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1. Introduction 

A weU-known phenomenon in classic Potential Theory can be regarded as a 
prototype for the variational problem to be studied in this paper. Recall that the 
harmonic functions in a domain GcR", n>=2, are precisely the free extremals 
for Dirichtet's integral flVul2dm. 

The basic fact is that the following two conditions are equivalent for a function 
u with continuous first partial derivatives Vu=(0u/0xl ..... Ou/Ox.) in G: 

1 ~ For every non-negative r/ in Co(G ) 
flVul2dm<- fJV(u-rl)]~dm 
where the integrals are taken over the set spt r/= {xIt/(x) ~0}. 

2 ~ Given any domain D with compact closure D in G and any function 
h that is harmonic in D and continuous in D, the boundary inequality 
h]OD>-u[OD implies that h>-_u in D. 

These conditions express that u is snbharmonie in G. (Condition 1 ~ is usually 
formulated as the familiar inequality fVu .  Vrldm<=O for all ~ 0  in Co(G). ) 

The object of our paper is the proper analogue to the above situation for 
variational integrals of the form 

(1.1) I(u,D) = f . F ( x ,  Vu(x))dx, D c G. 

Here the integrand is assumed to satisfy certain natural conditions about measurability, 
strict convexity, and growth: F(x, w) .~ Iwl p, 1 < p < ~. 

If  uf:C(G) A W~,loc(G ) satisfies the inequality 

(1.2) I(u, spt t/) <= I(u-rl,  spt t/) 

for every non-negative ~/ in Co(G ), then u necessarily obeys the comparison 
principle with respect to the free extremals for the integral (1.1). The corresponding 
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fact is well-known in the theory of partial differential equations [3, 9.5, pp. 211--213]. 
Our main result, Theorem 4.1, states that, if uEC(G)nW~,Ioo(G), then the 
comparison principle is also sufficient to guarantee the validity of (1.2). The direct 
proof given in w 4 avoids the difficult question about the continuity of the solution 
to an "obstacle problem". 

As an application we mention that the maximum of two free extremals satis- 
fies (1.2), 

We use merely standard notation. 

2. Assumptions and preliminaries 

Let G denote a fixed domain in the Euclidean n-dimensional space R', n_->2. 
Consider the variational integral 

I(u,D) = f . F ( x ,  Vu(x))dx, D c G. (2.1) 

The integrand F:G X R"--,-R is assumed to satisfy the following conditions. 
( i )  Given e > 0  and a set D c  c G ,  there is a compact set K~cD, m(K~)> 

m(D)--e, such that the restriction F[KcXR" is continuous. 
The mapping w~F(x,  w) is strictly convex for a.e. fixed xEG. 

(2.2) 

(ii) 
(iii) There are constants 

that for a.e. xEG 

when wE R . 

0<a-<_fl<~o, and an exponent p, l < p < ~ o ,  such 

~lwlP<-F(x, w)-<_/~lw[ p 

2.3. Remark. 1 ~ The strict convexity (ii) guarantees the uniqueness of extremals 
with given boundary values [4, Corollary 4.19, p. 31]. If  ~oEC(D)nWI(D), D being 
a domain with compact closure in G, then there is a unique extremal hEC(D)nWI(D) 
with h-rpEW~,o(D ) such that l(h, D)<=I(v, D) for all similar v, c.f. [2, Ch. I. 3, 
pp. 29--31] and [1]. 

2 ~ If  ul, us, us . . . .  Wt(D), D being a domain in G, and if Vui-+Vu, 
uEWtp(D), weakly in LP(D), then l(u,D)<=liml(ui, D). For this lower-semi- 
continuity result, we refer the reader to [8] or [5]. 

We say that uEC(D)nW 1, lot(D), D being a domain in G, is a free extremal 
in D, if 

(2.4) l(u, spt ~/) <= I(u-rl, spt q) 

for all r/ECo(D ). Analogously, we say that u is a free subextremal in D, if (2.4) 
holds for all non-negative 1/ECo(D ). Of course, an extremal (in the ordinary sense) 
is also a free extremaL 
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We say that a function uEC(G)nW~,Ior ) obeys the comparison principle 
in G, if the following implication is true for every domain D with compact 
closure in G: 

WheneverhEC(O)nW~,1or is a free extremal in D and h[OD>=ulOD, 
then h>=u in D, 

3. Necessity for the comparison principle 

For the sake of  completeness we shall give a simple proof  of  the fact that the 
(free) subextremals obey the comparison principle. 

3.1. Theorem. Suppose that uEC(G)nW~,Io~(G ) is a free subextremal in G. 
Then u obeys the comparison principle in G. 

Proof. Suppose that hEC(B)nW~.1o~(D), hlOD>=ulOD, is a free extremat in 
a domain D with compact closure in G. Given e>0 ,  he----h+e is a free extremal 
in O. The set D~={x[he(x)<u(x)} is open and OecD.  If  m{xEDe[Vhe(x)~ 
Vu(x)}>O, then the subextremality of  u and the strict convexity (ii) imply that 

I(u, Dr) <= I , D, < -~ I(u, De) + I(he, De) , 

i.e. that 

(3.2) I(u, De) < I(he, De). 
On the other hand 

(3.3) I(h e, De) <= I(u, De). 

Obviously, (3 .2)and  (3.3) are incompatible, and so Vhe=Vu a.e. in De. 
This implies that he=u in D, in virtue of  helOD~=ulc~D ~. Hence the set D e is 
empty, and so h+8~=u in D. Since e > 0  was arbitrary, we obtain the desired 
inequality h>-_u in D. 

4. Sufficiency for the comparison principle 

We are now going to prove our main result, viz. : 

4.1. Theorem. Suppose that uEC(G)nl/V~,io~(G ) obeys the comparison principle 
in G. Then u is a free subextremal in D. 

Proof. Fix a domain D with compact closure in G. Consider the class 

oj = {vEC(~)nWpl(D)Iv <= u, vlOD = ulaD }. 
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Obviously, uC~-. There is a function uCW~v(D) such that u<-_u, u-u~W~v,o(D), and 

(4.2) I(u, D) <= I(v, D) for all vE~. 

The existence of  u is established by the aid of  a minimizing sequence ul, u2, u3 . . . .  
in ~" that converges weakly in Wlp(D) to u. Especially, 

(4.3) lim I(u,, D) = I(u, D). 

It is easily seen that u is minimizing the integral in a somewhat broader class 
than o~-, i.e. 

(4.2)' I(u, D) <= I(v, D) 

for all vEWI(D), v<=u, v--uEW~,o(D ). 
We have to show that u=u .  I f  u were known to be continuous, this question 

were trivial, c.f. [4, Theorem 5.17]. In order to avoid this difficult regularity question 
we shall construct another minimizing sequence from ul, u2 . . . .  As in the classical 
"m6thode de balayage" we aim at modifying uk in some regular set close to D. 

To this end, fix e > 0  and note that the sets {xCD[Uk(X)<U(X)--e } and 
{xED[Uk(X)<U(X)--2e} are open. Using a standard method we can construct 
open sets D k, as regular as we please (e.g. "polyhedrons"),  such that 1 ~ 

{x Dluk(x) < = Dk = {xCDl. (x) < 

and 2 ~ there is a unique extremal hkEC(Dk)C~Wlp(Dk) with boundary values 
hklODk=UklODk, provided that D k is not empty [1, end of  w If  xEODk, then 
UR(X)>=U(X)--2e, and so u]ODk<=hklODk+2~=(hk+2e)]ODk . By the comparison 
principle, which u is assumed to obey, this inequality holds in Dk, i.e. 

hk~U--2S in D k. 
Define 

{hk in Dk, 
(4.4) Hk = Uk in D\Dk.  

Then HkEWIp(D) and Hk-uCWl,o(D). Obviously, I(Hk, D)<=l(Uk, D). More- 
over, we have 

(4.5) H k ~_ u--2e 

in D. So far we have imitated the classical "m&hode de balayage", but the functions 
constructed are not  necessarily in the class ~ .  Giving due care to the obstacle 
in ~ ,  we are therefore forced to adjust Hk. 

Note that the uniform bound 

sup h k = max hk < sup u = M 
Dk ~D k 

is trivially valid, c.f. [4, Remark 4.6, p. 25]. Fix 2E(0, l) so that O<2<e/lM [. 
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The convex combination 

(4.6) wk = 2nkq-(1--2)Uk 

is in W~(D) and wk-uEW~,o(D ). Moreover, Wa<=U in D, since Wk=U k in 
DND k and in Dk we have Wk=(1--2)Uk+2hk<=(1--Z)(u--e)+2M<=(u--e)+2M<u. 
Thus Wk is admissible in (4.2)'. 

Hence l(wk, D)>=I(u,D) by (4.2)', and by the construction l(wk, D)<= 
<=21(Hk, D)+(1 --2)I(Uk, D)<=2I(Uk, D)+(1 --2)I(ua, D)=I(Uk, D), i.e. 

I(u, D) <-- I(Wk, D) <: I(u~,, D), k = 1, 2, 3 . . . . .  
Thus 

(4.7) lim I(Wk, D) = I(u, D). 

1 1 
Since flVwkl"dm <--l(wk, D) <=--I(uk, D), the sequence flVwJ'dm, 

k = l ,  2, 3 . . . .  , is uniformly bounded in virtue of (4.3). Thus there are indices 
kl<k2<k3<.., and a function w~CW~p(D) such that Wk~W e weakly in W~(D). 
We have w,<:u and we--uCW~,o(D).Now 

I(u, D) <- I(w e, D) <: lim I(Wk,, D) = I(u, D) 

"by the minimizing property (4.2)' of u, the lower-semicontinuity of the integral 
[Remark 2.3], and (4.7). Hence 1(we, D)=I(u ,  D). As in the proof of Theorem 3.1, 
the strict convexity (ii) implies the uniqueness 

U =  W e 

(this independence of ~ indicates that the sets Dk, are empty sooner or later). 
The weak convergences 

Uki ' ~ U, J . H k i ' q - ( l - - ~ , ) U k ,  "-" U 

imply that Hk~U weakly in W~(D). By (4.5) u=limHt,>:u-2e in D. Since 
5>0 was arbitrary, u=>u in D. On the other hand u<=u, whence u=u. This 
means that u has the desired minimizing property. 

5. The maximum of two extremals 

As a simple application we mention the following result, difficult to prove 
without the comparison principle. 

5.1. Theorem. If  u, vEC(G)c~W~,lo~(G ) are (free) extremals, then max {u,v} 
is a (free) subextremal. 

Proof The function max{u, v} is in C(G)c~W~,Ior Since u and v obey 
the comparison principle in G, so does max {u, v}. The result follows from 
Theorem 4.1. 
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