On the comparison principle in the calculus
of variations

Peter Lindqvist

1. Introduction

A well-known phenomenon in classic Potential Theory can be regarded as a
prototype for the variational problem to be studied in this paper. Recall that the
harmonic functions in a domain GCR", n=2, are preciscly the free extremals
for Dirichlet’s integral [|Vu|2dm.

The basic fact is that the following two conditions are equivalent for a function
u with continuous first partial derivatives Vu=(0u/0x,, ..., ou/dx,) in G:

1° For every non-negative 1 in C;(G)

[IVuPdm= [|V(u—n)|2dm
where the integrals are taken over the set spt = {x|n(x)=0}.
2° Given any domain D with compact closure D in G and any function
h that is harmonic in D and continuous in D, the boundary inequality
hloD=u|dD implies that h=wu in D.
These conditions express that u is subharmonic in G. (Condition 1° is usually
formulated as the familiar inequality [Vu.Vndm=0 for all =0 in C7(G).)

The object of our paper is the proper analogue to the above situation for

variational integrals of the form

(1.1) I(u, D) = [} F(x, Vu(x))dx, DcCG.

Here the integrand is assumed to satisfy certain natural conditions about measurability,
strict convexity, and growth: F(x, w)=|w|?, 1< p=<co.
If ucC(G)NW},1,{G) satisfies the inequality

1.2) I(u, sptn) = I(u—n, spty)

for every non-negative # in C;(G), then u necessarily obeys the ‘comparison
principle with respect to the free extremals for the integral (1.1). The corresponding
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fact is well-known in the theory of partial differential equations [3, 9.5, pp. 211—213].
Our main result, Theorem 4.1, states that, if u€C(G) nW;,loc(G), then the
comparison principle is also sufficient to guarantee the validity of (1.2). The direct
proof given in §4 avoids the difficult question about the continuity of the solution
to an ‘“‘obstacle problem™.

As an application we mention that the maximum of two free extremals satis-
fies (1.2).

We use merely standard notation.

2. Assumptions and preliminaries

Let G denote a fixed domain in the Euclidean n-dimensional space R", n=2.
Consider the variational integral

Q.1 I(u, D) = [, F(x, Vu(x))dx, DCG.

The integrand F: GXR"—R is assumed to satisfy the following conditions.
(i) Given &=0 and a set Dc G, there is a compact set K,cD, m(K,)>
m(D)—e, such that the restriction F|K,XR" is continuous.
(ii) The mapping w—F(x, w) is strictly convex for a.e. fixed x€G.
(iii) There are constants 0<o=f-<e, and an exponent p, l<p<eo, such
that for a.e. x€G

2.2) alw|’=F(x, w)=8lw[?
when wéR.

2.3. Remark. 1° The strict convexity (ii) guarantees the uniqueness of extremals
with given boundary values [4, Corollary 4.19, p. 31]. If ¢€C(D)nW (D), D being
a domain with compact closure in G, then there is a unique extremal ¢ C (D)W (D)
with h—@€W, (D) such that I(h, D)=I(v, D) for all similar v, c.f. [2, Ch. 1. 3,
pp. 29—31] and [1].

2° If  wy, Up, Uy, ... Wi(D), D being a domain in G, and if Vu—~Vu,
uc W},(D), weakly in LP(D), then I{(u, D)=lim I(u;, D). For this lower-semi-
continuity result, we refer the reader to [8] or [5].

We say that u€C(D)nW} (D), D being a domain in G, is a free extremal
in D, if

(24) I(”) Spt ’1) = I(u—n, Spt ’1)

for all #€Cy (D). Analogously, we say that u is a free subextremal in D, if (2.4)
holds for all non-negative n€Cg (D). Of course, an extremal (in the ordinary sense)
is also a free extremal.
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We say that a function u€C(G)nW} ,(G) obeys the comparison principle
in G, if the following implication is true for every domain D with compact

closure in G:

W henever h C(D)nW}, (D) is a free extremal in D and h|dD=u|dD,
then h=u in D.

3. Necessity for the comparison principle

For the sake of completeness we shall give a simple proof of the fact that the
(free) subextremals obey the comparison principle.

3.1. Theorem. Suppose that u€C(G)NW; (G) is a free subextremal in G.
Then u obeys the comparison principle in G.

~ Proof. Suppose that hcC(DYnW}, | (D), hldD=uldD, is a free extremal in
a domain D with compact closure in G. Given &>0, h,=h+¢ is a free extremal
in D. The set D,={x[h(x)<u(x)} is open and D,cD. If m{xcD,|Vh(x)>

Vu(x)}=0, then the subextremality of u and the strict convexity (ii) imply that

16, 0) = 1{*5" b)) < 216, D)+ 2108, D).
i.e. that
(.2) I(u, D) < I(h,, D).
On the other hand
3.3) I(h,,D,) = I(u, D,).

Obviously, (3.2) and (3.3) are incompatible, and so Vh,=Vu a.e. in D,.
This implies that h,=wu in D, in virtue of h,|0D,=u|dD,. Hence the set D, is
empty, and so h+e=u in D. Since &>0 was arbitrary, we obtain the desired
inequality A=z in D,

4, Sﬁiﬁciency for the comparison principle

We are now going to prove our main result, viz.:

4.1. Theorem. Suppose that u€C (G)mWII,, 10(G) obeys the comparison principle
in G. Then u is a free subextremal in D.

Proof. Fix a domain D with compact closure in G. Consider the class

F = {veC(D)nW;(D)|v = u, v|dD = u|dD}.
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Obviously, u€#. Thereis a function ueW(D) such that u=u, u—ueW} (D), and
“4.2) I(w, D) = [(v, D) for all vEZ.

The existence of u is established by the aid of a minimizing sequence u;, u,, g, ...
in & that converges weakly in (D) to u. Especially,

4.3) lim I(u,, D) = I(u, D).

It is easily seen that w is minimizing the integral in a somewhat broader class
than &, i.e.
4.2y I(u, D) = I(v, D)

for all veW(D), v=u, v—uc W (D).

We have to show that u=u. If w were known to be continuous, this question
were trivial, .f. [4, Theorem 5.17]. In order to avoid this difficult regularity question
we shall construct another minimizing sequence from 1y, u,, ... As in the classical
“méthode de balayage” we aim at modifying #; in some regular set close to D.

To this end, fix é>0 and note that the sets {x€D|u(x)<u(x)—e} and
{x€D[u(x)<u(x)—2e} are open. Using a standard method we can construct
open sets Dy, as regular as we please (e.g. “polyhedrons™), such that 1°

{x€Du, (x) < u(x)—2¢} < D, < {x€D|u(x) < u(x)—e}
and 2° there is a unique extremal h,€C (Bk)mW},(Dk) with boundary values
h|oDy=1u|0D,, provided that D, is not empty [1, end of §3]. If x€dD,, then
u(x)=u(x)—2, and so uldD,=h/|0D,+2e=(h+2¢)0D,. By the comparison
principle, which # is assumed to obey, this inequality holds in D,, i.e.
hyzu—2¢ in D,.
Define ,
w - {hk in D,
4.4) *“lu, in D\UD,.
Then H,eWy(D) and Hy—ucW? (D). Obviously, I(Hy,D)=1(w, D). More-
over, we have
4.5) H, =u—2¢

in D. So far we have imitated the classical “‘méthode de balayage”, but the functions
constructed are not necessarily in the class &#. Giving due care to the obstacle
in &, we are therefore forced to adjust H,.

Note that the uniform bound

sup b, = max h, <supu =M
D,? k oD, € i

is trivially valid, c.f. [4, Remark 4.6, p. 25]. Fix 1€(0,1) so that O<A<g/|M]|.
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The convex combination
4.6) we = AH,+(1 =Dy
is in WYD) and w,—u€W, (D). Moreover, wy=u in D, since w,=u in
DN\JD, and in D, wehave w,=(1—Du+Ah,=01—-Du—e)+tAM=(u—e)+iM<u.
Thus w, is admissible in (4.2)".

Hence I(w, D)=I(u,D) by (4.2), and by the construction [(w,, D)=
=M (H,, D)+ —~)I(u, D)=1(u, D)+(1 —D)I(uy, D)=1(u,, D), i.e.

I, D) = I(w,, D) = I(u,, D), k=1,2,3,....

Thus
“.7n lim I(w,, D) = I(u, D).

. 1 1 ,
Since  [|VwilPdm=—I(w,,D)=—I(, D), the sequence  [|Vw|Pdm,
o o
k=1,2,3, ..., is uniformly bounded in virtue of (4.3). Thus there are indices
ki<k,<ky<... and a function w,cW; (D) such that w, —w, weakly in WyD).
We have w,=u and w,—u€W, (D). Now
I(w, D) = I(w,, D) = lim I(w,, D) = I(u, D)
| by the minimizing property (4.2)" of u, the lower-semicontinuity of the integral
[Remark 2.3], and (4.7). Hence I(w,, D)=I(u, D). As in the proof of Theorem 3.1,
the strict convexity (ii) implies the uniqueness
u=w,
(this independence of & indicates that the sets D, are empty sooner or later).
The weak convergences
Uy, ~u, AH, +(1—u, ~u
imply that H, ~u weakly in Wi(D). By (4.5) u=lim H, =u—2¢ in D. Since
=0 was arbitrary, u=u in D. On the other hand u=u, whence u=u. This
means that u has the desired minimizing property.

5. The maximum of two extremals

As a simple application we mention the following result, difficult to prove
without the comparison principle.

5.1. Theorem. If u,v€C(G)nW}  (G) are (free) extremals, then max {u, v}
is a (free) subextremal.

Proof. The function max {u, v} is in C(G)nW? , (G). Since u and v obey

p,loc
the comparison principle in G, so does max {u,v}. The result follows from

Theorem 4.1.
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