Projection estimates for harmonic measure

Bernt Qksendal

Abstract

Stochastic proofs of the Beurling projection theorem and the Hall projection theorem for
harmonic measure are given. Some d-dimensional versions (for all d>1) which follow from this
approach are pointed out.

1. Introduction

If U is an open subset of the complex plane C, acU and E is a Borel subset
of dU, we let A(E)=AY(E) denote the harmonic measure of E w.rt. U (at
the point a). (We assume that dU, the boundary of U, has positive logarithmic
capacity i.e. dU is not polar.) It is well known that A, can be described in terms
of Brownian motion, as follows: If b%(¢), w€Q, r=0 denotes Brownian motion
starting at a with probability law P? then

M (E) = P*(b(Tu)CE),

where Ty=inf {t=0; b%(¢)¢ U} is the first exit time of U. In Sections 2 and 3
we use Brownian motion to give proofs of the Beurling projection theorem and the
Hall projection theorem for harmonic measure. With natural modifications the
proofs can be applied to give extensions of these projections theorems to RY, for
all d=1. In Section 4 we formulate some such d-dimensional projection theorems
which are not so easily available via extensions of the classical proofs.

We refer the to [1], [2], [3] and [5] for proofs of the Beurling and Hall projection
theorems and more information about harmonic measure. A survey of the stochastic
potential theory can be found in [7] and [8].

I am very grateful to A. M. Davie, T. Lyons and J.-M. Wu for valuable cor-
respondence, and I am indebted to M. Benedicks, B. Dahlberg, M. Essén and
L. I. Hedberg their useful comments.
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2. The Beurling projection theorem

Let us first introduce some notation. If G is a set G® denotes the interior
of G and G’ denotes the reflection of G about the x-axis. The circular projection
of a plane set E about a point x, is defined as follows:

E* = E*(xy) = {|z—x,|; zEE}.
Let 0=R,<Ry= andlet 4 denote the annulus
A={z; R, =lz| = Ry}
Theorem 1. (Beurling projection theorem.) Let K be a compact subset of
A and suppose —Ry<a<—R,. Put K*=K*(0) and define

U=ANK, V=A"K*
Then
AVK) = ALK,

To prove Theorem 1, we first establish the following, which will also be needed in
the proof of the Hall projection theorem.

Lemma 1. (Reflection lemma.) Ler UcCC be open such that U'=U and let
acl=RnU. Let KcU be compact and put

K+ ={z¢K; Imz = 0}
K= ={z¢K; Imz < 0}
K=(&+tYuK-
Then
AUNK(K) = AUNR(K).

Proof. Put V=U\K, W=U\K. Consider H=K+U(K~\(K*)). Then
H<K and H=K. Therefore it is enough to prove the result for the case when
(K*+YnK~=§. Put D=UN\(KUK’). Then by the strong Markov property

03] P(b(T)EK) = P“(b(TD)EK)—i-fK,\K PY(b(Ty)EK) dv, (),

where v, is the distribution of b%(Tp) on AD, ie. v(B)=P(WTp)EB), for B
a Borel set. .

Now let G=U\J and let p, be the distribution of »(7;) on AG. Then
we clearly have, again using the strong Markov property,

3] P (b(Ty)eK) = [, P*(b(Ty)EK) dp, (x).
So combining (1) and (2) we obtain

@) P(b(TVEK) = P(b(Tp)eK) + [yn o ([ P*((TV)EK) du, (%)) dva().
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Repeating the argument (1)—(3) » times, we obtain
@ Pe(b(Ty)EK) = P“(b(TD)EK)
+ 30 [ [ S [r P (0T ER) dty (30)) ey, (3) -] dva(30)
+ fenk ([ Senk ([r P (B (TEK, b(Tp)eRNK) du,, (%))...) dva(y).

Since v (K'\K)= % for all x€7, the last term in (4) tends to zero as n—~c and
the series converges.

We now apply the procedure (1)—(4) to P*(b(Tw)€K) and obtain similarly
(except with equality instead of inequality): -

® Pe(b(Ty)€K) = P(b(Tp)ER)

+ 30 fo i [ ([ P (b(T0)ER) dpy, (60) AV, (30 dva(3),

where F=(KUK)\K=K+*U(K~) (since we have assumed (K+*)nK~=0).
By symmetry P¥(b(Tp)eK)=P*(b(Tp)cK) for all xcI, and since K'\K=
(K*YU(K~) we get by symmetry that each term in (5) is equal to the corresponding
term in the sum in (4). That completes the proof of Lemma 1.

We now proceed to prove Theorem 1:

If H is a set, we let H® be the reflection of H about the y-axis J,.
Put

W, = A°n{z; Rez < 0}.

Then
) P(b(To)eK) = [, P*(b(T)eK)do,(y)

where o, is the distribution of b(Ty ).
By Lemma 1 with U=4°, reflecting about J,, we have

®) py(b (TU)EK) = Py(b(Tﬁ(l))EK(l)),
where RO=EnW)OUIKN\I], 00 =4NKO.
Therefore,

Q) Po(b(Ty)EK) = f ; PP (b(Tow)e KW do, () = PA(b(Tpw)e KW,
We now repeat the process, at the n’th step first reflecting about the line

J, ={ré"’; reR, 6 = 27"}
and then about the line
J, ={re®; réR, 6 =—-2""x}

and each time using Lemma 1 with U =A4°.
In the limit we obtain

PY(b(Ty)EK) = PA(b(Ty)EK*) as asserted.
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3. The Hall projection theorem

We will prove the following version of the Hall projection theorem:

Theorem 2 (Hall projection theorem). Let A and a be as in Theorem 1. Suppose
Ry<ry<ry<R,. Then there exists a constant c¢=>0 such that for all compact
Kc {z; rn<|z|<r,} we have

X' (K) = c-my (K™),

where M =A"\K\]O0, «) and m, denotes 1-dimensional Lebesgue measure on R.
(¢ does not depend on K.)

To prove Theorem 2, we first establish the following:
Lemma 2. Suppose that — in addition to the hypothesis of Theorem 2 — there
T
exists 0<5§Z such that
Kc{ré®; r=0, 6 =0 = 25}.
Then there exists a constant ¢y, independent of & and K, such that
HH(K) = comy (K).

Proof of Lemma 2. Put I,={re”; r=0, 0=06(1+2"™)}, and L,=
fre’; r=0, 0=56(2+2""*"}, m=0,1,2,.... For x,_,€l,-, let vim-1 be the
distribution on 1, of b"m-l(TZm), where

Zy=Afré®;r=0, 5(1+2™™ =0 = 6(1+27"+2)}.

Let U,={re”; Ri<r<R,, 0<0<52+2-"*tY)} and S, ={re”; r=0, §(1+2"™)=
0=6(1+2-"+1). Let v* be the distribution of the first exit of b%(¢) from ANUJ;.
Then

(1)  PU(b(TyeK)= [ 1, P (b(Ta)EK) dv(xy) = S 1, P (b(TDEK) dv(x),

where T, is the first exit time of b™(¢) from the set ANKN\L\R. We now
apply Lemma 1 with U=U,, reflecting about I,:

K, = (K0S U (KNS,

where for all m E™ denotes reflection of a set E about 7,, and let T, be the
first exit time of b(¢) from ANK;N\NL,\R. Then

() P (b(T)EK) = Px(b(T)EK,) for all x€I,.
Therefore

€)) P (b(TyweK) = [, Px1(b(TYEK,) dv (x)).
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L,

Repeating the argument, we get

@ Po(b(T)eK) = [, (f,, P(b(TDeKs) dvir(xy)) dve (x),

where K,=(KiNSy)PU(K,\S2), T. is the first exit time from ANK\L,;\R
and v} is the first exit distribution of »*(t) from A\ L;\J.. After n repetitions
we have

¢)  POTeK) = [, ( Jo, (o f o Pr(b(TYER) dvin-1(x)) .. b (x),
where K;=(K;-1nS)PU(K;-1\S)), T; is the first exit time from A°\K\L;\R,
j=1,2,..,n and vj-+ is the first exit distribution of b%-1(t) from
ANL;_(\J;.
We now replace the measures vi=-1 by the measures p¥=-: defined as follows:
For x,_, between I, and I, welet uim-1 be the distribution of the first
exit of b*=-1(¢t) from the set of points in A4 between I, and I,. Then clearly
©) Vm-1 Z= pm-1oon I,
and therefore, by (5)
() Pb(TwEK)= f,‘ (fr,(/. , Pa(b(T)EK,) dpzn-1(x,))... ) dv(x)

= [0, ([1, P (b TIEK,) digis (x) dv* (),
by the strong Markov property.
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We may assume that K is a finite union of closed discs, K -—-Uf;ldi. Choose

n so large that 27"6r, is less than the smallest of the radii of these discs.
Then if

o~

K } 1A
=Yz
we have
) P (b(T)EK,) =1
for all x,cE={re"; reK*, 0=56(14+2"")}.
Combined with (7) this gives
) P(b(Ty)eK) = | 1, 1 (E) dv*(x).

Chop the interval [ry,r,] into D=2* disjoint intervals Sy, S,, ..., Sp of length

e =27 (ry—ry),
where k is chosen so large that
-;— 0<g=09.
Put G;={re"; r¢S;}. Then if x€I,nG, we have

m(EnG)

(10 Hn(E) = i (ENG) = ¢4+ 2

and therefore

./'Il ﬂ::(E) dvz(x) —_ ZiD=1fIIOG,~ u,’f(E) dv“(X) = 2?:1 €1 ml(EQnGl)

-v(I,nGY)

= CzZ,-D=1 my(EnG)) = com(E) = c3- my (K,

where the constant ¢, is independent of K and 8. That completes the proof of
Lemma 2.

Proof of Theorem 2. We may assume that K is situated in the union of the
sectors

V,,={rei"; r=0, %-4"'—273-§0§4‘"—}, n=20,1,2, ..

Put E,=KnV,, J,= {re“’EA; r=0, 8= %.4—"
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For n=1,2,... and x€J,_, define

W, ={reiﬂeA; r=0,0=6 §4—"%}

D, ={re®cW,; |r—|x|| = 47}

B, x = A\I0, <)\D,,,.
Then there exists a constant d;<1, independent of x€J,_, and n, such that
o) J2=(0Dy,x) = dy

Moreover, there exists a constant #=>0, such that for all compact FCW,, all
x€J,_, and all » we have

) PEF)—A5(F)| = 3 (1—dy)
for all x'¢J,_; with |x—x'|=n-4"" where B=A\J0, =\ F. For n=0,1,2,...
define
o, = inf {t > 0; b%(HEQALI,}
1, = inf {t > 0; b3 (E€IAVE,UJ,}

and let «,, B, be the distribution of b%(s,) and bi(z,), respectively.



198 Bernt Oksendal

Then (as before M =A"\K\]0, «))

3) P(b(Ty)eK) = P*(b ()€ Eo)+ [, P*(b(Ts)€K) dBy(x)
Put R,=lJ,.,Ex and
@ H,= {xEJo; Px(b(TM)ERl) = dz}s
where d2=1—§(1 —d,), and d, is given by (1).
Then if
6) Gy = {x€J,; dist(x, H) =n-471},
we have by (2)
(6) Px(b(TM)€R1) >ds
for all x€G,, with dy=1-2(1—d)=d,.
Put
) Fy = RN\{z€K; ||z|—|w|| =47 for some weGy}.
Then if M;=A\F\][0, «=) we have by (1) and (3)
®) P4(b(Ty)€K) = Bo(Ep + [, P*(b(Th)ERy) dp

= Bo(E)+ [ 5, P*(b(Ta)ER) dBo+ [ ;< g, P*(0(Tur )€ Fr) s
= Bu(E)+dsBo(Go) + [, P*(b(Ta)E Fr) dBo— [ P*(b(Ta)€ Fr) dPy
= Bo(Eo) +(ds—dy) Bo(Go) + [ ;, P*(b(Tw)E Fr) dPo
= Bo(E)+(ds—d) Bo(Go)+ [, P*(b(Ty)E Fy) deg— [, P*(b(Ty,)E Fy) d (o~ Bo)
= Bo(ED)+(da—dp) BuGo) + [ ;. P*(b (T )€ Fy) dotg—dafo(Er)-
Since 0(Jo)=PFo(Jo)+ Po(Ep), this gives
©)  Pab(Ty)eK) = (1—dy) Bo(Ee) +(ds—d) Bo(Go)+ [, P*(b(Tor)E Fr) ditg

= ¢1Bo(EguGo)+ P*(b (T, € F),
where ¢,=>(1—dy).
By Lemma 2 we conclude that

(10) Pe(b(Tw)EK) = colmy (ES) +my (G P*(b(Tyy,)E Fy)
Since my(G)=n-my((R\F1)*), we get
an Pe(b(Ta)EK) = c3[my(E)+my(RINFD] 4 P?(b (T, )€ Fy)

We now start with the term P“(b(TMl)E F,) and repeat the process (3)—(11) above etc.
After sufficiently many iterations we get

(12) P(b(Ty)EK) = & c5- my(K™),

and the proof is complete.
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4. Projection estimates in R?

Both the classical proofs and the proofs given in §2 and §3 apply to certain
d-dimensional situations, for any d=2. Here we mention some d-dimensional
projection theorems which follow naturally from the proofs given in §2 and § 3,
but would be harder to obtain by extending the classical proofs. (For r>0 let
A, denote r-dimensional Hausdorff measures.)

Theorem 3. Define R: R‘-~R%~! by

R(x1, ..., x) = (VX34 22, %3, ..o Xg-1)-
Suppose BCR*XRI~? s open (where R*={x¢R; x=0}) and let A=R~Y(B),
a=(—a, 0, ...,0)€4 (a,>0). Thenif K is a compact subset of A, we have
(i) AOKK)=ARE(R(K)) (Extension of Beurling theorem,).
If dist(K, dA)=6=0 and L={(x,0, ..., 0)¢R% x=0}, then
(i) /121 \K\L(K )=c- Ad~1(R(K ))’
where ¢ only depends on 6. (Extension of Hall theorem.)

Similarly one can prove the following:
Theorem 4. Define P: R"~R?~* py

P(xl, aeey xd) = (xl, eey x,,_l).

Suppose BC R~ is open and let A=P~'B), a=(0,...0,a,)€A where a;>0.
Then if K is a compact subset of A such that

(x15 ooy XDEK = x5 < 24y,
we have
@) MNEEK)=ANPE(P(K)) (Extension of Beurling theorem).
Furthermore, if S=0<a<R and
AA = {(xlo (] xd)EA; S< Xg < R}
we have

(ii) MNE(RY = ¢- Ay (P(K)),

where ¢ only depends on S, R and the distance from K to 0A. (Extension of
Hall theorem.)

The proofs of Theorem 3 and 4 follow the same line as the proof given in the
two preceding paragraphs and are omitted.
Finally we mention that one can also obtain the following:

Theorem 5. (Radial projection theorem.) Let B be the unit ball in R, d=2

and let KcB be compact, 0¢K. Let K *={[—xl—; xEK} be the radial projection
X
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of K into the boundary S of B. Then there exists a constant ¢>0 depending only
on the dimension d such that

ey 2o (K) = - dg-r (K
Remarks:

1) In the case d=2 this result has been obtained independently by T. Lyons
and J. Taylor, who have proved that such an estimate holds for all symmetric
spaces of rank 1 (private communication).

2) It would be interesting to find the best constant ¢ in (1).

Proof. We apply the same procedure as in Sections 2—3, except that we replace
reflection about hyperplanes by reflection (inversion) about spheres. Thus, the
reflection lemma (Lemma 1) is replaced by the following:

x .
W
x€RNJ{0}. Let UCR? be open such that I(U)=U, dist (0, U)=0, and let acs,
the unit sphere in R%. Let KCU be compact and put

Lemma 3. (Spherical reflection lemma.) Define I:R‘~R% by I(x)=

K,=KnB, where B={xeR’; |x|=1},
K2=K\B,

K =I(K)UK,.
Then
1K) =8 ADE (B,
where &=dist (0, K).

Proof. Proceeding as in the proof of Lemma 1, we put D=U\(KuI(K)),
G=U\S and obtain

(3] UNK(K) = PU(b(Tp)EK)
+ 30 [o ([s (- So([s P (o (Tn)eK) dpy, (x,)) v, 0) ) dVa(3)

where v, is the distribution of 5*(Tp), p, is the distribution of P*(T;) and
E=I(K)\K =I(K)UI(Ky) (assuming I(K)nK,=0). Similarly,

€) INE(R) = PY(b(Tp)€EK)

+ 30 [ ([ S ([ PP(b(T)ER) dpy, (x)) dvs,,_, () ) d¥a(3)
where F=(KOI(K)NK=K,;UI(K,).
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So the proof of Lemma 3 will be complete if we can show that

@ P*(b(Tp)eKy) = 8*~4. P*(b(Tp)EI(K,)) forall x€S
and
(5) S5 70 duy (@) = [ F(R)dpry (x) for all  yek,

and all continuous functions f.
Statements (4) and (5) are consequences of the following result:

Lemma 4. Let V be an open set with I(V)=V, dist (0, V)=>0. Then if XCV
is compact and y€V we have

VX - (1] - YN\J(X) Y
N (x) = lT Ay PIX), 8= dist(0, X).

Proof of Lemma 4. Let H denote the Kelvin transformation on the space
C(W) of (real) continuous functions on the closure of W =V\X defined by

© W = =S () secom.

x|

Then if g is harmonic in W, Hg is harmonic in I(W). If yeW we define the
measure f§, on oW by

(7 [ £@) dp,(x) = [ H)) dAT (x)
Then for g harmonicin I(W) (and continuous in I(W))
[gadp, = [ Hg- A = Hg(I(») = [y~ g(»)

Therefore |p|°~2B, represents the point y for the functions g€C(W) harmonic
m W. Since B, is carried by oW, we must by uniqueness have

, Y128, = A,
1.€.

) [rawy =yli=2f rap, =y [ Hf-aip; fecm)
This implies that, letting f=xx (the characteristic function of X)
w d—2 (W) ¥l - (W)
Xy = 14l fHXX‘d'll(y) = [‘5—] AP (1(X)),

as asserted in Lemma 4.
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We now observe that if in Lemma 4 we put V=D and let y¢S, we obtain (3).
If we put V=G and y€K; (so that |y|=1) we obtain

[s 7O du, @) = 91472 [ £ dpgey (30) = [ 1) dyy (),

which is (4). That completes the proof of Lemma 3.

We are now ready to complete the proof of Theorem 5:

First of all we note that it has been proved by T. Lyons ([6], Theorem 4.1)
that the estimate (1) holds if the compact K has a distance =§ to S (with C
depending on &). Lyons used Brownian motion in his proof. Subsequently an
alternative, non-probabilistic proof has been found by F. Fuglede ({4}, Lemma 2).
Based on this result, we may assume that

© ~ 8 =dist (0, K) = 5.

Second, we note that it is sufficient to establish the estimate (1) under the extra
assumption that there exists g—<1 such that

(10) Kco{x; * = x| = o},

with the constant ¢ not depending on o, g23—;-. (This will be the analogue of
Lemma 2 of Section 3.) For once this has been established, one obtains the result
for general K (satisfying (9)) by adopting the same technique as in the proof of
the Hall projection theorem in Section 3, with obvious modifications.

So we assume that (10) holds for some p, %§92< 1. To establish the estimate
(1) we apply the proof of Lemma 3 in Section 3, except that the iterated use of the
reflection lemma (Lemma 1) is replaced by iterated use of the spherical reflection
lemma (Lemma 3), at the k’th iteration reflecting (inverting) about the sphere of

a—2
radius g,=¢'*?". The Kk’th iteration gives an extra factor of (&] , Wwhere
k
J, is the distance from 0 to the k’th reflected set K®. Since §,=¢,_,, this gives

a total factor of

d

oo d—2 oo
7(2) " = Joeom=gme=2t
k=1 \ Jy k=1

This establishes the estimate (1) under the assumption (10) and thus completes the
proof of Theorem 3.
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