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Introduction. Two elementary theorems on continuation of analytic functions 
across a compactum CC=R 2 are stated, and to each an example is given to show 
that the sufficient condition is best possible. In I. we use methods from the theory 
of singular integrals to estimate a certain sum of  analytic functions. In II. we use 
Fourier analysis in R 2 to estimate certain sums of  functions that  seem immune to 
direct methods (especially their higher derivatives). We make explicit use of  the 
"symbols" of  the operators O/Oy and 0/O~; we are impelled to a complicated con- 
struction of  the exceptional set by the necessity of  evaluating certain integrals arising 
as Fourier transforms. 

I. A compact set C in the plane is called non-removable if  there is a uniformly 
continuous, nonconstant analytic function defined on R ~ - C .  By a theorem of  
Besicovitch [1], C is removable if C is of  a-finite Hausdorff  1-measure, hence afortiori 
if  C is a rectifiable curve. (The theorem must be changed if uniform continuity is 
replaced by uniform boundedness.) When C is the graph of  a function y=f (x ) ,  
- 1  =<x<=l, then C is removable i f f  has bounded variation, or is differentiable 
everywhere (an elementary theorem). Our purpose is to show that this last statement 
cannot be improved. 

Theorem. Let h(u) be positive and increasing for 0<u-<_2, and lim u - l h ( u ) =  
+ ~  at u = 0 + .  Then there is a curve y=f (x ) ,  - l ~ x ~ l ,  non-removable in the 
definition stated, such that l f ( x O - f ( x ~ ) l  <= h ( x l -  x2) whenever - 1 <=x2 <Xl ~- 1. 

It  is clear that  C has finite Hausdorff  measure for the function H(u)---h-l(u),  
and that  h- l (u)  can be any function H(u) subject to the relation H(u)=o(u) .  This 
corollary of  our Theorem is due to Carleson [2]; however, the sets constructed by 
Carleson are disconnected and in fact do not appear  to lie on any Jordan curves 
with interesting properties. 
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2. Let 0 ( t ) = l - l t [  for ) [ < 1 ,  0 ( = 0  otht)erwise, and then 

Fo(z) = f = = o ( t ) ( z - t ) - l d t ,  z r  1]. 

1 1 3 Then [FoI<=C off [--1, 1] and F o ( z ) = z - + - ~ z - + . . .  near infinity. We note 

the following approximation for Fo: when Izl>4 and 1~1~2, then F 0 ( z + O =  
z-l+O(z-~). 

Let now 0 < r < l  and a~=r f~+l g,(rt)dt, so that ~ a k = l  and lak+l--ak]< 
r2; moreover ak=0 when I k l > r - l +  1. Let w be any complex number and g (z )=  

ak Fo ( z -- kw ). 

Lemma. Ig(z)]<=C'(rlwl-l+r) on the domain of holomorphy of g. 

Proof. Clearly g ( ~ ) = 0 ,  Igt-~C, and g is analytic off the line segments 
[kw- 1, kw+ 1] with tkl<=2r -1. It is sufficient therefore to prove the inequality 
for numbers z such that [z-vwl<2 with Ivt<=2r -1. We can suppose that Iwl>-_4r 
(since Igl<-C), and then omit from the sum the indices satisfying the inequality 
Ik-vl~41w1-1, because lakl<r. For  the remaining indices k we observe that 
z - k w = ( v - k ) w + z - v w  so that 

Fo(z- kw) = (v -  k)-lw-1 + 0 ([W I --2 l1 ~ __ e l - 2 ) .  

Summation of  the error Iwl-~lv-k1-2, over the range [k-vl>4lw1-1, yields 
O(]wl-0,  which is then multiplied by r. Again lak--a,l<r2]k--v[, and the range 
of  summation is taken as 4 [wl- l< Ik-vl<=4r -~. The principal term avw-l(v-k)  -1 
sums up to 0, and the error to O(rlwl-1). 

We apply this inequality to the function ~ '  ak" 2Fo(2Z--2rk), wherein 0 < r <  1 
and 2=wr -1. We find the inequality IG(z)l<-121. IC'l(rlwl-l+r)=lc'l+IC'llw[, 
on the open set where G is analytic. Suppose further that r ~ 0 + ,  I21~ + ~ ,  Iwl= 
[21r<l.  Then G(z) tends uniformly to F0 on each compact set K disjoint from 
[--1, 1]; to see this we observe that if r is small and akr then Iz-rkl>=5>O 
for all z in K, with a constant 6 independent of  k, r. Then 2Fo(Az-2rk)=(z-rk)-l+ 
O(2-1), so G(z) may be compared with a Riemann sum for Fo(z). At the same 
time G(z) remains uniformly bounded, by the requirements on 2, r and 2r. The 
open set G on which G is analytic tends to R2--[--1, 1]. 

(The lemma and its applications remain valid if ~ is replaced by a Dini-con- 
tinuous function; we have only to estimate ak-av more carefully.) 

3. The curve y=f(x) will be a limit of  curves y=f,(x), - l _ - < x ~ l ,  with 
f 0 = 0 ,  f , ( - 1 ) = f , ( 1 ) = 0  and lf,(xO-f,(x2)l<=(1-2-")h(IXl-X2l). We suppose 
that go, is analytic of f the  curve y= f , ( x ) ,  I x l ~ 1 - 2  -"-1,  and that go,=z-l+O(z -z) 
near infinity. Also, each go, is a sum ~ j  bjFo(e,z+cj), with some ~, depending 
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on n and each Ib j l~31-" .  The singular lines of  the different functions Fo(e,z+cj) 
are disjoint line segments contained in the curve y=f,(x), so Re con#0. For  ~00 
we choose 2F0(2z). 

The singular line of  Fo(cC, z+cj) has end points e~- l (c j -1) ,  cr if  
cr  r176 then this line has slope - t a n  ~o. We replace F 0 by a sum 

Z a~. 2Fo(2z--k2r), 

obtaining (for fixed j )  a sum ~ak.2Fo(2~nZ+2Cj--2kr ). We shall take r very 

small, ]21 =(6r )  -~, and choose the argument of  2 in the following way. The singular 
line of  Fo(2~nZ+2cj-k2r) is represented parametrically by the equation z =  
(2cr 1 t + ku~- 1 r - u~- a c j ,  --  1 <= t_-< 1. Taking a number  z* on the singular line with 
a different index k*, we see that  IRe (z-z*)[_-> [Re ( ~ 2 1 r ) [ - 2  [Re (2~;-1)1. Now ~. 
is not purely imaginary, as observed before, so that Re (e2lr)l=>6~r, for a certain 

6 .>0 .  Setting 2 = ( 6 r ) - %  i~', we calculate R e (2c~.)-~=6rR -a cos (q)+~). We there- 
fore choose 0 so that cos (~0+~)#0 ,  ]cos (q)+O)[<R6./24. 

Thus as k varies, but j is held fixed, the singular lines have projections on the 
x-axis separated by intervals of  length at least r6./2. Hence the lines can be com- 
pleted to a graph with slope at most  M. ,  independent of  r. 

When a k # 0  , then Ikr]<-l+r, and so each point on the associated line is 
within 7rlcr -~ of  the singular line for Fo(cC, z+cj). For  small r, therefore, the 
singular lines in the full sum q ) , + l = ~ '  bjak" 2Fo(2e, z+2ej--k2r) are disjoint and 
are contained in a graph y =J ;+l (x)  with lf~+l(xO--f,+~(x2)[-<(1-2-n-~)h(lxl-x2[). 
Here we use for the first and only time the hypothesis that  u=o(h(u)) as u ~ 0 + .  
Taking r small enough, we can ensure that the 9.+~ is analytic outside the strip 
[x]<=l-2  -"-2.  Moreover,  lbjllakl121<=31-"(6r)-12r=3 -". 

We assert that for small enough r > 0 ,  1%-(p,+11~_C"3-", with C" independ- 
ent of  n. By the Lemma,  we certainly have 

[bjFo(~,z+cj) -b j  ~ a k �9 F0(2~ . z + 2cj-k2r)] ~_ C'3-" 

for each fixedj. The singular lines of  the functions Fo(u.z+cj) can be separated by 
Jordan curves; near the j - th  line, all the other differences tend uniformly to 0 with r, 
so we can attain a bound C " 3 - " = 2 C ' 3 - " .  

Now f=limf,(x)  exists uniformly, as does ~o=lim % outside the union of  
all the curves. To prove that 9 is continuous in the entire plane, we fix a number  

1 2 z o and observe that  for each n ~ l ,  ~p, is a sum 9,+q)n, where I~0~1<_-c3 - "  and 9 ,  2 
is continuous on a neighborhood of z0. Plainly q~=2-~+O(z  -~) near infinity and 
9 is analytic except on the curve y=f(x). 

H. In this part  we examine whether there is a function qg, analytic in R z -  C 

but not a polynomial there, such that  a certain derivative ~o (") is bounded. The 
examples of  Carleson [2] suggest that  Hausdorff  measures alone cannot give 
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interesting results here, for n=>l. We state an elementary theorem on removable 
singularities, and then prove that the condition named is best possible. 

Let h(t)  be positive, continuous, and increasing for O < t <  + ~ ;  we say that 
C has a perimeter of  h-measure 0 if to each e>O we can find closed, rectifiable Jor- 
dan curves F~in R 2 - C ,  of  lengths Li, so that .~  h(Li)<e,  and 2 n i = ~ f r , ( ~ - z ) - l d ~  
for each zE C. Because h is positive and increasing, we see that C is a Cantor set, 
and cannot separate R 2 -  C. 

Theorem. (a) Let qo be analytic in R ~ -  C, and q~(') bounded, for a certain 
n =0,  1, 2, . . . .  I f C  has aperimeter of  h-measure 0, h(t)  =_ t n+l, then ~o is apolynomial 
o f  degree at most n. 

(b) Suppose that l imin f  h ( t ) t -n-~=O as t ~ O + .  Then there is a compactum 
C, with a perimeter of  h-measure 0, and a function ~o, analytic in R ~ -  C, such that 
~o, ..., ~o (~) are bounded and uniformly continuous in the plane, but ~o is not constant. 

Proof of  (a). Subtracting a polynomial from (p, we can assume that ~o (z)= 
~ 0  ak z-k-1 in some region tzl >R.  Then 

2niag = Z f rf(O (k d(. 

Each integral is 0 unless F~ surrounds a point in C, and we can assume that h (L,) ~ 1 
for each Fi, so that the Fi fall within some circle Izl<R1. On each curve we integrate 
~k n times, choosing a primitive qi on Fi so that [qi(()l=O(diamFi)~=O(Li) ~. 
The integral is then ( -1 )~ f@' ) ( ( )q~( ( )d (=O(Li ) '+ l .  As we can make the sum 
~ L ~  +~ arbitrarily small, each ak-~O , SO that (p=0 for Iz[>R; and then ~o=0 
because R~--C is connected. 

For  the proof  of  (b), we treat separately the cases n = 0  and n=>l, as they 

differ in important details. We use the operator 0 = ~  (O/Ox+iO/Oy) so that f ' =  

-iOf/Oy on the interior of  the set 0 f=0 ,  that is, the domain of  analyticity o f f i  
In place of singular integrals we have resort to the Fourier transform, using the 
symbol e ( t ) - e  ~it. Let F ( u , v ) E L I ( R ~ ) n L ~ ( R  2) and 

; ( x ,  y) = f f e(ux +vy)F(u, v) du dr. 

A solution of  the equation Og = F  is given by 

g (x, y) = ( i n ) - l f f  e (ux + vy) (u + iv) -* F(u, v) du dv. 

This is an absolutely convergent integral because F E L ~ n L  ~. We have also 

Og (x, y)/Oy = 2 f f  e (ux + vy) v (u + iv)-1 du dv, 

and this equals ig" when 0g=0.  
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Proof for n=0.  To each pair of  integers M, N ( M > N > 2 ) ,  we construct a 
function gM, N of  class C=(R2), period 1 in each variable, and mean-value 1. Let 
fN(x, y) have mean-value 1 and 

(i) f (x ,y)=O unless ]xI<N -1, ]y ]<N -1 (Modulo 1), 

(ii) [f~xl+]frrl < C1 N2 "NZ = C1N 4. 

The Fouier coefficients apq o f f  satisfy 

(iii) a00=l, lapql~l always 

lapql <= Q NZ(p2 + q2) -1. 
Then we find from (iii) 

(iv) ~ ' ~  [a,~[(l +lpl+lqD -~ <= C2N. 

To find this estimate, we use the first inequality when p2+q2<=N2, and the second 
when p2+q2>N2. We set gM, u(x, y)=f(Mx,  My). 

Lemma. Let F(u, v) be a rapidly decreasing function on RL Then 

if(x, y)gM, N(X, y) 

is the Fourier transform of a rapidly decreasing function GM, N. 
I f  N ~  + ~o, M ~  + ~o while N=o(M) ,  then 

f f IF(u, v)--GM, N(U, V)I ]u + iv]-l du dv ~ O. 

Proof The first statement follows from the smoothness of  G as we shall see 
presently. Recalling that %q are the Fourier coefficients of  fN, we have gM,N = 
~ a p q e ( M p x + M q y ) ,  and we find that GM, N is a sum 

Z Z  ap, qF(u--Mp, v - M q ) .  

It will be sufficient, therefore, to study the sum of  integrals 

~ ~ '  lay, ql f f I r(u - Mp, v -  Mq)[ lu + ivl--1 du dv. 

(As usual, a sum ~ '  means that (0, 0) is excluded.) Now the integral is 
0 (IMpl + IMqD-1 as we see by dividing it into the domain (]u + iv I> IMp 1/2 + IMq[/2) 
and its complement, and using the rapid decrease of  F. We arrive at the estimate 
M -1 .~Z']apql(Ipl+[q])-l=O(M-XN) by (iv), and this is o(1). 

We now explain how this estimate leads to the function ~o and the set C. We 
take F so that ff has compact support and then define ~0 o as a Fourier transform so 

that 0~po=P. Then we take M > N > 2  and define ~o 1 so that Oq~I=F'gM,N. The 
support of  /~'gM, N is covered by squares o f  side 2 M - 1 N  -1, and the number of  
these that meet the support of  F is O(M2), as the centers of  the squares are at the 
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points ( M - l k ,  M-1I).  For the h-measure of this system of boundaries we find 
O(M2)h(SM-1N-1).  To make this sum small, together with N M  -1, we find t > 0  
so that h(t~)<e~t 2, and define M~- lO(et) -1, N~-et -1, so M2h(SM-1N-1)< IOOe2 
and N M - I < e  2. 

We now choose sequences (M1, N1), ..., (Mj, Nj) so that M~.h(8MflN;1)= 
o(1). We define ~op by the equation ~qgj=F.gM1N1...gMjN~; then ~pj=Gj and 
the construction can be carried out so that Gj ~ G= ~ 0 in L 1(R2). Then ~pj ~ q~ ~ c 
uniformly and ~p is analytic outside a set C with a perimeter of h-measure 0. 

Proof for n >= 1. 

For n=>l it doesn't seem to be possible to use squares, or even rectangles, 
for the covering of C. We shall therefore need a function more complicated than 
gM, u used for n=O. Let H(s, t) be a smooth function of period 1 and mean-value 
1, and let H(d, t) =0 if Is I<- 1/3 or It I -  <_ 1/3. As before, F is a function in L 1 c~ L =, 
such that /~(x, y) has compact support. 

Lemma. Let s = 0 , 1 , 2 , 3 , . . ,  and F(u,v)=O(l+lul+lvl) -'-3. For all real 
numbers ~, B we have 

I,(~, fl) - f f IF(u -~ ,  v-fl)l  Iv[ s lu + iv1-1 du dv 

<- c(F)(1 + I~1)-1(1 + I~1) s, 

Proof. We rewrite the integral and use the inequality [v+[3[~<2~[vl~+2s]/31, 
obtaining a majorant 

2"ff IF(u, v)l (Ivl~+ IH?)" I(u + ~) + i(v+fl)l -~ du dv. 

We divide the (u, v) plane into two subsets. 
(i) (u+~)2+(v q-13)~>(1 + 1~1)2/4. The integral over this set is O(1 + [c~])-1(1 + ]ill ~) 

because IF(u, v)[(1 + Iv] s) is integrable. 
(ii) (u+~)~+(v+fi)~<-(1 +[~[)2/4. The integral of  [(u+~)+i(v+~)] -1 over this 

region is re(1 +[~]). On this subset lu[_->~ I~[ 1. - -~,  considering separately the cases 
[~1_->2 and [cr we conclude that IF(u,v)l=O(l+l~l)-~(l+lMl) -~, so the 
cofactor of l(u+~)+i(v+~)1-1 on this subset is O(1 +1~[)-2(1 +l/~lS). 

We Use this observation about p + q 1/2, when p, q are integers and p2 + qZ => 1 : 

I(p+q ]/2)(p-q 1/2)1= [p~-2q21=>l, whence ([PI+ Iql)lp+q 1/21>1/2- 
To select pairs of integers Mj, Nj, we begin with a sequence of  integers N j ~  + ~o 

so that h(8Nf l )<j-~N~ "-1 and choose Mj~-jN], so that MjNjh(SNT~)=o(1), 
N]=o(Mj). In place of the functions gu, N used for n=0 ,  we use H(Mx, M 1/2x+Ny). 
This is zero along each line M x = k  or M1/2x+Ny=l ,  and these divide the plane 
into parallelograms of area M - 1 N  -1 and perimeter < 8 N  -1 (since M>N) .  The 
number of these meeting a fixed bounded set is O(MN), and this leads to a sum 
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MNh(8N -x) of the type just considered. Let H have Fourier coefficients bpq, with 

b00=l; if F~L 1 then H(Mx, Mf2x+Ny)~(x , y )  is the Fourier transform of  

.~ 2 bpqF(u -- M p x -  M ]/~q, v -  Nq). 

To estimate the function ~ defined by O~ =H(Mx, M ]/2x+Ny)F(x, y), along with 
bs~/Oy ~, l<-s<-n, we have to consider sums 

Y_, y," Ibpal f f [g(u -- Mp-- M g-~, v -  Nq )l [vl~ [u + ivl -l  du dv, 

for 0 = s = n ,  or 

Z Z" [bpq[ I,(Mp+ MV-2q, Nq). 

But (mp + m  #2q)=>M([p] + [ql)-l/2, so the cofactor of  [bp~l has order of  magnitude 
(Ipl+lql)M-l(l+lNqI)'<(l+]pI+1q])~+lM-1N ~ (for q # 0 )  and IpIM -~ for 
q=0.  Since the coefficients bpq decrease rapidly, _ , ~  bpq([pl + [ql),+l< + co, and 
the construction can be completed for n => 1. 

The complicated function H(Mx, M g-2x+Ny) is introduced, to handle the 
terms with pC0 ,  q ~ 0  in the Fourier expansion of  H(s, t). For  almost all real 
numbers 4, [P~+ql>=c(lpl+[ql) -2, for example, and this would be a sufficient 
lower bound. 

III. In this section we consider briefly the class of sets (FS): C is FS if some 
element q~r of  FL ~ is analytic outside C. 

Theorem. Let E be a compact set of R, andsuppose that EX[0, 1] is of class FS. 
Then E has positive logarithmic capacity. 

Proof. There exist test functions O(x) and O(y) such that 

f f -o(O(x) 4,(y))~o(x, y)dx dyr 

in the opposite case, (p would be entire, while q)(~)=0.  We define a distribution 

T ~ 0  carried by E: T(O)-ffO(O(x)~(y))~o(x,y)dxdy. Inasmuch as ~0 belongs 
to FL ~, we have the bound 

IT(O)I <= C sup lu+ivl IO(u).@(v)[ 

<= C~ sup (1 + [u])lO(u)l. 

(The converse is true and easily proved: if E carries a distribution T ~ 0  with this 
bound, then EX[0, 1] is of  class FS. This applies, for example, to sets E of  positive 
Hausdorff dimension.) 

We define a function 4)(u+iv) harmonic outside E: ~(u+iv)=Tx(log ]w-x[) ;  
T~ means that T operates on the variable x. If  �9 were continuable to be harmonic 
in the plane, then 4 ~ , - i ~  would be entire. For  large w 

�9 ,--ir = T~(w-x) -~ = Z o  w-"-~T(x") �9 
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Assuming that ~u- . i~v is entire, we obtain T(xn)=0 for n=0 ,  1, 2, . . . ,  so that 
T = 0  by Weierstrass' theorem, a contradiction. 

To prove the boundedness of  ~(w) near E, let •(x) be a test function, equal 
to 1 on a neighborhood of  E. 

Then f z (x ) log  ]w-x[e ( t x )d t=O(1) log(e+lw[) ;  we use this when [ t ]< l .  
For  [ t l> l  we use the observe that when v # 0  

Z'(x) log Iw-x]  +X(x) Re (w - x )  -1 

has Fourier transform bounded by the same quantity; hence Z(x) log Iw-x]  has 
a Fourier transform bounded by O(1).  log (e+  ]w[). (1 + It [)-a. This completes the 
proof  that E has positive logarithmic capacity; in particular E•  1] need not  be 
of  class F S  when E is perfect, but E•  1] must be non-removable [2]. The case 
n = 0  of  (b) shows that Besicovitch's theorem [1] is best possible for sets of  class FS. 
We state two problems on this class: 

Is every set of  positive Lebesgue measure necessarily of  class FS? Every set 
E•  1], where E has positive logarithmic capacity? 
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