Weighted L? estimates for oscillating kernels

Sagun Chanillo, Douglas S. Kurtz and Gary Sampson

0. Introduction

Let 0<a=1, b=1, y¢R, and consider the kernels
Kopriy(@ = exp (Qlt])(L+ [t =C+D),  1cR.

The convolution operators K, p.;,%f and closely related weakly singular operators
and multiplier operators have been studied by many authors. It is well known that
these operators satisfy the following norm inequalities [5, 8, 10, 12, 13, 14]:

(01) ”Ka,l*f”p = C”f“p: 1 = p <o
and

a a a
02)  1Kp*fl,=Clfl,, b<1, F+b=1, s sl ey o

In addition, K,; maps H* into L' and, by duality, L= into BMO.
The purpose of this paper is to consider norm inequalities of the form

”Ka,b+iy*f”p,w = C”f”p,wa

where | fll,»=(fg|f(x) Pw(x)dx)"”?. Our approach is to consider these operators
as convolutions, although they can be treated as multipliers and many of our results
originated from this latter point of view.

Our first result is

Theorem 1. Let O<as1, b=1, and %+b§1. Let l<p<oo when b=1

and —_=p=_2_ \hen b<1. Let wed, and d |11+1“
=p= <1, =ql——— —
T P 1_bwen weEAd, and define o ap 2' 5
b—
and 6= a.Then,
1—a

I1Ka, 415 %S 1l p,we = CA+ DI p,we-
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This result is a consequence of the fact that the sharp function of K, ., *f is
controlled pointwise by the Hardy—Littlewood maximal function of f. This
implies the L% norm of K, .;*f is bounded by the L% norm of f* for any
A. weight, w, and by the L% norm of f for any A4, weight. The use of the
sharp function is motivated by Theorem 1 of [6] where it is used to show that singular
integral operators map L= into BMO. See also [1,4,9]. The result extends to
b<1 by interpolation of analytic families of operators.

Next, we consider weights of the form w(x)=(1+]x])*. Such weights are
particularly well suited for these kernels. These operators are shown to satisfy

Theorem 2. Let a=>1, b=1, %+b§1, and wx)=(1+]x])* Let 1<p<oo

péljl—b when b<1. Then,

IIA

when b=1 and

a
a+b—1
1Ka,p+i9 %S g = CA+ YD1 5,

max[—a+p(l—>b), a—2+pR—a—>b) =«

if and only if

=min[a(p—1)—p(1—b), bp+a-2].

The conditions on o reduce to a—24+p2—a—b)=a=a(p—1)—p(1—->b) for
p=2 and —a+p(l-b)=a=bp+a—2 for p=2. Theorem 2 is proved in several
steps. A three parts proof is used to derive the weighted L* result for K, ;.
The rest of the proof uses interpolation with change of measures, interpolation of
analytic families of operators, and a three parts proof.

We wish to point out that the range on « in Theorem 2 is closed, which is
quite unusual for a single weight problem. The weight (1+|x|)*€4, if and only
if —~l<oa<p—1. When b=1 and p=2, therangeon « in Theorem2is —ag=oa=a.
Thus, for a>1, there are weights (1+|x|)* not in A4, for which K, ,,;, defines
a bounded operator on L%,. This is not the case for powers of |x|; we only get
norm inequalities for |x[*€A4,. (See the end of Section 2.) Finally, Theorem 3.3
shows that for weights which are bounded away from 0, grow no faster than |x[**%-2,
and are essentially constant on annuli, X, ,; defines a bounded operator on LZ.
We construct such a weight, neither in 4, nor a power of 1+ |x]. In Section 4,
Theorem 3.3 is generalized to other values of p if w satisfies, in addition, a
smoothness condition.

We will consider the question of weak-type (1,1) estimates for K,; in a
forthcoming paper. In particular, for O<a=1 and weA4;, we will show

w(lr: (Ko 20 = 2) = = [1/ Gl d.
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The paper is divided into six parts. Section 1 contains background information.
The proof of Theorem 1 is begun in Section 2 with 4, results for K, ;4. The
sufficiency of the range of « in Theorem 2 for K, ,,;, is contained in Sections 3
and 4. The results are extended to K, »+iy in Section 5 and norm inequalities for
related operators are mentioned. The necessity of the range of « is considered in
Section 6.

We assume all functions and sets are measurable with respect to Lebesgue

measure. By the letters B and C we denote constants which may vary from line

1 1
to line but are independent of f* and we define the conjugate of p, p’, by —4+—=1.
p.p

The authois would like to thank C. Fefferman for some helpful discussions.

1. Preliminary results

In this section we wish to collect facts which will be useful in the sequel. We
begin by discussing the space H' and complex interpolation.

A real-valued function b(x) is called a (1, 2)-atom if

i) b is supported in an interval, I,

i) [vAx)dx=|1]71,

ity [ b(x)dx=0. :

We say a function f€H?! if and only if there exist (1, 2)-atoms, {b;}, and constants,
{2;}, such that f(x)~ Z2;bi(x) and Z|i;|<+oo. Set || fllg=inf Z|4;|, the infimum
taken over all such decompositions of f (see [3]).

Let D={z=x+iy: 0=x=1}. We say a function F(z) is of admissible growth
if there is an a<mn such that e~“"l log |F(z)| is uniformly bounded on the interior
of D. Suppose for each zéD we have a linear operator T, such that (7,f)g
is integrable whenever f and g are simple functions. The family {7} is called
an analytic family of operators if the function F(z)= [ (T,f)g is continuous on D,
analytic on the interior, and of admissible growth (see [17]). The following is well-
known [3].

Theorem 1.1. Let T, be an analytic family of linear operators. Suppose that,
Jor all v,
) NTflh = B S m

i) NTsum Sl = B2 fll
where log B,(y)=Cée"", j=1,2,C >0 and O<d<n. Then
1T /1N, = Bl S,
where l/p=(1—-1t)+1/2, with O=<t=1.
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Let T, be an analytic family of operators and w(x) be a positive function.
Consider the family of operators

(L.1) U.f(x) = wx) T, (fw=) ().

If w is nice enough, then U, is also an analytic family of operators. Our interest
in U, is that weighted norm inequalities for 7, follow from norm inequalities
for U,.

The idea of regular kernels, which has been considered by one of the authors {8],
will be useful to us.

Definition 1.2. A kernel K is called regular if it can be written as K(t)=
k(t)g(t) such that

D 1g@I=Clg®)| for |x]/2 =] =2[x],
D) [y K G—D—k@)|[g@|dx = C for t#0,
iii) K maps L? into L? (ie., KEL™).

It was shown in [8] that the kernels K, ,, O<a#1, are regular. If O<a=1
and u=0, then K, ,(t; 0)=K, 1+, ()x({[t|>u}) is also regular for all y€R.
To see this, set g(t)=exp (Z]¢[*)(1+]¢t))~"; (i) and (ii) are then trivial. We note
that (0.1) and (0.2) can be generalized to

(12 1Kz, b+i (- 5 W xS, = CA+YDISL,-

In particular, the constant, C, does not depend on y and u. Applying the proof
of Theorem 5 of [8] to the kernel Q,(t; u)=exp (i|t|)(1+|¢t])~*+P-=/2 (1.2)
follows. Note that K, ,.;(t; 0)=K, .;(¢t) and that p is restricted as in (0.1)
and (0.2). For (iii), we use (1.2) with b=1 and p=2.

We recall the following result for later use.

Theorem 1.3. Let K=kg be a regular kernel and weL>. Then
[Kx(fWlls = Clf a1
if and only if there is a constant B such that
Steeamainy Ve t=)] |{g WD)} () di = B
Jor all (1, 2)-atoms b, with support I=[a, B].

Theorem 1.3 is a generalization of Theorem 1 in [8]. The proof is essentially
the same. We note that C =B+¢(K), where ¢(K) depends only on the constants
in the definition of regular kernels and the L? norm of K.

Our first results will deal with 4, weights.
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Definition 1.4. A non-negative, locally integrable function, w, isin A, 1< p~<oo,
if there exists a constant, C, such that for all intervals, I,

(717 [ we dx) (1) w7 def ™t = C.
For a discussion of A4, weights see [11]. We will need

Theorem 1.5. Let w€A,, p=>1. Then, there exists an r, l<r<p, such that
w€Ay,.

In proving resuits for A4, weights, we will use a generalization of the Hardy—
Littlewood maximal function and the sharp function of C. Fefferman and Stein.
These are defined as

1/r
@ = s [iIfOrd) . 150w

and
F46) = sup o [, G =avis 1y, avif = [ 7).
The following theorems are easy consequences of results in [4, 11].
Theorem 1.6. Let O<r<p=<o and w€A,,. Then | £, w=Clflpw-

Theorem 1.7. Let wé A, for some q. For 1=p<eco, if f*¢L% then
1A g = ClL N w

We will make repeated use of interpolation with change of measures [16]:
Theorem 1.8. Let T be a sublinear operator and 1=p=qg<oe. If

) T yul, = Cll fuall,

i) W(TH)oly = ClSfoallg

ITLywalls = Cllfwels.
where 1/s=0[p+(1—0)/q, for 0=0=1, and w=uv}""% i=1,2.

and

then

The following result is useful in obtaining the optimal range of « for weights
of the form (1+|x|)* Its statement and proof mimic those of a theorem of Hardy,
Littlewood, and Paley.

Proposition 1.9. Let a=0, p=2, and T be a linear operator satisfying
D X®OPT X)) = Gl Sl

i) TS N, py-aiman = Col fls-

and
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Then, there is a constant, C =C, max {C,, Cy}, such that

VZf 1, = ClLA 1, o2

Proof. Consider the adjoint of T, 7%, defined by [gTf=[(T*g)f. (The
existence of T™* is guaranteed by (i) and the Radon—Nikodym Theorem.) From (i),
we get
(1.3) IT* () = C, [ 1/G) %@~ D0 dx.

Notice that (ii) implies
[T*(g () [e[r-Cmu@n-11)l, = C,| gy
setting f(¢)=g(¢)|¢ |1 ~EPIE/D-11 we have

(1.4) 1T7f1l2 = Call flle, Jx]1-(8/p)] Cam2) .

Fix p=2 and define Yf(x)=|x|T*(f()|t|®"97)(x), dv=|x|"2dx, and
du=|x|*~2dx. Since |fly,4,=f (/)| |x]|“=D")|x|@~Dgdx, it follows from (1.3)

that
v({x: (B> = v({x: Colx] | fll,a0 = 4D

= 2f;€;!|f111,dux~2 dx = (2C1/l) ”f”]-’dﬂ.
By (14),

JHT*(FC @17 (b x| dx = [1T* () le@=D07) ()2 dx
= G [ |f ()P xPe-2/7 [x[0-2nCa dx = C, [| f(x)|x|"2 dx,
1f 2,00 = Call £l aus

By the Marcinkiewicz Interpolation Theorem [17; II, p. 112],

FEf M av = CUS N, auo
with 1<p'<2 and C=C, max {C,,C,}. Thus

SIT* () 1@/ (x)

Setting g()=/£(¢) 1]~ yields

or

Y [x|P"2dx = C [|f @) |x]*~2 dx.

ST |xr 2 dx = C [ g (x)” dx

and the proof is completed by duality.
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2. The kernels K, ;.;,(f) and 4, weights

In this section we will consider the kernels
Ko 11i,(0) = exp (i[t1) A+ [z)~2—7.

We begin by deriving an estimate on the sharp function of K, ., *f, from which
norm inequalities for A, weights follow. We will see in the next section these
kernels define bounded operators on weighted I? spaces for weights in a class
much larger than 4.

To get the sharp function estimate we will need the following result which
appeared in [8; Remark 2, p. 410].

Proposition 2.1. Let K (t)=exp @t|NA+|tN)@P7, where O<a#l and
l=p=2. Then
1K * SNy = ClLfllp-

Notice that when a=2, (B,*f)(x)=(K,o*f)(x)=exp (ix){exp (i1 f(1)} (x),
where f (x)= [re™**"'f(1)dt denotes the Fourier transform of f. In this case Prop-
osition 2.1 says that the Fourier transform maps LFP into I¥ for l=p=2.
We can now prove

Lemma 2.2. Let K, 14:,(t)=exp @|t|)(1+[t)™'7, 0<axl and l<r<eo.
There is a constant, C=C(r), such that for any bounded function f with compact
support and almost every Xx,

Ka1+iy*)* () = CA+ YDA ().

Proof. Without loss of generality, we may assume x=0 and r=2. Let
1=(—6,d), =0. We want to show that there is a constant, c¢;, such that

@ 11 Kazep NO=eil dt = CA+BDLO).

Set fi(x)=f(x)x({|x|<26}) and f,=f—fi. By Holder’s inequality and (1.2),
we get

1 1 ; 1fr
@2) L ALY OIS Y AT

1jr
= GO+ (i S SO 5] = CADLFO).

Next, write K, 14,(1)=k(Oh(t), where k()=exp ({]¢|)(1+]¢t[)~" and
h(t)=(1+t|)’~*=", y=<1 to be chosen. If g is any function with support contained
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in {|x|=25},
(2.3) (Ka,1+15*8) () =fk(x—t){h(x—t)—h(x)}g(x) dx
+ [k(x—Dh(x)g(x)dx = A+B.
If t¢l and x€supp (g), then |t|<8 and |x|=25, so that
lh(x——hx)| = CA+|yDf||x["* and |k(x—0)] = |x[7".

Therefore, if E,={2*6=|x|<2**15},

4] = [ CA+yDI x| 72g () ldx = CA+IPDS [y, oy 18I X[ "2 dx

= CL+1y)s 3, @42 [, g ()] dx.

Since (2"6)7f (oy<ger1|2(x) [Ax=Cg*(0), |4]=C1+|3)(Z,279)g*(0) and

@.4) /i1 = Ca+be O,
We consider four cases:
1) a=1, 1=,
2) a=1, 0<d=<l1,
3) O<a<l1, 1=,
4) O<a=<l O0<d<l

2
Casel: a=>1 and 1=6. Choose y=——,a. By (2.4) with g=/£,, we get
r
1
771 M1 = CA+DAR O = CA+bDS O
Since B=K, (hf;), using Proposition 2.1, we get
1 1 - . 1/r )
Tifu 1B = ([ R G or @) = e g,

= OO (f e Q) e

a-—-2

Note that [l—l- ]r=1+(a—1)(r—1), where (a—1)(r—1)>0 since a=>1.

r/
Arguing as in the proof of (2.4), we see

I%If ; |B] = C571 5=@=DI £x(0) = Cf* (0)

since 6=1. Combining (2.2) with the above estimates finishes the proof of Case 1.
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Case2: a>1 and 0<d<1. Set f=— and define L by 286=§f <2F+15,

P
Let fy(x)=/ful)x({0=|x|<6"}), fi=fi—fs,» and define
;= fexp (x| +|x)) """ fy(x)dx. Then

[(Ka, 141y %f) () =1l = (K, 1445 %F)(O) — ¢f|+ [(Ko 145y ¥ f) ()]
By (2.3) with y=0 and g=/;,
(Ko, 141 %) () — 1] = ||+ [B—¢;] = CA+ [y (/)" (0)+[B—c,l,
where B—c;= [{exp (i|x—1[)—exp (/|x[)}(1+ |x))~""¥f(x)dx. By the Mean
Value Theorem, |exp (i|x—¢|")—exp (I|x|)|=c|t||x][*"}, so
B—crl = C5 [y 1y —ony X ES )] dx = C8 S, 2%y [ | /()] dx
= C3 3o (26)*71f*(0) = C8 @D £*(0) = Cf¥(0).

Thus, (Ky,1+i/(0) =] =C(1L+|yD(f)* (O +C(0)=C 1L +|y)f*(0).
in (2.4), [(K,1+i/0(t)| is handled as in Case 1. Putting

. 2—a
Setting y=
r

these estimates together,

1
711 Faren @ —erldt = CA+ DA O.
This completes Case 2 and proves (2.1) when a=1.

Case3: O<a<1 and 6=1. Define f§,L,f; and f; as before. Set
cr=fexp (7 [x[)(1 +|x])*~?fy(x)dx. Then

I(Ka,1+iy*f2)(t)—cll = [(Ka,1+iy*f:;,)(t)l+ ((Ka,1+iy*ﬁ)(t)_cll‘
The arguments here mimic those in Case 2, with the roles of f; and f, reversed.

Case 4: O<a<1 and O<d<1. In this case, set
er=fexp (F|x|)(1 + |x)~ 2 fi(x)dx. We have

Koy 2/~ 7] = 11+ | [ {exp (ilx—1]%) —exp (XD} (L + %19 1= £3(x) dx].

|4] is handled as before and the second term is estimated by a constant times

O f*(0)=/f*(0), since d<1. Adding all the estimates proves (2.1) and completes

the proof of the lemma. '
Using Lemma 2.2 we easily prove Theorem 1 for K, ;..

Theorem 2.3. Let l<p<oo, 0<ax1 and wcd,. Then

1Ka 1439 %S lp,w = CA+YDIS N5,
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Proof. By Theorem 1.5, there is an r, l<r<p, so that wéd,,. Let f be
a bounded function with compact support and apply Theorems 1.6 and 1.7 and
the previous lemma, to get

1K1 4ty %S g = ClKa1aiy %) ¥l = CA+ DS = CA+ DI 5,00

Since bounded functions with compact support are dense in LF, the result follows.

A consequence of Theorem 2.3 is that K, ,4; defines a bounded operator
on L2 for w(x)=(1+|x)*, —l<a<p—1. However, a much wider range of
« is allowable when a=1, which we prove in the following sections. We note
that these weights are peculiar to this kind of kernel (i.e., with denominator (1+|x[))
and that consideration of powers of |x| does not lead one out of 4,. In particular,
fix a,0<a>1, and choose e<(2"/%3)~1. Let f(x)=y({e<x=<2¢}) and [x|<e. Then

(Ko x/Y09) = | f7* exp(ilx— i (1 + e — 1)~ di]

2 cos (—1y(1+ [x—:()—ldtl = ¢ cos (1/2),

=

since |x—t|*=(3e)*<1/2. Thus, if w(x)=|x|* with a=—1, fcL? while K, ;*/¢LZ.
By duality, we see that for a=p—1,K,; does not define a bounded operator
on L%, w(x)=|x|". Hence, for powers of |x|, one must have 4,.

3. The weights w(x)=(1+x])* and L2

This section contains results for the kernels K, ;,;, on L? with weights of
the form w(x)=(14|[x|)*. Note that we only consider the case a=1, since when
0<a<1, Theorem 2.3 gives a better result than we obtain here. As it involves no
further complications, we will prove our results for K, ;..

a
Lemma 3.1, Let u=0, a>1 and d=4°. Set Qz[;,—u"‘l, da u“‘I] and
J=R~—Q. Then, there is a constant C =C{(a, b) such.that
| ot e Kaprip@e di] = C(U+ Dt~ {u"2 10 (x) +u~" 2, ()}
Proof. Let x¢J and write
? = f{u/2§ltl§4u} Kanbﬂ'v (t)e—itx dt

—_.‘/_ eiltl“e-—itx(altla—l__x) it
T J {uizsl) =) (1+lt[)b+iy(a|t[a—1_x) .

Using integration by parts (i.e., integrating the numerator and differentiating the
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rest) and noting that for u/2=|t|=4u, |a|t|*~*—x| is equivalent to |x| if |x|=dau*~"
and to 2*~t if leé%u“‘l, we see that |®|=C(1+|y)ut=~% If x€Q, we can

use van der Corput’s lemma to show |®|=C(1+|yut—b—@2,

For p=2, Lemma 3.1 improves (1.2) to
G.1 [Kapaiy(- 5 w)%flla = CAU+[yDut 2= £,

with C depending only on @ and b.
Using Lemma 3.1, we prove

Theorem 3.2. Let a>1,§+bzl, b=1 and wx)=(L+|x|7, with |o|=a+

2b~2. Then
1Kz b+iy* Slla,w = CA+YDIS 2,0

Proof. Let E,={2*=|x|<2"*}, k=0,1,2,.... Define fy(t)=1()x({lt|<1})
and  fO=fOr{t€E1}), k=1,2,...; also, x,(O)=x({l{|<2**"}) and
Xk,z({lﬂézk-l-l})’ k=07 13 29 ... . Then (Ka,b+iy*f)(x)=Fl(x)+F2(x)9 where

Fi () = 2o X, s ) Kaprip* fI(X), =1, 2.

Consider F;. If |x|=1, then y (x)=1 forall k sothat Fi(x)=(K,, s+ *f}x).
For any =0, by (1.2)

3.2 Sis=n 1R @A+ [xD*dx = C2(L+ |2 [ 1) dx
= C2°(L+ YD1 15 s g

Suppose x€E,, m=0. Then, x .(x)=1 if and only if k=m; for such
x, Fy(x)=(K,, p+iy ™)), where f™x)=2"  fix)=f)x({|x|=2""'}). Therefore,

Soeon E@PA+ ] dx = 37, [ [FGRA+]x])dx
= C 3 o2 [|Kapeiy* NP dx = CQA+ D2 S, 2™ [ (o) dx
= COU+ D2 3720 2™ [mamy S dx
= CA+D? [ yonn FOOE (S 2m) dx = CU+1y]? [ 1/ ) dx.
Using (3.2), we see
(.3 - [IE@PRA+|x)y dx = CU+ D [ 1/ @R A+ |x]) dx.

Let a=a+2b—2. Since the support of F, is contained in {lx|=1}, for
x€E,, m=0, g (x)=1 if and only if k<m. Thus

SIBR@PA+xDdx = Zn_y o | [ig<ams Kapen G=0 @ dif (1 +]x)" dx

= Z:na:o I,.
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For m fixed, we can view the support of K, ,4+; as contained in the set
{2"t=|x|=2""2) Let KU, (=K, 511y (15 2"~ K, 545, (13 273, Note that

Lo=2 [ | [ Ky (x—0) £) diff (L+]x]) dx
+2 jEm | [ iimameyy KDty (e — £ () diff (14 x| dx = L+ Ly, 2

where I, ,=2" [, |F(x)Pdx (with F; defined with respect to K(3,,). By
(1.2) and the argument preceeding (3.3),
(3.4) o Tua = CU+ YD [ IFLRA+]x))dx.
Plancherel’s Theorem and Lemma 3.1 (with #=2") imply

Loy = €2 [(K(Res)” P IF @) dx

= (CLt [y {27 [ 7 (D] 1o (x) dx-+27 [ |](3) 1, (9) e},

where Q=Q(m)=[4"%2""-D, 4°2™“-D] and J=J(m)=R—Q(m).

Adding up the estimates and using the bounded overlaps of the Q(m)’s and
the definition of o yields

(3.5) | o dma
= CAUH YD Zr_o{ [ 1F ) xom () dx+27m [ f(x)[ dx}
= CUHYD{ [ ITOR (S0 Xom () dx+1£13}
= CL+DHCISIB+IF13 = CA+IpDIAIE

By (3.4) and (3.5), since « is non-negative,
SR +x)dx = C Sy I = CA+ YD FIE a s sy

This completes the proof when a=a+2b—2. We get the result when o = —(a+2b—2)
by duality. Using interpolation with change ot measures between these two end-
point results completes the proof of the theorem.

Remarks. We note that because of (1.2) the estimate for F; works for any
positive « and any p such that convolution with K,,,; or K, . defines
a bounded operator on L?. Theorem 3.2 is also true for b<1 when O<a<l.
This result will follow from Theorem 5.2.

Before considering other values of p, we would like to make some observations
about the proof of Theorem 3.2. The estimate (3.2) uses the facts that w(x) is
bounded above for |x]=1 and bounded below for all x. The rest of the estimates
use the facts that w(x) is essentially constant on annuli and bounded above by

[x]**#=2, This is obvious for F,. Suppose that w(x)=Bw(y) for [y|/2=|x|=2|y],
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with B=>1, and w(x)=c|x|**®~% Assume §+b>l. Since w is constant on
annuli, for F; we need only consider
T=[o |[qmomen Kopsry =D @O i () dx
= Bw @ [ | [nremisey Kas o (o= D1 dif* dx
[ | oy Kap s — 0 @) dif ds},

where s=m+(ma/Tf), with p=log, B and T chosen so that S =[(T—1)a/T]+
2b—2=>0, and m=2Tf/a. By the condition on w,

w2m) w2 w(2°™)
w2y~ w@t) T T w ()

so that w2™)=B*""w(x) for all x such that 2"=|x|=2° Therefore by (3.1),
I= C(L+pDPw@m27me* D=2 [0 imag ) dx
+CA+|ypwEm2s@re-n [ P dx
= C(L+|yA(Bem)27m@+5=0 f12 4+ C(1+ |y]22m 9@+ B2 £z
= C(L+|y| 2 S+ 2-tmaer2=n/Ta}| £2

é Bs—m’

We also note that Lemma 3.1 and Theorem 3.2 are valid for O0<a<1. Thus,
we have the following result for weights which are essentially constant on annuli:

Theorem 3.3. Let O<a1,b=1 and _az_+ b=1. Suppose w(x)=1 and satisfies

i) w() = CA+x])**%-2% forall x, and
ii) w(x) = Cw (D), for )2 = |x| = 201).
Then

S 1Ky * DLW ) dx = CA+ ) [ |f @)2w(x) dx.

We conclude this section with an example of a weight, not in 4, and not of
the form (1+|x|)*, which satisfies Theorem 3.3. Let a=1. Let n(1)=1 and
m(1)=2% and for k=1, set n(k)=2[nk—1)+2m(k—1)+1] and m(k)=2""",
Define w(x)=1 for |x|=4 and on sets of the form {x: 2"®+1 = |x| =2Un02mb) +11} Ly

j2ie on+j = x| = 2nHiHL i=12 .. ,m.
W(.X') — (1+|x|)a, on+m+1 = le = 2n+2m
2(n+2m)a—ja’ on+em+j = lxl = 2n+2m+j+1’ j= 1,2...,n4+2m

where n=n(k) and m=m(k). It is easy to see that 1=w(x)=(1+|x|)* for all
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x and w is essentially constant on {R<|x|<2R}. Clearly, w is not of the form
(1+[x])* for any . Let [=[2"®+m®)+1 pn)+mM]  Then

(_l}—l f v dx) [ﬁ f W™ dx] ~ Qmk)(a=1)
which goes to <. Thus, w¢ A4,.

4. Weighted L? for p#2

We are interested in extending Theorem 3.2 to weighted I? spaces for p#2.
Our main result in this section is

Theorem 4.1, Let l<p<eoo, 1<a, and w(x)=(1+|x|)* If

i) l<p=2 and a-2+(1-a)p=a=a(p-1)
or '

i) 2=p=<c and —a=uo=pta-2

then

”Ka,1+iy*f”p,w = C(1+lyl)“f“p,w

We will prove this theorem in a series of steps. We begin with a result of a slightly
different nature.

Lemma 4.2, Let 1<a and define U;, by
U f) = [ Kyrriy(e— ) O+ |t~ d.

10U = CA+ DA+ DI e

Proof. Let w()=(1+[t)~", g(t)=exp (|t[)A+[tD“"P" and  k(t)=
(1+1t]y~*2-7. Since w is bounded, by Theorem 1.3, it is enough to show that
there is a constant, B, such that for any (1.2)-atom b, supported in I=[a, ],

(CRY S te—ajmes) IEE=)l [{g * (WD)} (D) dt = B,
where d=|I|. Denote the left hand side of (4.1) by ¥ and consider two cases.

Then

Case 1: d=1. Using the notation of Proposition 2.1 with p=2, notice that for
feL?, gxf=K,xf. Thus, by Schwarz’s inequality and Proposition 2.1, we get

¥ = ([ ooy K E—= L) g% (WD)
= C5a-a)2 | wbll, = C5—92 = C,

since b is a (1.2)-atom and §=1.
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Case 2: 0<d6<1. Let A=56-Y0@-1 and write
¥ = [ omimaman K =D | {g ¥ WD} dt
+ [ maiman K= [{g ¥ WD)} ()] dt = ¥, + ¥,

Arguing as above, we get W,=CAC~92wh|,=C6"?6-2=C. To handle ¥,,
in the inner integral (i.e., gx(wb)) add and subtract (1+|x|)~% and then use the
fact that {b=0 to get

¥ = f{25§]t—-ul§2d} [k (t—o)| If; {g(x—)[A+xD"7—(1+|x))~7]
+(A+ )" [g(x—1)—g(@—D]}b(x) dx| dr.
By the Mean Value Theorem and the fact that [f—a|=2|x—u«|, we get
A+ D™~ + e

= Pyllx—af
and
lg(x—0—gla—9| = Clt—al* (1 +|t—a)@Px—al.

Since |x—a]=6=1,

(ol i 1 e ) i
f{26§]t—a]§241} a+ ]’_“Dalz dt] 15114

Y, = C(S(
1 1
=CS (]y] ln3+§J = CA+)yD.

Thus, B in (4.1) is bounded by C(1+|y]). By the statement following Theorem 1.3,
this proves the theorem.

Remark. Suppose w(x) is a real-valued function. Clearly, w(x)~" is then
bounded, so we may replace (1+t[) in the definition of U, by w(x) if w satisfies
the following condition:

W) —w(@)~" = Cly||x~al.

This is used to estimate the first inner integral in ¥,. The rest of the argument
is the same.

Lemma 4.3. Let a>1, 1<p=2, and w(x)=(1+[x|)* If
—a(p—D) =a=a(p—1), then
1K1 49 %S U o = CA+ DI pw-

Proof. By interpolation with change of measures (with p fixed), it is enough
to prove the result for a=%a(p—1). We use the ideas developed in Section 1 for
analytic families of operators.
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In order to prove the result for a=a(p—1), define
T, f(x) = A+ XD/ (Kp, 1445 /) (%)

U, f() = (1 IxD™2 [ K, 10y (6= 0 fO A+ )2

Since 1+4|x|=1, if f and g are simple functions, F(z)= f(U,f)g is continuous
on D and analytic on the interior. Further,

|F@) = 1Ky 1ol T f A+ D72 g (0] dx = €

since g has compact support. Thus, F is of admissible growth and both 7, and U,
are analytic families of operators.
By Theorem 3.2 and Lemma 4.2,

Uiy flla = CA+DA+ YDA and U, flli = CA+ DA+ |pDIf ] ae.
Thus, by Theorem 1.1,

1Zafl, = CA+IPDIA g, s pupterwoss whete  1/p=1—0/2.

Since Tyf=K, 14i,*f (for any 6) and 0=2(p—1)/p, the proof for a=a(p—1)
is completed by the definition of Tj.

To prove the result for «a =—a(p—1), we set V,f=U_,f, z€D, and repeat
the argument above. This completes the proof of Theorem 4.1.

Notice that Lemma 4.3 is true for O<a<]1, and, by duality, for p=2 if
—a=o=a. If we use the remark following Lemma 4.2 and Theorem 3.3 (instead
of Theorem 3.2), we have

and

Corollary 4.4. Let O<as1 and 1<p<oo. Set f=min (a(p—1), a). Suppose

D 1=wk) = CA+x)P, forall x;

i) wx) = Cw(p), for |t]/2 = Ix]=2);
iii) W)~ "—w@ "7 = Clyllx—t|, forall y and |x—1t]=1.
Then

”Ka,1+iy*f”p,w = C(1+]y])”f”p,w
Lemma 4.3 dealt with I? for 1<p=2. We now consider p>2 and prove

Lemma 4.5. Let 1<a,b=1, and —;+b§1. Suppose 2<p= (or 2<p<oo

1-5
when b=1) and 0=a=bp—2+a. Then
1Ky iy S, e papys = CAHYDIS N, @12y
Proof. Using the notation of the proof of Theorem 3.2, we write

(Ko, p+ip *) (%) = F(x)+ F3(x).
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By the remark following the proof of Theorem 3.2, for any «=>0 and p satisfying

a a
P :pél—b (1<p<e for b=1),
4.2) SIEGPA+[x)2dx = CA+ |y [1/@)PA+|x]) dx.

For F, we have
[IE)P(+|x])* dx = Si_y I,
where

L= [ | =amny Kapris =) fQ) df [(1+|x])* dxe
=207 [ | [ Ky (e — D) f(O At (L4 |x] dx
+2772 [ | fmamony KSusy (= DS A" A+ |xD* dx = T3+ T,
The argument leading to (3.4) now yields
(4.3) o Tns = CA+ YD [ 1f@IP(1+|x]) dx.
Thus, we need only consider
Sorcodm = S 27 [ | [ Kty =0 1) dif L+ [x]* dx.
Fix a,b, and p satisfying the hypothesis and set a=>bp+a—2. Define
Tf(x) = (L+ [xPrCe=P Z2_ x((r€ ELD (KGR iy f) (x)-
For xécsupp Tfc {|x|=1}, say 2"=|x|=2"*!, we get
IR TA ()] = [l G- (L+ )P = (KR, 2f) ()
= C [ gmosmpogmamey LHEDP A+ =) f D) di = C [ £ at.

Consider now
f |x[L=@/PIE=DITF(x)[2 dx

= Z;f:ofE ||/ + |x|)2b+2(a—2)/p|(K‘%)+iy * )2 dx
= CZ:=0/I(K,f’"pﬁy*f)(x)lz(l + lxl)a+2b—2 dx
By (3.5), we get (@=a+2b-2)

[ x| @2 | Tf) R dx = C(1+|y])? [ /(0] dx.
Thus, T satisfies Proposition 1.9, so that

1Tfl, = CA+1yDIS A, @+ jxpye-2-
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Rewriting, we get

4 7o Ty = 2 MTA1Z = COU+ )P [ 1F @I +bx)r—2dx.

Since p~2=bp+a—2 for p§1 a 5 combining (4.2), (4.3), and (4.4) we get

1K, b+iy %Sl s, @15y = CAF YD p, 0t g2

With a,b, and p fixed, using interpolation with change of measures between this
result and (1.2) completes the proof.

Remark. We note that if O0<a<1 and b=1, orif p=2, this result is a con-
sequence of Theorems 2.3 or 3.2.

Proof of Theorem 4.1. The positive values for « are contained in Lemmas 4.3
and 4.5. The negative values follow by duality.

There are examples of weights which satisfy Corollary 4.4 and are not in 4,
nor of the form (14 |x[)*. Such examples can be constructed in a manner similar
to the one at the end of Section 3, but must be smoothed out to satisfy the last
condition. ‘

5. Applications to K, ,.;, and related operators

Using the results of the previous sections, we now consider the kernels K, p 4,
We will also show that weighted norm inequalities for similar kernels and related
multiplier operators follow from results for K,,. We begin with a result for
A, weights.

a a
Th 5.1. Let 1, b<l, —+b=1, and =p= 1
eorem et a# < 2+ an " J4 b f
b—ua . 1 1 a
wEAd, and 6—m, with oc_a;—il+1——2-,

then
nKa,b+iy*f“p,w‘s = C(]-_l_]yl)”f”p,w"

Note that this result is true when b=1 and 1<p<eo. This is then Theorem 2.3.
Thus, proving Theorem 5.1 will complete the proof of Theorem 1.

Proof. Let K,(t)=exp (@|t|)(1+][t]))~+?+@-D2  and  define U, f(x)=
a

wi(x) f K (x—t)f(t)w=*(t)dt By the definition of «, p equals either - 4 or

+a—1 11—«
By (1.2),
1Unfll, = CA+p|+ DI, = CA+ DA+ DIA’,-
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Since w€d,, Theorem 2.3 implies
[T+ f1l, = CA+ I+ DS = CA+ YDA+ YDA,
Using interpolation of analytic families of operators, we get
1Uefll, = CA+ DS, with 0=0=1

Rewriting, this becomes

”Ka,a+iy+(1—a)0*f”p,w9 = C(1+Iy|)”f“p,w97

b—u

and solving a+(1—a)f=> yields 9:1 =4.

—a
Note that a=b=1 so that 0=6=1, and we€4, implies that w’c4,. Thus,
Theorem 5.1 implies norm inequalities for kernels and multipliers studied in
(5, 8, 10, 12, 13, 14). Consider first the convolution kernel K, ,(f)=exp(i|t|)|¢|~?,
O<b<1. Since
K, () = K, , (O +exp G|t~ — A +[eD ™7,

with the last term on the right having a radial majorant in L!, we have that

IKap #f ()| = |Koyp %)+l f* ().

— a
The norm inequality follows. For K,, with a=2 and 1——2—§b§0, use inter-

polation with change of measures between the known unweighted result for K, ;_ /2,
and the previous weighted result for any positive b. This gives the appropriate
value of 4. ‘

Similarly, let 6(¢) be a smooth function, 8(¢)=0 for |¢]|=1/2, and 6(&)=1

for [¢|=1. Let m(&)=m, (&)=0(9) exp G|E[VIE]~*, with a>1 and ﬂ+%>1.
Define the multiplier operator Tf by (Tf)" =mf. It is shown in [14] that Tf=K xf

—1+4a2
where K(1)=K, ,(t)+h(t), with a= al,b=ﬁ o/ ,and [h(t)|=c(1 + [¢])~+9.
o o—

As above,

TS| = [K*f(0)| = [Kq,p *f(X)]+ el f* ().

It m(f):ma’ﬂ(£)=0[%]exp(ilél“)[ﬂ"”, with 2<0 and ﬁ+—;—<1, it can be

shown that K(¢)=K, ,(1)+h(t), with a,b, and A(t) defined as above. Thus,
Theorem 5.1 extends to these operators. For the multipliers, we need 0=f=«/2
when a=1 and «/2=f=0 when a<0 so that b=1 and a/2+b=1. Notice
that we can only guarantee norm inequalities for 4, weights because of the presence
of the maximal function.



252 S. Chanillo, D. S. Kurtz and G Sampson

[IA
JA

and o=

Proposition 5.2. Let a1, b<], %—l—b%l, r

a
at+b—1 1-b
pb—D/a+min{p—1,1). Suppose w is a non-negative weight such that for any
YER,
1Ke 1459 %S g, = BOA+YDIFli2,w-

I[Ka,b+iy*f”p,w" = C(1+ !yD”f”p,w’

Proof. Let K, (f)=exp (i|t|)(1+]¢)~O+»+eE=DD  and  set U, f(x)=
wix) K (x—t)w=**(t) f(1)dt. By Lemma 1 of [8], the Fourier transform of
K. (t) is bounded by B(1+4|y|+y]), with B independent of y. This implies that
for all v,

Then

105 flle = BA+yDA+ DI
1Urs il = CA+IyDA+yDIf 2
so that by interpolation of analytic families of operators, we get
(5.1 1Ueflz= CA+|yDIfle, 0=0=1.

Setting b=1+a(0—1)/2 implies 0=2(b—1)/a+1=a. Rewriting (5.1) and wvsing
the definition of U, gives

1K b iy %S N2, e = CA+YDIS 2, wes

which proves the result for p=2.

By hypothesis,

To handle arbitrary p, +—Z~1§ p=2, we use interpolation with change of
a —_—
. . a .
measures between the weighted L? case above and (1.2) with pz—:B——J—. This
a p—

implies
”Ka;b+iy*f“p,w°‘ = C(1+ lyD“f”p,w“

. a ‘ 1 a—p(a+b—1)]
th ———=p=2 and a=[2(b-1 -|———=|p=p(b-1 —1.
with 2 =p=2 and a=(b—Djat 11 {720 p=plo-Djatp

This completes the proof of the theorem for p=2. The remainder of the theorem
follows the same argument using (1.2) with p=a/(1—b).
We now consider weights of the form w(x)=(1+|x[)* and prove

Theorem 5.3. Let a=>1, b<l1, %+bzl, a =p= a , and w(x)=

a+b—1 1-b
(L[ 1f

. 4
i) P =2 and a—-24+Q2—a-bp=a=a(p—D+pHB-1
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or

and —a+p(l—>b)=oa=bpt+a-2

then
]]Ka,b+iy*f”p,w = C(l—'—lyl)”j”p.w

Proof. The ranges on « in i) and ii) are dual to each other. By interpolation
with change of measures, it is enough to prove the result for a=a(p—1)+p(d—1),
and a=bp+a—2. By Theorem 3.2, we can set w(x)=(1+|x|)* in Proposition 5.2
which proves the result for a=a(p—1)+p(b—1). The other value of « is contained
in Lemma 4.5.

Theorems 4.1 and 5.3 contain the sufficiency of the range of « in Theorem 2.
The necessity of the range is shown in the next section.

6. Necessary conditions for Theorem 2

Our first result shows that for these kernels a weight which is zero on a set of
positive measure is zero almost everywhere.

Lemma 6.1. Let a=0 and b=1. Set E={x:w(x)=0}. If |E|#0, then
either w(x)=0 almost everywhere or K, ., does not define a bounded operator
on LY for any p.

Proof. Assume |E|=0 (E°={x¢E}). Let Br={jx|<R}. We need only
consider two cases: :

1) There is an R=0 such that |EnBg|#0 and |E°~(B,yg)°]|#0;

2) There exist & R=>0 such that |EnB,=0 and w(x)=0 for almost
every |x|>R.

To see this, let R,=inf {R: |EnBg|=0}. If R,=0, then |EnBg|=0 for all
R=0. Since |E°n(Byg)°| increases to |E°| as R approaches 0, we can choose
an R satisfying 1). Next, suppose Ry>0 and no R satisfies 1). Then, there is
an R such that w(x)=0 for almost every [x|>R. If e<R,, |[EnB,|=0. Thus,
R and ¢ satisfy 2).

Case 1. Without loss of generality, assume [{x>2R:w(x)>0}/#0. Choose
N=2R such that for p=max (4aN*~?, 2a2N+1)*"%, 2]y|, 1) we have [{N<x<N+
(1/w): w(x)s#0}|>0. Let

J(x) = y({x€EnBg}) exp (—i [N —x|)(1 +|N—x])".
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Then, for N<x<N+(1/p),

i ei(x—t)ae—i(N—t)ﬂ(l + IN_ t|)iy
Kz, p+1y %) ()] = fEnBR A+ lx—p+> dt
elx—na—yln(A+x—1)}—{(N—t)a—yIn (1+N-1)}]
= fEﬂBR A+ [x—1])?

Applying the Mean Value Theorem to the exponent of ¢ and taking the real part
of the integral, we get

I(Ka,b+iy *f)(x)] =

cos [{a&* 1 —y/(1+ &)} (x — N)]
fEnBR (I +]x—1])? a1

for some ¢, N—t<f<x—t. Since |f{|<R<N/2 and N<x<N+(1/x), we have
|[x—t|<2N+1 and N2<¢<2N+1. If a<l,

Jage=3r—N)| = a (/2P (L) = QaN*D/@daN") = 123

if a=1,
jag*=t (x— N)| = a@N+1)7"(1/w) = (a @N+1)*2)/(2a @N+1)*) = 1/2.
Finally, if y#0,
i y
1+¢
Thus, for N<x<N+(1/y), with M=inf {(1+|x—¢|)~": t€ EnBg}=0,
(K, b1y %/)(X)| = M cos (1) [EnByg| = 0.
By the definition of £, [[fl,,=0 while [[(Ky i, % /), 50.

1 1
(x—N)‘ = [y[; = Mm = 1/2.

Case 2. Choose R>2 such that R<|x]<2R implies w(x)=0 almost every-
where. Let f(x)=y({R<|x|<2R}) exp (—i|x|*)(1+|x])"” and fix e<(2-3!*~YgR~1+
2[4+~ If |x|<e, arguing as above,

eilx——tl"—iltl“(l + ’tl)iy
I(Kap415 %) (X = f{R<]t]<2R} (T x—1)p™ \
_ cos [{a E— =1 — y/(1+|¢ = £} x]
= f{R<1t[<2R} : (1+]x—l|)b dt >

for some ¢, |¢{|<|x|<e. Since g<1 and || is equivalent to R, R/3<|t—¢|<3R
and alt—{[*~!|x|=a- 3 HRY(Q2 31 MaR ) =1/2  and  |y/(1+|E—2])||x|=
Iy|/2|y|=1/2. For |x|<e, with M =inf {(1+|x—1[)~®: R<|t|<2R},

[(Ka,p+1y %) (2)| = M cos (1)2R > 0.

The proof of Case 2 is completed as above. This proves the lemma.
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In the previous proof, the main steps were to choose a function of the form
S ()=xp(x) exp (—i|N—x|(1+|N—x|)”, for an appropriate set E and real
number N, use the Mean Value Theorem on the exponent of e in the integral
defining K, i *f, and take the real part of the integral. Changing the argument
slightly, we prove

Lemma 6.2. Let 1=p<oo, O<a, and w(x) positive and locally integrable.
Suppose K, ., defines a bounded operator on LF. There exists a constant
d=d(a, |y))=1 such that for any positive R and 6 satisfying R*~°[2=6=R/2,
if S(R,0)={R=|x|=R+(dR>~°/5)} then

s WO )PP dx = € [y W) dx

Proof. Fix R and é as above. Assume y=0 and consider S+={x¢S(R, d),
x>0} Set f(x)=x({|x|=6}) exp (—i|R—x|?). Then

oF

p

w(x)dx

llx tla—i|R— tla

(6.1) Ko p*f1I5, f ’futl<a> JECEE=)

eiF ()
f{|t|§6} A+ x—z]P

=
= Jg+

dt]pw(x) dx,

where F(t)=|x—t[*"—|R—t}"

Since |t|=J and [x|>28, F is a differentiable function near the origin and
F()=F(0)+ F'(&)t where ¢ is between O and ¢ By assumption, dR*~%/6=2R.
It follows that [x—&| and |[R—¢&| are bounded above by 6R and below by R/2.
Thus

62 |F(®1=la(a—1) f;‘:j $9=2ds|6 = B(a)R*~*(x—R)S = B(a)d.

Choosing d=1 sufficiently small, |F'(£)t|=1.
By the above estimate, since ¢*® is independent of ¢ and has modulus I,
taking the real part of the inner integral in (6.1) yields

”Ka,b *f”g,w = ,/S’r l/{]tl§5} cos (1)(1 + ]xl)_b dtl”w(x)dx
= C(SI’_/'S+ w(x)(1+|x]) P dx.

For {x€S(R, ), x<0}, set f(x)=x({lx|=6})exp(—i|R+x|") and repeat the
argument. The norm inequality for K, , implies

& [smp WA+ D dx = C [, w®)dx,

as we wished to show. For y=0, multiply f by (14|REx|)” and argue as above.
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Let a=1 and w(x)=(1+|x|)*. A consequence of Lemma 6.2 is that for
a=>min [a(p—1)—p(1—b), bp—2+a], K, ,;, does not define a bounded operator
on L?. The case a=a(p—1)—p(1 —b) is excluded by setting =R~ and letting
R - approach infinity; «=>bp—2+a by setting =1 and letting R approach
infinity. By duality, K, ,.;, does not define a bounded operator on L? if a<
max [ —a+p(1 —b), a—2+(2—a—b)p). This completes the proof of Theorem 2.

The previous result is invariant under translation. Repeating the argument
and using the fact that for a<1 the integral in (6.2) is convergent at infinity, we have

Lemma 6.3. Let 1=p<e, O<a<]1, and w(x) positive and locally integrable.
Suppose K, i, defines a bounded operator on LY. If 1 is an interval with center
x; and I={x—x,|<|I[{V=9)}, then

1P [ w@A+x—x )~ dx = C [, w(x) dx.

Taking I=[~—1,1] and b=1, it follows that K,;.; defines a bounded
operator on L, .. if and only if —1<a<p~1. That is, for 0<a<1 and b=1,
the range on « for the weights (1+ |x])* is exactly the 4, range.
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