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Introduction 

It has been recognised for a long time that the sequence {exp (irkO); k = O, 1, 2 .... 
with r an integer greater than one and 0~0<=2rc, is quite similar to a sequence of  
independent random variables. That is, many statements that are valid for sums o f  
independent variables a r e  also true for sums of exponentials of the above type. 
This coincidence may be explained by the observation that the sequence, while not  
independent, is a martingale difference sequence. 

Our purpose in this note is to discuss this type Of martingale in the context o f  
the theory of  H/'-spaces. In fact, we show that for any positive integer r > 1 one can 
find a sequence of  a-fields with respect to which the above lacunary exponentials 
become martingale differences. Using this, we define HP-spaces in a manner analogous 
to what has been done in the classical case (cf. [2]). These HP-spaces are translation 
invariant subspaces of LI(T)  that coincide with LP(T) for p >1.  

The most interesting case is when p ~  1; here the spaces which we denote by 
H i are translation invariant subspaces of L I(T), distinct from the classical Hardy 
space HL The space H~ may be characterised as follows: fEH~ if and only if f a n d  
its "conjugate" y~ belong to L 1 (T). Here j~ is, of  course, not the harmonic conjugate 
function; nevertheless, it is obtained from f by a Fourier multiplier taking the va- 
lues + 1. 

The spaces H i and their associated conjugate functions are closely related to 
some results of Taibleson and Chao [3]; we indicate this in some detail in w 3. 

We also use these ideas to obtain some recent results on lacunary series. We 
discuss these applications in w 2. 

For  background on martingale theory and HP-spaces, we cite [1] and the excellent 
exposition by Garsia [4]. 

*This research was sponsored, in part,-by N. S. F. Grant 42 478 and the Research Council 
of Rutgers University. 
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1. Statement of results 

Let f ( O ) = Z f ( n ) e x p ( i n O )  be a trigonometric polynomial. For  any positive 
integer r > 1, we define two  auxiliary functions 

S U  ~"Trk - -1  ~ f J ]  I 

Sr(f)(O) = {If(o)l ~ +Z•=0 l Y~u f  (J ?) exp (ijrkO)12} 1/2. 

Theorem 1. Let f be a trigonometric polynomial. I f O < p <  ~,  we have 

cpllS,(f)lTp <= IIf,*lI -<- CpllS,(f)llp. 

11" 1 < p <  + ~o, then we may replace f *  by f i n  the above inequalities. 

Let r>O be an odd integer with r we can associate the following partition of 
the integers Z 

A = A , = { r ~ + ~ s + r " q ; s E Z ,  q = l , 2 ,  2 , n  >-0} 

B = B , =  r"+ls+r"q;sCZ,  q -  2 . . . . .  r - l ,  n 0 

Theorem 2. Let  f be a trigonometric polynomial then 

c([[~v~Af(v)eiV~ + llZv~J(v)d'~ ~ [I/~*l[x <= 

<= C(llZvz~f(v)e'V~ + IIZvEJ(v)ei'~ 

where c, C > 0  are two constants that depend only on r. 

For  r even, an analogue of Theorem 2 holds, but the integers have to be parti- 
tioned into more sets. For  details cf. w 3 

Theorem 3. Let f be an Ll-function; then 

(~=0 ]f(?)12) a/2 -<- Cr Ilfr*[l~. 

An elaboration of the method of proof  of  Theorem 1 leads to the following 
corollary. 

Corollary 1. Let  f be an LP-function on the circle and a~, a~ . . . .  , am be integers 
with a z > l ,  i=1 ,  2 . . . .  , rn. Then 

(Z , ,  ...... ~ l f ( @ @  ... a~")12) 1/2 <= Cpllfllp 
for 1 < p <  + =,. 
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Theorem 1 is a consequence of general martingale inequalities proved in [1]. 
This is made explicit in w 2. Using these inequalities we can obtain a class of L p- 
Fourier multipliers due originally to Peyri6re and Spector [5]. 

Theorem 3 is a well known result of R.E.A.C. Paley whenp > 1 (cf. [7]). Corollary 
1 is an extension of Paley's inequality and provides an answer to a problem proposed 
by Neuwirth, (Neuwirth had already proved the special case m=2).  This inequality 
was first proved by Bonami and Peyri6re using the results of [5]. 

2. A backwards martingale 

For r E  1 a positive integer, let ~,  denote the o'-field of all 2for-l-periodic Borel 
sets of the circle T. Then the conditional expectation of a function fCLlfy) with 
respect to ~ is given by 

0+ 2 E(f][~)(O)= = [ j r  -1. 

If  we expand f in a Fourier series 

f ( O) ~-- ~n='- ~ f  (n) exp ( inO) 
then 

E(f]] 4 ) (0 )  ~- ~ =  _=f(nr) exp (in. rO). 

Fix r >  1 and consider the decreasing sequence of a-fields ~'~., n=0 ,  1, 2, . . .  ; the 
sequence 

~ " - I r  0 + 7  f .  = E ( f l [ ~ . )  = z.~j=0 

is a backwards martingale in the sense that for each N@ 1, 

. . . , A , f o  = f 

is a martingale. I f  we set f ~  = limf~ =f(O) we may verify quite easily that the functions 
S~(f) and f r* are the martingale square function and maximal function, respectively, 
corresponding to the above sequence of o--fields. Furthermore, this martingale has 
the following regularity property: I f  d~=f,-f~+l, then 

(1) 
where 
where 

v~. q), q = l  . . . . .  r--1 

for j , k = l ,  2 . . . . .  r - 1 .  

dn = ~ ,r - -1  ,/)(q)~q(q) 
, . ~ q = l  n ~n 

are measurable with respect 

E(O(. q) ][ o~.+1) = O; 

I .(q l = 1; 

E(o~.k)g~ ~) 114" +1) = 6~ 

to the o--field ~.+1 and 
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In fact, if we expand d, in its Fourier series, we see that, as a 2nr-"-periodic 
function with E(d,[f~.+l)=0,  it can be written 

d.(O) = ~-- lge(r"+10) exp (iqr"O) 

where gq are uniquely determined. The functions gq (r" +10) = v~ q) (0) and exp (iqr" O) = 
=ff~,q)(0) fulfil our requirements. This regularity property allows us to apply the 
techniques of [1]. (In [I], the regularity condition states that d,=v ,o ,  with somewhat 
more general conditions on ~,. The extension of the results of [1] to our case 
presents no problems.) 

Thus, Theorem 1 is simply a special case of Theorem 5.1 of [1]. 
To prove Theorem 3, we have to introduce the space BMO relative to our mar- 

tingales. We know that the space BMO is the dual to H 1 with respect to our martingale, 
by Fefferman's theorem. Here, of course, 

//2 = {f6LI(T):f~*ELI(T)} �9 

A function gELS(T) belongs to BMO if 

E(Ig" g.[211 .) c 

for some constant and all n ~0.  (This condition coincides with the standard one in [4] 
because of our regularity condition). 

In terms of the Fourier series, the function g6BMO provided 

]~r,~,,u;:iv_u~(v)-~(U)l <= C for all n ~ 1. 

From this, we see that i f  

(2) g(O) _~ ~7=o ~(n) exp (ir" O) 
then 

(3) tlgI]BMo --<-- Cllgll2 

= c ( 2  

Theorem 3 is proved using a duality argument as follows: if f is a trigonometric 
polynomial, then 

(~~ [f(#')12) 1/2 = supff .  ~o dt 
q~ 

where the sup is taken over all q9 of the form (2) with IIq~l}2=l. On the other hand, 
the duality of It2 and BMO imply that 

f f~o dt ~ fliT*Ill [l~011~Mo. 

Finally, the inequality (3) shows that II~ollBMO<_--C, so that we obtain Theorem 2. 
We shall finall3) outline the proof of Corollary. For this, we shall need some facts 
concerning martingales with a several-dimensional time parameter. For simplicity 
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we limit ourselves to the case where the time parameter runs over the lattice (n, m), 
n>O, m>O. Let ~ ,  and ~,, be two monotone sequences of cr-fields (for simplicity 
assume they are increasing sequences) and Iet us suppose that the conditional expecta- 
tions w.r.t, o~ and (gin commute i.e. 

f ,m = E(E(UH~)[]~m)  = E(E(fl[qgm)1[o~), n, m > 0 

is said to be a martingale with time parameter (n, m). The S-function associated with 
the martingale is given by 

S 2 ( f )  = Zn ,  md2n, m 
where 

dn, m = fn, m --fn, m-1 - - f ro- l , .  - ] - f n - l , m - l "  

Lemma 1. For 1 <p<oQ, the fo l lowing  inequality holds: 

[IS(f)Hp <= Cpll f l lv .  

Proof.  Define the/2-valued function 

F =  (al , d2 . . . .  ) 

with d k = E ( f [ [ ~ k ) - - E ( f ] [ ~ _ O .  Then the LP-norm of F satisfy 

[]Fllp <= Cp [If lip 

by Burkholder's inequalities. See 2.5, on page 256 of  [1]. Observe that 

d.,, .  = E(d . [ t f~ , . ) -  E(d.[CS,._x) 
and that 

E(fllf9,.) = (E(dl lift,.), E(d2 [l~,.) . . . .  ) 

is a 12-vaIued martingale. Therefore we may apply the Burkholder inequalities again 
to obtain the desired result. 

As a special case, let ~ .  be the collection of all p"-periodic Borel sets of T, 
and f9 m the collection of all q"-periodic sets, where p and q are primes. By a small 
calculation one can verify that the "double" S-function, corresponding to these 
:sequences, is given by 

S 2 ( f )  = Zm,,  ]Zpl"2, q~(~. aap,..q,e'aP'%"~ ~ 

so that Corollary 1 follows from the lemma and a standard duality argument in the 
specia ! case of two primes. However, the process can be iterated finitely many times, 
:so the above argument leads to a proof  of Corollary 1. If  we replace the primes p and 
q by by arbitrary integers a and b, then the expression for S ( f )  becomes more compli- 
cated. However, we can simply decompose the numbers a t=  1, 2, ..., M into their 
prime factors and use the inequality obtained for primes to conclude the proof. 

Remarks .  As we noted above, Theorem 3 is a well-known inequality due to 
Paley when p > 1. However, there are some differences when p = 1. 
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Paley's inequality differs from ours in two ways: (a) instead of  the sequence 
r", n=0 ,  1 . . . . .  his result holds for any lacunary sequence of integers 2n, such that 
infn (2~+1/2n)>1; (b) for the case p = l ,  the correct result is obtained by using the 
classical HI-norm of  the function rather than its Ll-norm. On the other hand, our  
results are restricted to geometric sequences in an essential way. In fact, it is quite 
easy to  see that one can find functions f ~ L  1 such that llfTIIl<~ for some r > l ,  but  

IIflIHI= ~ and vice versa. 
The Lp-norm in Corollary 1 cannot be replaced by the / /1-norm.  In fact, it is 

known [6] that if ek = 0, 1, k = 0, 1, 2, ... is a sequence of Fourier multipliers f o r / / 1  
to L~ if and only if ek = 1 for a finite number of indices k, 2~<_ - k =  < 2  ~+~, independent of  
n; this condition is not satisfied for example, by the multipliers corresponding to a 
"double"  lacunary sequence p,,qm, n, m = 0 ,  1, 2 . . . . .  

Paley's theorem and Corollary 1 suggest the following question: given two la- 
cunary sequences mk and n j, is it true that 

( ,~,y  If(mknj)l=) a/= <= Cp llfllp 

for all l < p < o o ?  The answer is negative, however. In fact let ink=2 ~, k = 0 ,  1, . . . ,  N. 
For  n~, choose nj=2N(M--j) /2  j, j = 0 ,  1 . . . . .  N. If  we choose the coefficients 
f ( m  k �9 n j )=  1 or 0 provided k = j  or not, we obtain, essentially, the M th partial sum of  
the Fourier  series of  a unit mass at 0=0 .  

3. The "conjugate" functions 

We now prove the inequalities given in Theorem 2. The following variant of 

S t ( f )  is useful here: 

s ( f )  = s t ( f )  = [[f(0)l 2 + ~'n=0 E([d~l  ~ II ~'r-,~)] 1/~ = 

2 ~ r - -1  v(q) 2 1/2 = [If(0)[ +Z~=oZ~=xl  ~ [1 

where the functions v(. q) are those defined in (1). 

Lemma 2. For any r > l  and O<p<~o, we have 

cplls,(f)l lp <= I lS , ( f ) l l ,  <- Cplls ,( f ) i lp.  

This lemma is a variant of a result from [1] (see Theorems 5.3). 
To prove the left-hand inequality in Theorem 2, it is sufficient to observe that if 

f A (0) = Z ~v ~ a f (n) exp ( inO) 
then 

s ( A )  (0) -<_ s ( c )  (0), 
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so that for 0 < p < ~ ,  
IrfA[Ip ~ Il l ' l ip 

<-- ep Ils(fA)llp 

Cp IIf*[]p, 

Here we have used Theorem 1, Lemma 2, and the pointwise inequality just mentioned. 
The same argument may be applied to the  function fB" Therefore, we have, in fact~ 
shown that the left-hand inequality of Theorem 2 holds for all 0 < p <  co. 

The right-hand side inequality of Theorem 2 depends on a theorem due to Taible- 
son and Chao ([3], Theorem 2). 

Lemma 3. Let f be a trigonometrie polynomial such that f = f a (that is, the speetrum 
o f f is zero outside A).  There exists an ot o =o~o (r)< 1 such that for  all o~>~o, the sequence 
Ifl ~, [fll ~, . :. obtained from the (backwards) martingale f ,  f l  ,f2 . . . .  is a submartingale. 
That is, 

g ( I L [  ~ I1 ~,-+1) _-> [fn+xl = 
for  all n=0 ,  1, .... 

Before giving the proof of Lemma 3, let us indicate the proof of the right-hand 
inequality of Theorem 2. In fact, Lemma 3 implies that 

[If*Ill <- C~ sup [If, Ill; 
n 

since If, I" is a submartingale that is L "- 1-bounded, with ~ -1>  1. (Here we have used 
the maximal inequalities for submartingales (see Garsia [4]). 

Let us examine the proof of Lemma 3, The function f a ,  written out in terms o f  
its martinagale differences dn(O), is of the form. 

d. (0) = ~r -~) /~  [u~. ) (r" +1 O) cos (qr" O) - v~ ") (r" +x O) sin (qr" 0)] + 

+ i ~r -~ ) /2  [u~,)(r.+10) sin (qfO) + v~")(f+10) cos (qfO)] = Rn(O) + iI.(0), 

where the functions u~ "), V~q ") are real-valued. Here we have simply used the represen- 
tation (1) and split the functions there into their real and imaginary parts. 

The important point in this decomposition is that 

(4)  E(Rnln II ~7  -+ 1) = 0, 

E(R2. ][~-+0 = E(I~ I[ ~.+1), 

a fact which can be verified rather easily. Furthermore, the conditional expectatiort 
E(I[~-§ acting on an r"-periodic function, reduces to a simple average of r quanti- 
ties, as the reader can easily verify. These circumstances allow us to apply Theorem 2 
of Taibleson and Chao [3] to the martingale differences R.,  I . ;  the conclusion o f  
their theorem, stated in our terms, is precisely Lemma 3. 
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As we said in the introduction there is a version of Theorem 2 for the even inte- 
gers. I t  seems to be more complicated. 

Let us define: 
A~ = { m : m  = 4"(4s+1) ;  sCZ n ~ 0} 

A2 = { m : m  = 4"(4s+3) ;  s ~ Z  n ~ 0} 

A3 ---- { m : m  = 4n(8s+2);  s ~ Z  n ~ 0} 

As---- { m : m  = 4"(8s+6) ;  s ( Z  n ~ 0}. 

I t  is easy to verify that A~, ... ,  A s is a partition of the integers. 
Let also r =  2t be an even integer and let us define 

171 = { m : m  = ( r s+q)r" ;  s ( Z  n ~ 0 

q = 1 . . . .  ,---r2 1} 

B~ = { m : m  = ( r s+q)  r"; s E Z  n ~ O 

r } 
q = -~-+ 1, . . . , r - -  1 

C =  m : m =  rs r ; s ~ Z  n > 

/71, B2 and C is then a partition of Z that depends on r; a general element of  C can 
now be written in the form 

m = r ( r l + v ) +  r r" 

where l_->0, n=>0 and v = l ,  2, . . . r - 1 .  We can partition C now into four subse t s  
C1, C2, C3, Cs by demanding that  n and v stays in a fixed class mod  2 (i.e. takes only 

,even or odd values). 
B1, B2, Ca, C2, C3, Cs is then a partition of Z that depends on r. 

Let now fCLI(T)  
f ~,, z~ f (n )  exp (inO) 

and let us denote in general 
f a  ~ ~ , ~ a f ( n )  exp (inO) 

for  any A = Z subset of  the integers. We have then 

Theorem 4. Let  f be an Ll-funetion and let r be some even integer then 

a) i f  r = 2  k is apower  o f  2 then f E H ~  i f  and only i f  f a l , f A ~ , f a ~ , f a , ( L l ( T ) .  
b) In general (when r is not necessarily a power o f  2 but even) fC  H 1 i f  and only 

s.,, v(a . 
c) The spaces H ~  k = 1, 2 . . . .  are all identical. 
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Part c) is of  course an immediate consequence of a) but we shall need to obtain 
an independent p roof  since the proof  of  a) is based on c). That  independent proof  
follows f rom the following two pointwise inequalities: 

$2 ( f )  (0) ~_ C k sz~ ( f )  (0) 
and 

f6 (O)  <-- f : ( O )  

which are easy to verify, and Lemma 2. (There is nothing special about  2 in (c), in 
general H~k k=- l ,  2 . . . .  are all identical spaces). 

This point being settled we can now prove 

(a) by proving that f E H ~  if and only if f a i ,  fA~ ' f43 , fA ,  ELl(T)  �9 The proof  
runs on strictly identical lines as the proof  of Theorem 3 and will therefore be omitted. 
The proof  of  the general case (b) also follows the same lines, and will be omitted. 
The thing to be observed here is that the two  sets B1, B2 behave like the two sets A 
and B of Theorem 3, and that  the four sets C1, ... ,  C4 behave, like the four sets A 1 . . . .  
. . . ,  A 4 of part  (a) of  Theorem 4. The general case combines, in some sense, Theorem 
3 and the special case r = 2 k. 

From Theorem 2, it follows t h a t  if z (n )=  +1 ,  according to whether nEA o r  
not, then z is a Fourier multiplier that characterizes H~ a for r odd: the function fE  H i  
if  and only if z ( f ) ( = z ( n ) f ( n ) )  and f b e l o n g s  to LI(T). 

For  the case r even, Theorem 4 says that at most five multipliers are needed. 
We have not been able to decide whether  fewer are sufficient, and we leave this as 
an open problem. 
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