka, l+~y on L 2 with weights of  
the form w(x)=(1 + Ix}) ". Note that we only consider the case a > l ,  since when 
0 < a < l ,  Theorem 2.3 gives a better result than we obtain here. As it involves no 
further complications, we will prove our results for Ka, b+~y. 

Lemma3.1. Let u>0 ,  a > l  and d>=4a. Set Q=[~ua-l,  dau~-I 1 and 

J = R - Q .  Then, there is a constant C=C(a,  b) such that 

[ f  {ul2<-Itl~_4u} " X a ,  rta)e-itx dt[ =< C(l q-iyI)ul-b{u-a/2XQ(X)+ u-azj(x)}. 

Proof. Let xEJ and write 

= f{,.,,,=~_l,t~_~,,} Ka, b+iY (t)e-itxdt 

dttl"e-i,=(altl~-l- x) f dt. �9 l{"l~-Itl ~-4"} (1+ [t[)b+i'(a[t[a-l--X) 

Using integration by parts (i.e., integrating the numerator and differentiating the 
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rest) and noting that for u/2<= lt l<=4u, lalt I " - l - x [  is equivalent to Ix] if ]x[ ~=dau "-1 

<z a ua - -1  and to u "-1 if lxl= d , we see that [cbl~C(l+lyl)u l-b-". I f  xCQ, we can 

use van der Corput's lemma to show I~]_-<C(I+ lyl)u 1-b-(a/2). 
For p=2,  Lemma 3.1 improves (1.2) to 

(3.1) IlK,,b+~,(" ; u)*f][2 ----< C(1 + Jy)ul-b-("/2~[lflf2, 

with C depending only on a and b. 
Using Lemma 3.1, we prove 

a 

Theorem3.2. Let a > l , ~ - + b - > l ,  b=<l and w(x)=(l  +]xl) ~, with I~[~a+ 
2 b - 2 .  Then 

]lK~,b+iy *fr]2,w ~ C(1 + [Y])[If][2,~,- 

Proof. Let Ek={2k<----]X]<2k+~}, k = 0 ,  1,2 . . . . .  Define fo(t)=f(t))~({[t[<l}) 
and fk(t)=f(t)x({tEEk_~}), k = l , 2 ,  ...; also, )~k,l(t)=)C({Itl<2k+~}) and 
Zk.~({[t[>=2~+x}), k=0 ,  1,2 . . . . .  Then (K..b+i,*f)(x)=Fl(x)+F2(x), where 

Fj(x) = 2~=ogk. j(x)(K.,b+i, fk)(X), j = I, 2. 

Consider F1. If  Ix[N1, then gk, t(X)= 1 for all k so that Fl(x)=(K.,b+~y*f)(x). 
For any e > 0 ,  by (1.2) 

(3.2) ftl~l-~l} Ira (x)12(1 + Ix[)" dx <- C2"(1 + [y)~f If(x)[ 2 dx 

< C2=(1+ lyl)2l[fl[~ = , (1+ [xl)" 

Suppose xEEm, m>=O. Then, Zk.~(x)=l if and only if k>-m; for such 
x, FI(x)=(K., b+~y *fm)(x), where fm(x)= y.2"=mA(X)=f(x)z({lx] ~2m-1}). Therefore, 

f{IxI>l} IFl(X)12(1 + Ix])~ dx = 22=0 fE,. I&(x)l=( 1+ lXl) = dx 

~= CZm=o= 2==f I(Ko,~+,,*f=)(x)l 2dx <= C(l +lyl)222-oZm" f lf"(x)['dx 

= C(1 + lyl)~2~'=o 2='ftlxt~_e._~ } ]f(x)l 2 dx 

<= C 1 ~ x = Inl~l dx C(1+ dx. ( + lyl) f{l~l>~/~} If( )l (Z~=0 2m') ~ [yl)~flf(x)l'[xl" 
Using (3.2), we see 

(3.3) f l6(x)p(l +lxl)" ax ~- C(l +lyl)~ f lf(x)l~(X +lxl)= dx. 
Let e = a + 2 b - - 2 .  Since the support of F~ is contained in {[xl_->l}, for 

xEEI ,  m>=O, Xk,~(X)=I if and only if k < m .  Thus 

f IF=(x)12(1 + lxl) ~ dx ~ Z : = o  K.,b+,,(x--t)f( t)  dt[2(1 +lxl) = dx 

= 22=o I,.. 
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For  m fixed, we can view the support of  K.,b+iy as contained in the set 
{)m--l.~__ ]'rl-<:'~m+21~ Let (m) _ _ _ , 0 , _ _  .. Kta, b+ir(t)-K.,b+iy(t; 2m-1)--K.,b+iy(t; 2m+2). Note that 

Im <= 2 f~  f gl~)+~,(x--t)f(Oclt 2 (l +lxlY dx in 

+ 2f~in f 3,>2ml  t ) f ( t )  dt 2 (1 + lxl) ~ dx = 1,..1 + 1,.,2, 

where Z,.,2~2m=f@Fl(x)12dx (with F1 defined with respect to *~.,b+iy:'rc(m) ~ By 
(1'2) and the argument preceeding (3.3), 

(3.4) ~.2=0 Ira, 2 <- C(1 + lyl)2f [f(x)12(1 + Ix]) ~ dx. 

Plancherel's Theorem and Lemma 3.1 (with u = 2  m) imply 

Im,~ ~ C 2 "  f I(K~.~+,.) ^ (x)] 2 I f (x ) l  2 a x  

< ( C I + I  l) 2 2m(x-b){2-"'flf(x)]2Za ) ftf(x)l (x)dx} = y 2 =~2 (x  d x  + 2 --2ma 2)iS , 

where Q=Q(m)=[4-aa2 "(a-l), 4"a2 m("-1)] and J = J ( m ) = R - Q ( m ) .  
Adding up the estimates and using the bounded overlaps of the Q(m)'s and 

the definition of  0c yields 

(3.5)  , ~ 2 = 0  Ira,1 

<= C(1 + ]y])2 2 : = o  {f l:(x)12za,=,(x)ax+ 2 - m " f  If(x)[ 2 dx} 

<_- C (1 + lyl) 2 {f If(x): ( z 2 = 0  ZQ(m)(x)) d x  "J7 Ilfl[~} 

-< c ( 1 +  ly[) 2 {cIIfl[~+ Ilfll~} < c(1 + ly[)21lfll~ 

By (3.4) and (3.5), since ~ is non-negative, 

f IF~(x)l~(a+lxl)~dx <= CZ2=o Zm <= C(1 + lyl)~l[fllN,<x+l~l:. 

This completes the proof  when ~ = a + 2b - 2. We get the result when ~ = - (a + 2b - 2) 
by duality. Using interpolation with change ot measures between these two end- 
point results completes the proof of the theorem. 

Remarks. We note that because o f  (1.2) the estimate for F1 works for any 
positive c~ and any p such that convolution with K.,b+~y or k ' (m)  defines ~a,b+iy  
a bounded operator on L v. Theorem 3.2 is also true for b < l  when 0 < a < l .  
This result will follow from Theorem 5.2. 

Before considering other values of  p, we would like to make some observations 
about the proof  of  Theorem 3.2. The estimate (3.2) uses the facts that w(x) is 
bounded above for ]x] <= 1 and bounded below for all x. The rest of  the estimates 
use the facts that w(x) is essentially constant on annuli and bounded above by 
Ixl ~ This is obvious for F2. Suppose that w(x)<-Bw(y) for lyl/2_- < [xl-<_2ly[, 



Weighted L p estimates for oscillating kernels 245 

a 
with B > I ,  and w(x)<=clx[ "+2b-z. Assume - - + b > l .  Since w is constant on 

2 
annuli, for F1 we need only consider 

I = f~= f{l,>==~+,~ K,,b+i,(x- Of(t) dt 2w(x) dx 

<= Bw(2") { f  ,= f :+=<,:=~.) I%+,,(x- Of(t) at 2 dx 

+ f , =  f , M > 2 ~ , K . , b + , , ( x - t ) f ( t ) d t  ~ dx}, 

where s=rn+(ma/Tfl), with f l=log2B and T chosen so that S=[(T--1)a/T]+ 
2b- -2>0 ,  and rn>=2Tfl/a. By the condition on w, 

w (2") w (2 m) w (2 ~- ~) 
w(2 ~) = w(Zm+,------~.... �9 w(2~-------~ <__ B ~-", 

so that w(2")-<ff-"w(x) for all x such that 2m<-[x[<=2 s. Therefore by (3.1), 

v "~2W(2"'lg--m(a+2b--2) f I -< C(1 + ,:,: ' ' -  Jf=~+=--<z~l~-~*} If(x)l= dx 

+ C(1 § IY I) 2 w (2 m) 2 -*(a +2b-2) f{[~l >2.} If(x)l 2 dx 

< C(1+  ]y[)2(B*-")2-"("+b-2~ [[f[]~ + C(1 + ]y])22(m-*)~a+2b-=)llfl[~ 

<-- c 0  + [yl) = {2-"s+2 -("a)(a+~-=)/Tp} I[fllg,~. 

We also note that Lemma 3.1 and Theorem 3.2 are valid for 0 < a < l .  Thus, 
we have the following result for weights which are essentially constant on annuli: 

i) 

ii) 

Then 

a 
Tlleorem3.3. Let O < a # l ,  b_<-I a n d - - + b > l .  Suppose w(x)=>l and satisfies 

2 

w(x) <- C(l+Ix] )  "+=b-=, for all x, and 

w(x) ~ Cw(t), for [t]/2 ~ Ixl ~ 2ltl. 

f I(Ka, b+i,*f)(x)[2W(X) dx <= C(1 + lyl)2f [f(x)[2w(x) dx. 

We conclude this section with an example of  a weight, not  in A2 and not  of  
the form ( l+[x[ )  ~, which satisfies Theorem 3.3. Let  a > l .  Let n ( I ) = l  and 
r e ( l )=2  a, and for k > l ,  set n(k)=2[n(k-1)+2rn(k-1)+l]  and rn(k)=2"(k)L 
Define w(x)= 1 for Ix]-<4 and on sets of  the form {x: 2"(k)+l~ lxl <--22[n<k)'m<k)+11} by 

Ij2 ja 2 "+j  ~ Ix[ <= 2 "+j+l, j = 1, 2 . . . . .  m. 
= | (  2"+"+* < Ixl < 2 "+2" w(x) 1 +  Ix[)", = = 

t 2  (n+2m)a-ja, 2 n+2m+J ~-- IX] =<: 2 n+2m+J+l, j = 1, 2..., n + 2 m  

where n=n(k) and m=m(k). It is easy to see that l<-w(x)<=(l+lxl) a for all 
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x and w is essentialty constant on {R<IxI<2R}. Clearly, w 
( l+[xD ~ for any ~. Let 1--[2 "(k~+m(k~+~, 2"(k)+m(k)]. Then 

(~fIw(X)'X}(~fIw(X)--I'x}t~ 2 m(k)(a-I) 

which goes to oo. Thus, wCA2. 

is not of the form 

4. Weighted L p for p ~ 2  

We are interested in extending Theorem 3.2 to weighted L p spaces for pC2.  
Our main result in this section is 

Theorem4.1. Let l < p < o o ,  l < a ,  and w(x)=(l+[x[)  ~. I f  

l < p ~ 2  and a - 2 + ( 1 - a ) p < = ~ < = a ( p - 1 )  i) 
or 

i0 
then 

2 <-- p < c o  and - - a ~ _ o ~  p + a - - 2  

Ilga, x+~y*fllv,w ~ C(1 + lY[)IIf[I,,w- 

We will prove this theorem in a series of  steps. We begin with a result of a slightly 
different nature. 

I.emma 4.2. Let l < a  and define U~r by 

Uirf(x) = f K,, x+ty(x-- t)f(t)(1 + Itl) -'~ dt. 
Then 

[[ U~rf[[1 <= C(1 + [yl)(1 + ]Yl)[[fl{n x. 

Proof. Let w(t)=( l+l t[ ) - ' r ,g( t )=exp( i l t l " ) ( l+l t] )  ("-z)/2, and k ( t )=  
(1 + It [)-~/2-ir. Since w is bounded, by Theorem 1.3, it is enough to show that 
there is a constant, B, such that for any (1.2)-atom b, supported in I = [ a ,  fl]~ 

(4.1) f tt,-=l>~) Ik(t-cQI l{g*(wb)}(t)] dt <- B, 

where 6=111. Denote the left hand side of (4.1) by 7/ and consider two cases. 

Case 1: 6_->1. Using the notation of Proposition 2.1 with p=2,  notice that for 
f E L  ~, g . f - - - -K. . f .  Thus, by Schwarz's inequality and Proposition 2.1, we get 

~e _<- (ftl,-~t>2~)[k(t-e)]2) 11~ Ilg * (wb)lh 

<= C6(1-')/~llwbll2 <= c6 -~/2 <= C, 

since b is a (1.2)-atom and 6_->1. 
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Case 2: 0 < 6 < 1 .  Let A=6 -~/(a-1) and write 

7 t -= f{2~_1,_~1~=2~} ]k( t -~) l  l(g.(wb)}(t)l  dt 

]k( t-~)l  [{g*(wb)}(t)] dt = ~gl+ ~/2. 

Arguing as above, we get ~t'2<-CA~X-a)/2[wb12<=C61/26-a/Z<=C. To handle 7tx, 
in the inner integral (i.e., g.(wb)) add and subtract (1 + [~])-ir and then use the 
fac t tha t  fb=O to get 

= [k(t-~)1 I f ,  { g ( x -  t) [(1 + lx l ) - ' r - (1  + Iml) 

+ (1 + I~ !)- '~ [g ( x -  0 - g (~ - O] } b (x) dx] at. 

By the Mean Value Theorem and the fact that [t-~l=>21x-m[, we get 

[(1+ lxl)- '~-(1 + I~[)-'~l <- [rl Ix-~l  
and 

]g(x- t ) -  g(~-  Ol <-- C l t -~ [~ - l (  1 + [ t-~l)  (a/z)-x lx-~[ .  

Since Ix-~l_-<~-<_l, 

(I{ (]'~]-~']t--o~]a--1)(1-~-It--~l)(a--2)]2 I 
~gl --<-- C~ 2n<__lt_ml<_2~} (l+lt_c~l)a/~ dt Ilblh 

(,, 1 I,, 
_<-C~ ? l n ~ +  -<C( I+~ ,  . 

Thus, B in (4.1) is bounded by C(1 + 171). By the statement following Theorem 1.3, 
this proves the theorem. 

Remark. Suppose w(x) is a real-valued function. Clearly, w(x) -~  is then 
bounded, so we may replace (1 + It [) in the definition of Ui~ by w(x) if w satisfies 
the following condition: 

Iw(x)-"- w(~)-~'[ <= Cl~l Ix-~l, 

This is used to estimate the first inner integral in 7J~. The rest of  the argument 
is the same. 

Lemma4.3.  Let a > l ,  l<p-<2 ,  and w(x)=(l+lxl) ~. I f  

- -a (p- -1)  --< e <_-- a(p--1) ,  then 

[Iga, x+~y *J'llp, ~ <= C(1 + [Yl)[Ifl[p,w. 

Proof. By interpolation with change of  measures (with p fixed), it is enough 
to prove the result for e =  - t -a(p-1) .  We use the ideas developed in Section 1 for 
analytic families of  operators. 



248 S. Chanillo, D. S. Kurtz and G. Samoson 

In order to prove the result for e=a(p-1) ,  define 

Tzf(x ) = (1 + ]xl)"z/2(ga.l+iy . f ) (x )  
and 

Uzf(x) = (1 + Ixl)=/2f ga, l+iy(X i Of(t)(1 + It[)-"=/2 dt. 

Since l+lxI_~l, if f and g are simple functions, F(z )= f (UJ)g  is continuous 
on D and analytic on the interior. Further, 

IF(z)l <= [IKa, l +~,ll= llfllx f ( l + lxl)a/2 lg(x)[ dx <= C 

since g has compact support. Thus, F is of admissible growth and both T~ and U~ 
are analytic families of operators. 

By Theorem 3.2 and Lemma 4.2, 

IlU~+,rfll2 <= C(l +lT[)(l +[Yl)llfllz and 11Uerfll~ <= C(l +lT])(l +lyl)llfllH,. 

Thus, by Theorem 1.1, 

IIZofllp <= C(l +Tyl)llfllp,(l+lxo,o/~o~, where 1/p = 1-0/2. 

Since Tof=K,.l+~y.f (for any 0) and O=2(p-1)/p, the proof for c~=a(p-1) 
is completed by the definition of To. 

To prove the result for e = - a ( p - 1 ) ,  we set V=f=U_J,  zED, and repeat 
the argument above. This completes the proof of Theorem 4.1. 

Notice that Lemma 4.3 is true for 0 < a < l ,  and, by duality, for p > 2  if 
-a~e<=a. If we use the remark foUowing Lemma 4.2 and Theorem 3.3 (instead 
of Theorem 3.2), we have 

Corollary 4.4. Let 0 < a # l  and l<p<oo.  Set /3=min (a(p-1),  a). Suppose 

1 <= w(x) <= C ( l + [ x l )  u, for all x; 

w(x) <- Cw(t), for lt[/2 <= Ixl <= 2Itl; 

Iw(x)-~'-w(t)I'~l <- c[~llx-tl, for all 7 and Ix-t l  ~ 1. 

0 

ii) 

iii) 

Then 
IIg~,t+,y*fll~,w ~ C(l+lYl)llfl]~,w. 

Lemma 4.3 dealt with L p for l<p<=2. We now consider p > 2  and prove 

a a 
Lemma 4.5. Let l < a ,  b ~ l ,  and ~ - + b ~ l .  Suppose 2<P<=1-- ~ (or 2<p<oo 

when b = l )  and O<=~<-bp-2+a. Then 

IIK.,b +,y * f l ip ,  ( i+ Ixl)" <-- C( l  + lYl)Ilfllp, o +  Ixl) ". 

Proof. Using the notation of the proof of Theorem 3.2, we write 

(K.,b+,.* f)(x)  = F~(x)+ F2(x ). 
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By the remark following the proof of Theorem 3.2, for any a > 0  and p satisfying 
a a 

~ p ~  ( l < p < ~  for b=l ) ,  
a + b - 1  1 - b  

(4.2) f lFl(x)lPO +[xD~ dx ~ C(l +]y[)P f lf(x)[p(l +lx[)= dx. 

For F2 we have 
f IF= (x)l'(1 + [xl) = dx = Z2=0 I=, 

where 

I= = f~=If,,,,<~=_,,Ko, b+,,(x-Of(oat['[(1 + Ixl)" dx 

2"-l f ~mlf K(a2+i,(x-OfCt)dt[~ (1 +[xD = dx 

+ 2p-lfe,.lf{it[>=v._liKJ~)+i,(x-t)f(t)dtl'(l+lx[)~dx= I=,~+I=,2. 

The argument leading to (3.4)now yields 

(4.3) ~ = 0  Im,2 ~ C(1 + [y[)" f [f(x)f(1 + Ix[) ~ dx. 

Thus, we need only consider 

Z2=oIm,~ : Z2=o 2P-~ f ~,. I f  K(~)+,, ( x - t )  f ( t )  dtlP (l + [x[) ~ dx. 

Fix a, b, and p satisfying the hypothesis and set a=bp+a-2 .  Define 

TZ(x) = (1 + [x])b+("-2)/PZ~ o Z({X~fm}) (K(.~)i,  * f )  (x). 

For x~supp Tfc{[xl>=l}, say 2m<--]X[~2 re+l, we get 

]xl (2-")/9 [ r  f (x ) l  = [xl(2-")/P(1 + [xD b+(2-")/" [(K(,~)+ iy *f)(x)]  

<= c f (~m_~,_,~_~+,) (1 + lx[)b(1 + Ix-  t])-b if(t)] dt <= c f [f(t)] dt. 

Consider now 
f [xi~l-(2/p)l (a-2)[rf(x)[3 dx 

= ZZ=of~ ]xlCl-(2/m( 1 + [xl) 'b+u("-2)/, [(K(.~)+*, *f)  (x)l 2 ax 

<- CZ~=o f ](K~3)+iy*f)(x)]=(1 + [x[) ~+2b-2 dx 

By (3.5), we get ( a = a + 2 b - 2 )  

f [xl El-(2/m("-=) ]rf(x)[ ~ dx ~ C(1 + [yl)~ f If(x)P dx. 

Thus, T satisfies Proposition 1.9, so that 

[ITfllp <= C(1+ [yl)lIfllp,(~ +lxl),-,. 
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Rewriting, we get 

(4.4) 2~=oI=,~ = 2~-*llTfllg <= C(l+lYl)p f [f(x)l(l+lx[)P-=dx. 

a 
Since p-2<=bp+a-2 for P < = l - b '  combining (4.2), (4.3), and (4.4) we get 

[Iga, b+~y.fll:,(l+l~l: <= C ( l +  ]yl)llfl[p,(l+l~l)~. 

With a, b, and p fixed, using interpolation with change of  measures between this 
result and (1.2) completes the proof. 

Remark. We note that if 0 < a < l  and b = l ,  or if p = 2 ,  this result is a con- 
sequence of Theorems 2.3 or 3.2. 

Proof of Theorem 4.1. The positive values for e are contained in Lemmas 4.3 
and 4.5. The negative values follow by duality. 

There are examples of weights which satisfy Corollary 4.4 and are not in Ap 
nor of the form (1 + Ix[) ~. Such examples can be constructed in a manner similar 
to the one at the end of  Section 3, but must be smoothed out to satisfy the last 
condition. 

5. Applications to Ko, b +iy and related operators 

Using the resuks of  the previous sections, we now consider the kernels K,,b+,y. 
We will also show that weighted norm inequalities for similar kernels and related 
multiplier operators follow from results for K,,b. We begin with a result for 
Ap weights. 

a a a 

Theorem5.1. Let ar  b < l ,  ~+b_->l ,  and a+b_l<=P<=l_b . I f  

then 

wEAp and 6- - - ,b -e  1 _ 1 + 1  a 1 - ~  with e = a P 2 2 '  

I/K~,b+,,*fllp, w~ ~ C(1 + lyl)llfllp, wo. 

Note that this result is true when b =  i and 1 < p <  oo. This is then Theorem 2.3. 
Thus, proving Theorem 5.1 will complete the proof  of Theorem i. 

Proof. Let Kz(t)=exp(i]t[a)(l+[t]) -('+*y+O-')z) and define Uzf(x)= 

w'(x)fKz(x- t)f(t)w,'(t) dt By the definition of  a, p equals either - - a  or a.. 
a + a - 1  1 - ~ "  

By (1.2), 
[I U~rfllp <= C(1 + lyl + le[)Ilflle =< C(1 + lyl)(1 + Iv[)Ilfl]p. 
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Since wEAp, Theorem 2.3 implies 

I[ ul+j l l .  <= c(1  + lyl + [vl)ll/.ll <= c(1  + lyl)(1 + Ivl)llf[I.. 

Using interpolation of  analytic families of  operators, we get 

II Uofllp <= c ( 1 +  [y])llfll. with 0 _-< 0 <= 1. 

Rewriting, this becomes 

[Iga,=+iy+ (1-~)0*fllp.~o <_- c(1  + [Yl)Ilfllp.w0, 

and solving ~ + ( 1 - ~ ) 0 = b  yields o=b-~=r~. 

Note that ~<=b<=l so that 0=<6<-1, and wEAp implies that wnEA.. Thus, 
Theorem 5.1 implies norm inequalities for kernels and multipliers studied in 
[5, 8, 10, 12, 13, 14]. Consider first the convolution kernel ls -~, 
0 < b <  1. Since 

_Ka.b (t) ----- Ka, b ( t)+exp (iltl")[Itl-b-(l+ Itl)-b], 

with the last term on the right having a radial majorant in L 1, we have that 

IK'a,b *f(x)[ -< [K., b . f (x) [  + clf* (x)l. 
a 

The norm inequality follows. For K'~b with a ~ 2  and 1---<=b<-0,  use inter- 
' 2 

polation with change of measures between the known unweighted result for K~. 1- r 
and the previous weighted result for any positive b. This gives the appropriate 
value of  6. 

Similarly, let 0(4) be a smooth function, 0(4)_=0 for 1~[~1/2, and 0(4)=1 

for 14[=>1. Let m(~)=m~.p(~)=O(4)exp(il4[~)]4[ -~, with ~>1  and /~+~->1.  

Define the multiplier operator Tf by (Tf) ̂  =mr. It is shown in [14] that T f = K . f  

o~ B-l+~/2,andlh(t)l<_c(l+[tl)_<~+.). where K(t):K.,b(t)+h(t ), with a =  _ i '  b =  ~ -  1 

As above, 
[Tf(x)l = Ig*f(x)[ <= lg~,n*f(x)[+clf*(x)l. 

If m(~)=m~,~(4)=O exp(i[~l~)[41 -~, with e < 0  and ~ + - ~ < 1 ,  it can be 

shown that K(t)=K,,b(t)+h(t), with a,b, and h(t) defined as above. Thus, 
Theorem 5.1 extends to these operators. For the multipliers, we need 0_-<B_-<e/2 
when e > l  and e/2<-~<-0 when c~<0 so that b<-i and a/2+b>-l. Notice 
that we can only guarantee norm inequalities for Ap weights because of  the presence 
of  the maximal function. 
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a a a 
Proposition 5.2. Let a r  b<l ,  ~ + b > - l ,  a + b - 1  <- p N l - b  and a= 

p ( b - 1 ) / a + m i n [ p - 1 ,  1]. Suppose w is a non-negative weight such that for any 
yEN, 

[IK~.~+i,*f}l=,~ <= B ( I +  ]yl)l}fllz, w. 
Then 

[[K~,b+,y.fllp,~, <= C(1 + }Yl)l[filp,,~'. 

Let Kz(t)=exp (i/t ]")(1 + It]) -(~+~'+"(~-x)/~) 
By Lemma 1 of  [8], the 

Proof. 
w~t~(x) f Kz(x - t)w-~l~(t)f(t) dt. 
Kir(t) is bounded by B(1 + lYI+ IS]), 
for all 7, 

and set Uzf(x)= 
Fourier transform of  

with B independent of 7. This implies that 

I} U~,fI]~ ~ B(1 + tyl)(1 + lT/)]lfll~. 
By hypothesis, 

II U~+~fl}2 <= C(1 + ly])(1 + ]71)llfll~, 

so that by interpolation of  analytic families of  operators, we get 

(5.1) [I Uof]12 <= C(1+]yl)]lflI2, 0 <= 0 <= 1. 

Setting b =  1 +a(O-  1)/2 implies 0 = 2 ( b -  1)/a+ 1 =~.  Rewriting (5.1) and using 
the definition of  Uo gives 

[IKa, b+iy*fl12,,~" <= C(1 + [YI)[Jfll.o,w ~, 

which proves the result for p = 2 .  
a 

To handle arbitrary p, a + b - 1  <=p<-2, we use interpolation with change of  

a 
measures between the weighted L ~ case above and (1.2) with p =  . This 

a + b - I  
implies 

[IK.,b+,r*f]lp, w~ ~ C ( I +  lY[)[Ifl[p,w- 

a , l f a - p ( a + b - 1 ) ]  
with - a + b -  l~P<=2 and ~=[2(b-1) /a+ U p l a - - ~ - - ~  ~] p = p ( b - ! ) / a + p - 1 .  

This completes the proof  of  the theorem for p<=2. The remainder of  the theorem 
follows the same argument using (1.2) with p=a/ (1 -b ) ,  

We now consider weights of  the form w(x)=(1 + Ix]) ~ and prove 

a 

a a <= P <= - b' and w(x) = TheoremS.3. Let a > l ,  b < l ,  ~-+b~>l,  a + b - 1  1 

(1 + Ixl) ~. I f  

i) ~ p < 2 and a - 2 + ( 2 - a - b ) p  ~= c~ < a ( p - 1 ) + p ( b - l )  
a + b - I  = = 
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o r  

ii) 

then 

a 

2 N P ~ l _  b and - a + p ( 1 - b )  <= ~ ~ b p + a - 2  

Ilga, b+i, * fll~,w ~ C(1 + lYI)llfll,.~. 

Proof. The ranges on c~ in i) and ii) are dual to each other. By interpolation 
with change of  measures, it is enough to prove the result for e=a(p-1)+p(b-1) ,  
and 7=bp+a-2.  By Theorem 3.2, we can set w(x)=(l+lxl)" in Proposition 5.2 
which proves the result for c~ = a(p-  1 ) + p ( b -  1). The other value of ~ is contained 
in Lemma 4.5. 

Theorems 4.1 and 5.3 contain the sufficiency of  the range of  c~ in Theorem 2. 
The necessity of  the range is shown in the next section. 

6. Necessary conditions for Theorem 2 

Our first result shows that for these kernels a weight which is zero on a set of  
positive measure is zero almost everywhere. 

Lemma6.1 .  Let a > 0  and b<:l. Set 
either w(x)=O almost everywhere or K.,b+ir 
on L~ for any p. 

E = { x z w ( x ) = O } .  I f  IEI~0, then 
does not define a bounded operator 

Proof. Assume ]Eclr (EC={x~E}). Let BR={IxI<R }. We need only 
consider two cases: 

1) There is an R > 0  such that IE•BRIr and [ECc~(B2R)c]r 
2) There exist e,R>O such that IE~B~[=O and w(x)=0 for almost 

every Ix[> R. 
To see this, let Ro=inf{R:  IEc~BRI/:O}. If Ro=0, then IEnBRI~O for all 

R>0 .  Since IE~n(BzR)Cl increases to IEr as R approaches 0, we can choose 
an R satisfying 1). Next, suppose Ro>0 and no R satisfies 1). Then, there is 
an R such that w(x)=0 for almost every Ix[>R. I f  e<Ro,  IEcaB~l=O. Thus, 
R and e satisfy 2). 

Case 1. Without loss of  generality, assume l{x>2R: w(x)r162 Choose 
N>2R such that for /~ = max (4aN "-1, 2a(2N+ 1) "-1, 2]y], 1) we have I{N< x<N+ 
(1/#): w(x)r  Let  

f (x) = )~( {xE E~BR}) exp ( - i  IN-xla)(1 + IN-  xl)iL 
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Then, for N<x<N+(1/#) ,  

I f d(x-O"e-i(N-t)"(1 + [N--t[) iy 
[(ga, b+iy *f)(x)] = nnR (1 + Ix--t[) b+iy dt 

= If eit{(x-t)'-r'"(t+x-O'-{(N-t)a-rlnO+N-t)'l[(1 + IX-- t[) b dt . 

Applying the Mean Value Theorem to the exponent of e and taking the real part 
of  the integral, we get [I c o s  [ { a {  a - 1  -y/(1 + ~ ) } ( x  - N)]  

[(Ko, b+,y *f) (x)[ dt ,  
(1 + I x -  tl) b 

for some ~ , N - t < 4 < x - t .  Since ItI<R<N/2 and N<x<N+(1/#) ,  we have 
[ x - t [ < 2 N + l  and N/2<4<2N+l .  If a < l ,  

[a{a-l(x-N)l  <= a(N/2)"-l(1/I ~) <= (2aN"-O/(4aN ~-1) = 1/2; 
if a > l ,  

[a{a-l(x - U)[ -<_ a (2N+ 1)"-1(1//0 _-< (a (2N+ 1)a-0/(Za (2N+ 1) a-') = 1/2. 

Finally, if y # 0 ,  

1 1 
Y ( x - N )  <= lyl~- ~ lyl 2--- ~ = 1/2. 

Thus, for N<x<N+(1/l~), with M = i n f  {(1 + ] x - t l ) - b :  tEEc~BR}>O, 

[(K,,b+iy.f)(x)[ >= Mcos  (1)[EnB,  I > O. 

By the definition of  f ,  Hf][p,~,=0 while [](K,,b+iy.f)l[p,w#O. 

Case2. Choose R > 2  such that R<Ix]<2R implies w(x)=0 almost every- 
where. Let f (x )=x({R< lx[<2R}) exp (-i[xl")(1 + Ix[) ~ and fix e<(2 .31"- l laR"-~+ 
21y]+l)  -1. If  ]x]<e, arguing as above, 

eilx-tl~ + lt[)iY dt 
[(K.,b+,y*f)(x)[= f{.<l,l<=-} ( l + l x - , l ) ~ * , ,  

cos [{a ]{-- t[ ~ - l - y / ( 1  + 14 -- tl)} tx[] d r ,  

for some 4, ]~[<[x[<e. Since e < l  and It[ is equivalent to R, R/3<]t-r  
and alt--4l"-*lxl<--a.3l"-XlR"-t/(Z.31"-alaR"-t)=l/2 and ]y/(a+14-tl)[lxl<= 
[yl/2[y[=l/2. For Ixl<~, with M=inf{ ( l+lx - - t l ) -b :  R<It]<2R}, 

I(Ka, b+fy*f)(x)l >~ MCOS (1)2R > 0. 

The proof  of  Case 2 is completed as above. This proves the lemma. 
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In the previous proof, the main steps were to choose a function of the form 
f ( x )=zE(x )  exp ( - i I N - x l " ) ( l + l N - x l )  iy, for an appropriate set E and real 
number N, use the Mean Value Theorem on the exponent of e in the integral 
defining K,, b +~y*f, and take the real part of the integral. Changing the argument 
slightly, we prove 

Lemma 6.2. Let l<-p<~o, 0<a,  and w(x) positive and locally integrable. 
Suppose Ka, b+iy defines a bounded operator on L~. There exists a constant 
d=d(a,  lyl)~l  such that for any positive R and 6 satisfying Rl-"/2<=O<=R/2, 
i f  S(R,  6)= {R~Ix]<--R+(dR2-"/6)} then 

a. f s  (.,~ w(x)( l + lxl)-bP dx <= c f ~ r.j~_,~ w (x) dx 

Proof. Fix R and fi as above. Assume y=O and consider S + = { x 6 S ( R ,  6), 
x>O}. Set f(x)=z({Ixl<-6}) exp ( - i [ R - x [ a ) .  Then 

f ]  e"'-"'-"R-'t~ I" (6.1) ]lK",b*fllg, w= f{f,l<-~} ( l+[x_t[)~ dt w(x)dx  

eiF(t) 
dt I p w (x) dx, L. (1+ Xx-,f)  

where F(t) = ]x - t 1"--]R - t[a. 
Since [t]<_--3 and [x1>26, F is a differentiable function near the origin and 

F(t )=F(O)+F'({) t  where ~ is between 0 and t. By assumption, dR=-"/a<=2R. 
It follows that [x-{[ and [R- i [  are bounded above by 6R and below by R/2. 
Thus 

(6.2) [F'(0tl -< [a(a--1) I'X-es a-z dsl6 < B ( a ) R " - ~ ( x - R ) 6  ~ B(a)d. 
J R - - ~  ' = -  

Choos ing  d ~ l  sufficiently small, IF'(~)tl~l.  
By the above estimate, since e *e(~ is independent of t and has modulus 1, 

taking the real part of the inner integral in (6.1) yields 

IlKa, b * fl[f,,~, ~ f s+ I f  ~,,,~_~ cos (1)(1 + Ix[)-b dtl, w (x) dx 

=> ca,  f~+ w(x)O + Ixl)-~, dx. 

For {xCS(R, 6),x<O}, set f(x)=x({lx[<-6}) exp ( - i [R+x[")  and repeat the 
argument. The norm inequality for K,,b implies 

a. f ,(..,) w(x)(l + lxl)-b~' dx <- c f (~.~,~ w(x)dx. 
as we wished to show. For y#O, multiply f by (1 + [R-t-xl) *y and argue as above. 
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Let  a > l  and w ( x ) = ( l + ] x ] )  ~. A consequence o f  Lemma 6.2 is that  for  
~ m i n  [ a ( p - 1 ) - p ( 1 - b ) ,  b p - 2 + a ] ,  K,,b+iy does no t  define a b o u n d e d  operator  
on L~. The case o ~ > a ( p - 1 ) - p ( 1 - b )  is excluded by setting 6 = R  1-" and letting 

R approach  infinity; a > b p - 2 + a  by setting 6=-1 and  letting R approach  

infinity. By duality, Ka, b+,y does no t  define a bounded  opera tor  on LPw if a <  
max [ - a + p ( 1 - b ) ,  a - 2 + ( 2 - a - b ) p ] .  This completes the p r o o f  o f  Theorem 2. 

The previous result is invariant  under  translation. Repeating the a rgument  

and using the fact tha t  for a <  1 the integral in (6.2) is convergent  at infinity, we have 

Lemma 6.3. Le t  l ~ p - < o o ,  0 < a < l ,  and w(x) positive and locally integrable. 

Suppose Ka, b+~y defines a bounded operator on L~. I f  I is an interval with center 
xl  and i = { I x - x ~ ] < l I ] l / o - ~ } ,  then 

f + c f ,  w(x) 
Taking I = [ - - 1 , 1 ]  and b = l ,  it follows that  K,,l+iy defines a bounded  

P if and  only if - l < ~ < p - 1 .  That  is, for 0 < a < l  and b = l ,  opera tor  on L(~+lxl)~ 

the range on ~ for  the weights (1 + ]xl) ~ is exactly the A v range. 
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