Generalized Hardy and Nevanlinna classes
Lawrence Gruman

Let D be a bounded domain in R" which is given by a continuous subharmonic
function V(x). By this we mean that

1)) D= {x; V(x) <0} and x»lyir?en V(x) =0 for yedD.

(We do not require ¥(x) to be defined outside of D). Such a domain is regular for
the solution of the Dirichlet problem, and for every regular domain D, there exist
many continuous subharmonic functions which satisfy (1). (For all the informa-
tion that we shall need on potential theory, the reader is referred to Helms [5].)

Let K,={x€D; V(x)=—¢}, which is compact in D for ¢=0, and let V*=
=sup (V(x), —e), which is subharmonic in D. Then 4V? taken in the sense of a
distribution [13], defines a positive measure in D, which, when restricted to K,
has its support contained in dK,. If f is continuous in D. we set A(p,s,f)=
=fx | fIPAVEz,, 1=p<co,

This depends only on the values of f on dK,. We define H?(V, D) to be the
class of harmonic functions for which A(p, ¢,f) is bounded. Similarly, if DcC",
we define o#7(V, D) to be the class of holomorphic functions such that 4(p, ¢, f)
is bounded. In this case, it is more natural to consider V plurisubharmonic, although
in general, that is not necessary. If we choose V(x)=|x|—1 (Euclidean norm),
we obtain the familiar Hardy classes of the unit sphere in R”. We shall also seec
that the Hardy classes of a domain D with C2 boundary as considered by Aronszajn
and Smith [1] (see also Stein [15]) as well as those defined with respect to harmonic
measures by Lumer-Naim [11] are special cases of the classes that we consider here.

We begin by establishing some of the properties of the class H?(V, D). By a
simple adaptation of some results of Hunt and Wheeden [8], we develop a form of
Fatou’s theorem. Let I' be a truncated cone with vertex in 8D. We say that I is
non-tangential at y€dD if there exists a truncated cone I such that I'\{y}c
cI"\{y}cD. The function f has a non-tangential limit at y€dD if lim,,, ,r f(x)
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exists for every non-tangential cone I' with vertex y (the limit need not be unique).
The non-tangential set Q0D is the set of vertices of non-tangential cones in D,
The restricted non-tangential set Q' Q is the set of y€Q for which there exists a
truncated cone in { D with vertex y. If f¢ H?(V, D), 1 =p< o, then f has non-tangential
limit values in Q" except for a set of harmonic measure zero.

A domain D is said to be a Lipschitz domain if for each y¢ D, there exist a neigh-
borhood N,-and a function b such that (after perhaps a rotation):

(@ NnoD = Nn{(x, X); x; = b(X)}, where X = (x3,...,%,)ER",
(i) NnD = Nn{(x, X); x, > b(X)},
@) pX)—-bX)| = c]X—-X|.

We show, for feH?(V, D), 1 <p<woo, and D a Lipschitz domain, that the limit
values determine a function which is in L? with respect to harmonic measure in D,
and that f can be approximated in norm by functions harmonic in a neighborhood
of D.

Of special interest (and in fact the motivation for this approach) is the case
where D C" and V is plurisubharmonic. One would then like to prove under suit-
able assumptions that f€ #? can be approximated by functions holomorphic in
a neighborhoed of D. We will come back to that problem in another publication.

If DcC", we-define the Nevanlinna class N(V, D) to be the set of holomorphic
functions such that, 4(1, & log™| f|) is bounded. This includes % (V, D) for all p.
We show that for JEN(V, D), f has non-tangential limit values in Q” except perhaps
for a set of harmonic measure zero.

If f is a meromorphic function in D and D is a domain of holomorphy, then
f=g/h where both g and h are holomorphic and relatively prime at each point
of D. Following Nevanlinna (cf. Hayman [4], or Taylor [16] for a presentation
closer to this coniext), we define the characteristic of f by

@ T(f,®) = [ sup (loglgl, log|h) 4V*s,.

If A is an increasing convex function of r, we say that f is of finite A-type if there
exist constants 4 and B such that T(f, e)=4 exp A(—Bloge). If AV has compact
support, this definition is independent of the choice of g and 4 and depends only
on log*| f] and the poles of £ Using techniques of Skoda [14], we show that if D
is Lipschitz and ‘A non-constant and if H2(D, Z)=0, then f'is of finite A-type in-D if
and only if it is the quotient of two-holomorphic functions of finite 2-type.

These results were in part announced in [3]. The proof that was announced
there that in a domain with C2? boundary, any function of bounded type is the quotient
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of two holomorphic functions of bounded type, was incotrrect, so this is still an
open question. We conjecture that this is true in strongly pseudoconvex domains.
Since originally announcing these results, we have come across the work of Lumer-
Naim [11] which contains a portion of them. Nonetheless, we feel that the spirit
here is sufficiently different to merit the development from this point of view.

1. Preliminaries

We now proceed to develop some of the basic properties of the class H?(V, D).
These will in general be simple applications of Green’s formula and Gauss’ formula.

Let a€Cy (R"), 0=0=1 where a depends only on || x| and f a(x)di=1, where
dA is R" Lebesgue measure. We set o, (x)= ¢ "a(x/0). If S(x) is subharmonic in D,
then S,(x)=Sw*a,= f S(x~p)a,(y)di(y) is a C~ subharmonic function in D,=
={xeD; d(x,lD)=p}. It follows from the properties of subharmonic functions
that S,(x)=S(x), S,(x) is decreasing as ¢—0 and lim,,, S,(x)=S(x), the con-
vergence being uniform on compact subsets if S(x) is continuous.

Lemma 1. If s(x) is a positive subharmonic function in D, then f k. S(x)4Vez,
increases as ¢—~0 and - )

A3) lim Sx s AVt = [ s@)AVr,— [, As@)V(%)x,.
Thus, f€ H?(V, D) (resp. #*(V, D)) if and only if
@ So\fPAVe, — [, A1 f1PV2, = lim A(p, &, ) < =.

Proof. Let {f,} be a decreasing sequence of C*= functions with compact support
in D which converges to yg,, the characteristic function of K,. Let K, ,=

={x;V,(x)=—¢ef S K, and set T,,=0K,, Then S()= stsAV"c,,:
= lim,,., « f p (Bus)4V?1,, so given § > 0, there exists M, such that for all m = M,,
fD Bus)AV?r, = S(e)+6/3. If we set s, = s*a,, then for #, sufficiently small,
S o Bus)AV*1, = [, (Bas)AVo1,+8/3 for all m = M, and all 1 = 7. Let us now
fix n and m. Then

S0 Bus)AVot, = [ (Bus) AVo+ e, = [, ABus)Ve+el di.

For ¢ sufficiently small,

|[o ABusp Ve +eldi— [, ABus)IVe + £1dA]
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can be made as small as we like. By Sard’s Theorem [12], the set of & for which T, ,
is not a C= manifold is of measure zero in R, so by varying ¢ slightly if necessary,
we may assume that T, , is a C~ manifold. By Green’s formula, we have (where ¥
is the exterior normal to T, ,)

Jo ABus)lVe+eldi =
d d
= [, Busp AV, +eldd— [, = slVe+el ds—fTwEg[V;,Jrs]s,, ds =

= anE , Bumsy) ALV, + €] dA +st . SrlAV;zd’{“fKe ,AsilVe+él da.
Letting ¢ ~ 0 and setting D, = (U, K7 ,), we get

JAGusdWVe+6ldd = [, Bus,dVe, — [, As,[V+eldi.

If we now let # — 0 and m — -, we see that
S(e) = fD sAVt,,—fD As(V+¢&)1,,

which increases as ¢ -~ O and proves (3). Applying this to the subharmonic function
|fIP, we get (4). QED.

Remark 1. AV cannot have empty support in D, since in that case ¥V would
be harmonic in D and hence identically zero.

Remark 2. Tt is useful to have the bounded functions in H?(V, D). Thus, we
will always assume (without stating it explicitly) that f pAVT=< <o

Lemma 2. Given fc H?(V, D) and a compact set KC D, there exists a constant
C(K, p) such that | f|=C(K, p)| fll, on K. Hence H?(V, D) is a Banach space.

Proof. Let K, be a compact set so large that there exists a ball B(r, x,) CC K,
with B0/, xo)AV1n§C0>O. Then by (4), there exists a point y,€B(r/3, x,) such
that | f(y)|"=M/C,, where M=| f]|?. Let & be a unit vector in R", @, the meas-

ure on the unit sphere and Q,_, its total measure. Then, by Gauss’ formula

—Q—::_l f |f(2r(:5/3 +yo)lPdw, s — [ f(po)lP = fozla-t,,—{—l(flxﬂolé, Alf]"rn) dt=C ”ng

by (4). Let f,(x) be the harmonic function in B(2r/3, y,) which has values | f(x)[?
on the boundary of B(2r/3, y,). Then fy(x) =] f(x)|? in B(2r/3, y,), and by the Poisson
integral formula, there exists a constant C” such that | f(x)[P=C"| f|I? in B(r/3, yo).
Let K’ be any compact connected set containing KU K, and let B;, i=1,..., N
be an open covering of K’ by open balls B,=B(r,/2, x;) each of which is relatively
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compact in D. Then every B; can be attached to B(r/3, y,) by a chain B,.! with
B, =B(r/3, yo), B; =B;, B; NB .70 By adding a finite number of balls, if
necessary, Wwe may assume that x is contained in B(r, /2 ;). By reasoning as
above, we show successively that ‘there exist constants C such that | fIP=C;| f1?
for x€B(r; /2, x;). Thus there exists a constant C; such that [fP=C] fl} in B,
which comf)letes ‘the proof. Q.E.D.

2. Harmonic and related measures

If E is a Borel measurable set in 8D and g is its characteristic function, we say
that the subharmonic function s(x) is a lower function for yj if TiTﬁx,_,yE,,D s(x')=
=yg(»). The supremum of all lower functions for yz is a harmonic function 4 (x).
Each point x€D thus determines a Borel measure v, on 8D given by the formula
Vv (E)=hg(x). Since 0=hg(x)=1, hg(x)¢ H*(V, D). We introduce the Borel measure
1 on D given by u,(E)=|hz ()], = / phe(x)4Vz,. Clearly p < v, for all x. Further-
more, by Lemma 2, there exists a constant ¢, (depending on x} such that v (E)=
=c¢ pu(E). For fixed x¢D, if G.(y)=[du/dv,], the Radon—Nikodym derivative of
u with respect to v, then G, (y)=c, (a.e.).

Lemma 3. Let f be harmonic in D and continuous in D. Then

1F15 = [op1f1Pdi = [, [FGIPGL() dvs(p)-

Proof. Let h(x) = f »p [f17 dv.. be the harmonic function with boundary values
IfiP. Then A(x) = | f(x)|? in D. Since D is a regular domain for the solution of the
Dirichlet problem, given & = 0, there exists ¢ > 0 such that 0 = A(x)—|f (x)]P =0
for ¥V (z) > —e. Thus f K, (rx)—f(X)P) AVt = 6 f AVit, = €6 for some cons-

tant C, and so [ f®)IE = k@ = [, ARG.(0) de() = [, h () du().
Q.E.D.

Lemma 4. Let V; and ¥, be two continuous subharmonic functions in D which
satisfy (1). We assume that H?(Vy, D) has norm | - | and H®(V,, D) has norm
I <19, If AV, has compact support, then there exists a constant ¢ such that | f|P=
=c|| fI®, so H?(V,, D)c HP(Vy, D).

Proof. Let supp AV; < K, D and Iet & be so small that Ky {x; ¥V2(x) = —¢}
for e=<¢g. Given & >0, we choose ¢>0 so small that e <g and D.L=
= {x; Vi(x) < —¢’}cc{x; Va(x) < —&} = D?. Let h(x) be the harmonic function
in D} which has boundary values |f|P. Then A(x) = |f|? in D? so

S P4V, = [ o RO AV T, = [ o1, h(x) AV; = ¢ 5upg, h(x).
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As in the proof of Lemma 2, there exists a ¢, (depending only on K,) such
that supg, h(x) = ¢, f pp(¥)4V,1, for & sufficiently small. But by Lemma 3,

S B AV, = [ 1 f1PAVE e, = (1F1P) so

[os 114V, = a1 £ 19

Since & was arbitrary, this proves the lemma. Q.E.D.

We now form a special class of subharmonic functions which will be useful in
what follows. Let f(x) be a positive C* function with compact support in D, and
let sp(x)=— f Ix—y1%~"B(»)dA(y), which is subharmonic and C* in R" and har-
monic in a neighborhood of dD. Let A;(x) be the harmonic function in D which has
boundary values s;(x) on dD. We set V;(x) =—/hy(x)+s5(x) in D. By Lemma 4,
the space H(V}, D) is independent of the choice of . (This remains true even if
is a more general measure with compact support.)

Let A={D,}7" be a nested sequence of domains in D each regular for the solu-
tion of the Dirichlet problem such that uD,=D. If supp B(x) CC D, and v{ is
the harmonic measure with respect to D,, then there exists a constant ¢’ (independent
of y) such that G,(»)=[du/dv?]=c’ (almost everywhere) by Harnack’s principle.
As in the proof of Lemma 2, there exists a c, , Which is also independent of y such
that 0<c, =[du®/dv{’]. Thus, if B? is the space of harmonic functions f such that
f ap. 1] [”dv(” is uniformly bounded in y, then B? is isomorphic to H?(Vy, D).
Thus those classes studied by Lumer-Naim [11] and by Aronszajn and Smith [1]
are included in the above Hardy classes. This also shows that B” is independent of
the sequence D, .

3. Non-tangential limits

We say that S is an oriented non-tangential region in D if S=uTI,, where
I', is a non-tangential cone and all the I', have similar size and orientation. If all
of the vertices of the I', are contained in a set E which is sufficiently small (depending
on the size of the I')), S is a starlike Lipschitz domain (cf. [8]), and hence S is a
regular domain for the solution of the Dirichlet problem.

Remark 3. We can assume without loss of generality that supp AV n §=0, for

if not, we choose a C* function #n(x) with compact support in S and set V,(x)=

— f x—al®> "y (a)dA(a). Then, if A, (x) is the harmonic function i 1n D with bound-

ary values V,(x) and V, (x) Vy(x)—hy(x), the norm for H?(V+V, /. D) is the sum

of the norms of H?(V, D) and H” (V,,’ , D) by (4), and by Lemma 4, these norms are
equivalent, so the Banach spaces are isomorphic.
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We now assume that supp AV S=@. Since V is continuous, there exists: a
harmonic function /(x) in S such that A(x)=¥(x) on 8S. Let V,(x)=V(x)—h(x)
and consider H?(V/, S).

Lemma 5. If f¢ H?(V, D), then feH?(V., S). If v' is the harthonic measure in
S, then f has limit values almost everywhere which, for p=1, define a function f on
0S8 which is in LP(i"), where u’ is the measure on dS determined by AV Furthermore,
W(E)=u(E) for ECOSnID.

Proof. We assume that O is the star-center of S. Let S,={rx; x¢S}, r=1.
Then S, is a regular domain for the solution of the Dirichlet problem. We-set 4,(x)
to be the harmonic function in S, with boundary values V' (x) and V,(x) = V(x) —,(x).
Then it follows from (4) that f€ H*(V,, S,) for r=1 and, if we let | /|<’ be the norm
in H*(V,, S,), then || f||% increases and lim,_, || £ =] f1,.

Let f*(x)=sup (0, f/(x)) which is subharmonic and satisfies f g S04V, =
= f x [ fX)4Ver,. If k,(x) is the harmonic function on S with boundary values
[ (r;c), then k,(x)=0 in S and as in the proof of Lemma 2, we can show that k,(x)
has uniformly bounded L'(dv)) norm on 8S. We can now apply mutatis mutandis
the reasoning of Hunt and Wheeden [8, § 4, Lemma 1]. We have f(rx)=f*(rx)=
= f 25K (3)dv, (). The measures k,(y)dv,(y) are uniformly bounded (for x ﬁxed)\,
so there is a sequence r,—1 such that k, (»)dv.(y) converges weakly to a positive
Borel measure o,. The sequence r, deper'l'ds on x, but we assume that for all x, r,
is a subsequence of the sequence used for 0. If 7 is any open subset of 95, then
f 140, (y)=sup f 25 £(¥)do.(p), where the supremum is taken over all continuous
functiens with 0=g(y)=y,(y). For such g, f as (M do . (»)={ess supy [dv,/dvgl}
f rd04(y), and applying the same reasoning as in [8], we conclude that f* (and
hence f) is bounded above non-tangentially v'-almost everywhere on 9.5, and hence
has non-tangential limits v’-almost everywhere in 95.

Let f,(x)=f(rx) and V/(x)=V,(x/r) in S. Then f(rx) is of uniformly bounded
norm in L?(dvy), p>1, and so converges to a function fE€L?(dv)). Let u, be the
measure on dS determined by AV,. Then G,(y)=[du,/dv,] is uniformly bounded
in norm in L*(vy), so we can choose a sequence {G, } which converges weakly to a
measure ¢ on 45, and since for any non-negative continuous function g(y) on 9S8
which determines a harmonic. function #,(x)= f g(Mdv. (), f 2s EWdo(p)=
=lim, ., f hy )4V, 7, = f by ()4 VT, = / as 8 ( ¥), we have o=y’ independent
of the sequence chosen. Thus | f|,=lim,., | £[%=lim,., f | £IP G, (»)dve(»)=
= f | FIPdu’(p), so fELP (). Let {f;,} be a Cauchy sequence of continuous functions
in LP(u’) with limit f. Then

11, = Jim Sl = lim [oclsrdw = [1FPdw.

m-rco
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Finally, if ECdSndD is a measurable set and if /g is its harmonic measure in D,
then Ay, its harmonic measure in S, satisfies Az=h; in S and hence f phe 4V, =
= [ Wy dVe,. QED.

As in [8], we have the global result:

Theorem 1. Let f¢ H?(V, D). Then f has non-tangential limits v-almost every-
where in the restricted non-tangential set Q.

Theorem 2. If fe N(V, D), then f has non-tangential limits v-almost everywhere
in the restricted non-tangential set Q’.

Proof. If fe N(V, D), then feN(V,., S) for any starlike Lipschitz domain con-
tained in S. Reasoning as in Lemma 5, we see that log | /| is bounded above non-
tangentially for v-almost all y€0S, so this holds for Re f and Im f;, which are har-
monic. We then use [8] again to arrive at the conclusion. Q.E.D.

It is not necessary for the limit to be the same for every cone with common
vertex even on a set of positive harmonic measure. Thus, in general, we cannot
recuperate in a simple fashion the function f€ H? (¥, D), p=>1, from its boundary
values except in certain geometrically simple cases, such as Lipschitz domains. (See
Lumer-Naim [11] where the function is recuperated in a systematic though rather
complex manner.)

In what follows, we shall always assume that D is a bounded Lipschitz domain.
It is clear from the definition that we can cover D by a finite number of starlike
Lipschitz domains S;c D with star-centers P;.

Lemma 6. Let E CC 9S;n D for some i. Then for QCE and xcDn(S;, there
exists a constant c¢ such that hy(x)=chy(P).

Proof. Let K(x, x’, y)=[dv,/dv.]. Then it follows as in [8, § 3, Lemma 5], that
limx_,,,sjn p K(x, P;, »)=0 uniformly for x€S;, y€E. There, D is supposed to be
starlike, but since the arguments are essentially local, with minor modifications,
this result can be adapted to the present context. Then, by Harnack’s principle,
there exists a constant ¢, such that X(x, P;, y)=c,, from which the lemma follows.

Q.E.D.

Theorem 3. Let D be a bounded Lipschitz domain. Then if fc H?(V, D), 1 <p< oo,
and if f(y) are its non-tangential limit values (which exist almost everywhere), then

FeLP @), 1 fl5=[171Pdu and [, F(3)av.(»)=f().

Proof. We assume without loss of generality that supp AV ;=0 for all i.
As in Lemma 5, f¢H?(V], S)). Let E;=0Dn S;, which we suppose open in dD.
It follows from Lemmas 5 and 6 that there exist constants ¢, and ¢, such that

(5) G (») = Go(») = ¢,Gi(y) for y€E,
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where G;(y) = [dui/dvp;] where p] is the measure determined on 9S; by 4V, vp, the
harmonic measure at P; in S;, and Go(y) = [du/dv,,] on 0D, for some fixed x,€ D.

By Lemma 5, f has non-tangential limit values f(y) on S; such that (| f||?)P=
= [1fPdw, so by (5), F(3)€ L(u). Let f, be a continuous function on 9D such
that f |fi—fPdp<1/n and let h,(x) be the harmonmic function in D with
boundary values |f, —f|°. Then f h,(x)dp = f h,(x)AVT, < 1/n. Since h,(x) =
=fi—fIP in D, Un> [h@AVi,= [,|fi~f1PaVe, — [, Alfs—fPV5, sO
|fu—fll, ~ 0, and since | £3 = [|f,Pdu by Lemma 2, | f] = lim,.. [ | /ol du=
= [P dp. QE.D.

Theorem 4. Let f¢HP(V, D), 1<p<-<oo for a Lipschitz domain D. Then given
¢>0, there exists § harmonic in a neighborhood D such that || f—fl|,<e.

Proof. It is clear from Theorem 3 that we can assume that fis continuous on D.
We shall find / harmonic in a neighborhood of D such that supy | f—fl<e. We can
assume without loss of generality that there exists a starlike Lipschitz domain S,
with star-center P, such that 0=f=M and d(supp fndD, [S,ndD)=0. There
exist a finite number N of starlike Lipschitz domains S; with star-centers P; such that

@ U;@S;noD)y=aD,
(ii) min; d(@S;dD;, supp frnéD)=0.
We let

N
S? ={P,+(1+0)(x—P); xcS} and D’= Du 'UOS;’
for small 4.

Let f be the harmonic function in D? such that f has boundary values f(y) for
(¥ — Pp))(1+8)+ Py€dS, and 0 elsewhere.

Let s€dD’. Then there exists a cone I' and a truncated version I'; such that
r,cCD’. We assume without loss of generality that I' is oriented along the positive
x;-axis and s is the origin.

Let C, be the cylinder of radius n about the x;-axis. Let B,=C,n Cryn
N {x; x;=—7v}. Let D,=9D N B, and let A=supp_f(y), B=inf, f(3). Let f be the
harmonic function in B, with limit values 4 in dI',n C, and M in the rest of 0B,
and let f be the harmonic function in B, with boundary values B in dI';,n C, and 0
on the rest of 0B(#, y). Then f=f=fin D B, if 7 is sufficiently small. For 5 suffi-
ciently small, 4 — B<e/3. There exists £>0 such that | f(x)—4|<¢/3 and | f(x)—B|<
<¢/3 for x€D,, |x—s|<¢ uniformly in 8, so | f(x)—f(s)|<e for |x—s|<¢&. These
estimates are uniform in s and J. Q.E.D.
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4. Meromorphic functions

We assume in this section that D is pseudoconvex and that H2(D, Z)=0 (cf.
Hormander: [6]). For f meromorphic in D, we define the characteristic of f in the
following way. Let V' be defined in D as after Lemma 4, ie., 4V has compact
support in D; and let s(z)=max (log |g],.log |h]) where f=g/h, g and & being two
holomorphic functions in D relatively prime at each point. Then s(x) is plurisub-
harmonic in D, (cf. Lelong [9]). We define

T(f; 8) == /K S(Z)AVp*e = fD S(Z)AV/?*‘Cn—fD AS(Z)Vﬂ*ETn'

This is independent (up to a constant) of the choice of g and / since 4V has compact
support in D. Writing sup (log |gl, log |z))=log™ | f|+log 4| and noting that 4 log |A|
is a measure of the zeros of / (hence the poles of f) (cf. Lelong [9]), we see that this
definition depends only on log™* | f| and the poles of f. We have the relationships
[4, 16]:

0 T(f+g 9 =T(f, )+ T(g, 8)+0(),
@) T(fg, &) = T(£, )+ T(g, &)+ O(D),
(i) T(1/f, &) = T(f, 8)+O0(D).

Let A be an increasing convex function of r. We say that f, meromorphic in D, is
of finite 1 type if
T(f, &) = Aexp A(—Bloge)

for some constants 4 and B. We begin by proving the following:

Lemma 7. If D has C? boundary, then there exist constants ¢, and c, such that
¢ d(2) = -V} (2)=cd(z) (where d(z)=d(z, [D)). If D is Lipschitz, then there exist
constants ¢, c, and t, such that

cd(z)o = — Vi (2) = c,d(z)Vio.

Proof. Suppose D has a C? boundary. Since Vj(z) is harmonic in a neigh-
borhood of dD, if we let B(y, r) be the ball of radius » which is internally tangent
to dD at y (which is possible for small r), then ¥ is harmonic in B(y, ) (for small r)
and continuous on its closure. Since V; (z) = —sg, for some constant g0 for d(z)>
=>r/2, it now follows from the Poisson integral formula for the ball that ¢;d(z)=
= —V;(z) for some constant ¢;>0. That — ¥V (z)=c,d(z) follows from standard
estimates of the Poisson kernel on D (cf. [1]).
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Let y€dD, D a Lipschitz domain, and let I', be a truncated cone in D with
vertex y. Let P, be those points in D on the axis of I',. We assume for convenience
that y is the origin. Choose 4; on I', and let B, be the ball centered at a; and inscribed
in I',. We assume that |a,|| is sufficiently small so that ¥ is harmonic in B,. There
exists a constant g>0 and a measurable set E; 0B, such that — Vi =g, on E; and
m(E)=c,m(@B,) (m can be the Lebesgue measure on the ball or the Hausdorff
(2n—1) dimensional measure). Let a,=ka, for k<1 sufficiently large so that B,
the ball centered at a, and inscribed in I'y, has the property that for E,={kz; z€ E,},
E,C 0B, B;. Then, by the Poisson integral formula, there exists a constant ¢
such that —V;‘éc{,so for x€E,. We construct a sequence a,=k"g, by induction
such that — Vg (@)=(c, c))'ey for k" la,=a=k"a,. Since these estimates are locally
uniform, we have proved the first half of the inequality.

Now let I'; be a truncated cone contained in the complement of D with axis
P,. We again assume y to be the origin. If B, is the ball centered at y of radius /2,
then for r sufficiently small, ¥ is harmonic in B,nD. Let e=supy np (—V}). If
hy is the harmonic function in B; which has boundary values ¢ on 9B(y, r)n [:F-y
and 0 on dB(y,r)nT,, then hy =~V; in B(y,a)n D and there exists a constant
k<1 such that —V;(z)=ke for z€B,n D. Proceeding by induction, we let 4,(2)
be the harmonic function in B, with boundary values k"¢ on dB,n I, and 0 on
0B,nT,. Then h,(z)=—V;(z) in B,AD and so —V;(z2)=k"*'¢ on B,,,. Thus,
for acP,, r/2"=a=r2"", —V(z)=Kk"¢. Since this estimate is locally uniform in y,
this proves the lemma. Q.E.D.

Remark 4. If D has a C%boundary defined by some function ¢(z), V(p(z)#()
in a neighborhood of D, and if we define T'(f, &)= f 2. 5(2)dS, where Q,=

={z; ¢(z) = —¢}, then it is clear from Lemmas 4 and 7 that the classes of mero-
morphic functions of finite A-type are the same as those defined by 7(f, ¢).

If a holomorphic function k4 is of finite A-type, then

[ Jog* W AVE* = [ log [WaVs* = [, log|h|4Vjc, — [, Alog|hVs*s,
SO

© _fKS Alog |h|V§*t, = Aexp A(—Bloge).

We shall show that if D is a Lipschitz domain and A is non-constant, then if % is
any function which satisfies (6), # has the same zero set as a holomorphic function
of finite A-type. This will imply that any meromorphic function of finite A-type can
be written as a quotient of holomorphic functions of finite A-type. To do this, we will
closely follow Skoda [14].
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Lemma 8. Let D be a bounded starlike domain with the origin as star-center
and let D,={rz; z€ D}. Suppose that there exist constants A and B such that o(r)=
= f p, 410g |h|1,=4 exp A(—Blog (1—r)). Then there exists a holomorphic function
hy in D of finite A-type which has the same zeros as h (i.e. hfh; =0, hy/h=0 in D).

Proof. Let a,(z) be defined as in § 1. Then V,=log |h| *«, is plurisubharmonic
in D, for ¢ sufficiently small. Let 6%,=0%V,/0z;0Z,. Then

So 1050 dr = [, 63di+ [, Opdd s [, AV,dh

(cf. [14]), and by choosing ¢ sufficiently small, we have f b 0%]dA=
=A"exp A(—Blog(1—r)). Let @*=iddV,. Then dw®=0, so there exists a 1-form
v¢ such that idv¢=w?; v¢ splits into two terms v=v§—v;, v§ of complex degree
(1,0) and ¢ of complex degree (0, 1) such that dvi=0v:=0. We can write v§ and
v§ explicitly

=3 [Sherze [o 1082) ] dz,

W= [ Stz fs 10%(t2) dt] dz;.

Thus, using the notation of Hérmander [6], where we let ¢ (z) be the plurisubhar-
monic function A(—1,Blog d(z)), fD [v72 exp (—2¢(z))dA<A’ for i=1,2, and 4’
is independent of ¢. Thus, by Hormander [7], we can find functions #§ and #} such that
du2=v3 and du?=v? and such that

/D, [u?|? exp (—2¢(2))dA < Cfn, v¢2exp (—20(2))dA, i=1,2,

and C is independent of ¢ and r. Then H=Re (4 +u}) satisfies idd H=w°. We choose
a sequence r,—1 (so that g,—~0) and repeat the above process for each r,. Then the
H, are locally bounded uniformly, so we can choose a subsequence Tn, such that
H,,j converges to a pluriharmonic function S on D=supp (4 log |A[). Since S is
locally bounded above on some neighborhood of every z€supp (4 log |A]), S extends
uniquely to a plurisubharmonic function in D [cf. Lelong [10]), and iddS=idd log |A|
in the sense of distributions. Then, as in Skoda [14], we can find a holomorphic func-
tion 4, in D such that 4 log |4,|=4log |4]| and

[ 5 [log |A][? exp (=20 (2))dA < <.
Thus (cf. [7]), there exists a B’ such that log™|h|<4 exp A(—B’logd(z)), so
for z€0K,, log™ |h(z)|=A exp A(—B” loge), by Lemma 7. Q.E.D.

Theorem 5. Let D be a bounded Lipschitz domain of holomorphy such that
H2(D, Z)=0. Then if f is meromorphic and of finite A-type in D, f is the quotient of
two holomorphic functions of finite A-type.



Generalized Hardy and Nevanlinna classes 77

Proof. We cover D with a finite number of balls B;, j=1, ..., N, such that

() D;=B;n D is starlike, D;n D; is simply connected,

(ii) if z€ D, then there exists a B; such that d(z, { B;)>#n (where 7 is independent
of z).

We assume, without loss of generality that supp AV, is relatively compact
in each D;. If we let k; be the harmonic function in D; with boundary values Vg
and set V;=Vj—k;, then f is of finite A-type with respect to ¥; in D; for each j.
Assume f=g/h in D. Then, by Lemma 8, there exists a function /; holomorphic in
D; with the same zeros as / in D; such that k; is of finite A-type in D; (with respect
to V,). We now solve the second problem of Cousin with bounds. Let ¢;(z) be a
partition of unity subordinate to B;. Define g,;=log #,—log 4; in D, n D;. Then if
;)= 3 ¢x& x> 6=07; is a globally defined (0, 1) form and f 5 1612 exp (—20(z))dh<
<o, where ¢ (z)=A(—Bt, log d(z)). Since D is a domain of holomorphy, we can
find a function ¢(z) such that ¢ =5 and flf(z)lz exp (—2¢(2))dA<o. Then & —y;=1;
is defined and holomorphic in D;. Since H2(D, Z)=0, we can add constants 2nim;
to t; (m; an integer) such that for 7;=2nim;+1;, h’=h; exp (—1}) defines a global
holomorphic function in D, and 4’ is of finite A-type.

If f'is of finite A-type, 1/f is also of finite A-type, so we can find g” holomorphic
in D of finite A type with the same zeros as g. Then k=Ah"f/g’ is of finite A-type and
has no zeros or poles, and g”"=g’k is of finite A-type. But f=g”/I’. Q.E.D.
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