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Let D be a bounded domain in R n which is given by a continuous subharmonic 
function V(x). By this we mean that 

(1) D = { x ; V ( x ) < 0 }  and lim V(x)=O for yEOD. 
x ~ y ,  x E D  

(We do not require V(x) to be defined outside of D). Such a domain is regular for 
the solution of the Dirichlet problem, and for every regular domain D, there exist 
many continuous subharmonic functions which satisfy (1). (For all the informa- 
tion that we shall need on potential theory, the reader is referred to Helms [5].) 

Let K~={xED; V(x)_<--s}, which is compact in D for s>0 ,  and let V*= 
=sup (V(x), -8), which is subharmonic in D. Then AV ~, taken in the sense of a 
distribution [13], defines a positive measure in D, which, when restricted to Ks, 
has its support contained in 0K~. I f f  is continuous in D. we set A(p, e , f ) =  

--_f~,lflPAV**,, l<_-p< ~o. 

This depends only on the values o f f  on OK,. We define HP(I/', D) to be the 
class of  harmonic functions for which A(p, e,f) is bounded. Similarly, if DcC", 
we define o'g'P(V, D) to be the class of  holomorphic functions such that A(p, e.,f) 
is bounded. In this case, it is more natural to consider V plurisubharmonic, although 
in general, that is not necessary. I f  we choose V(x)=llxIl-1 (Euclidean norm), 
we obtain the familiar Hardy classes of the unit sphere in R n. We shall also see 
that the Hardy classes of a domain D with C ~ boundary as considered by Aronszajn 
and Smith [1] (see also Stein [15]) as well as those defined with respect to harmonic 
measures by Lumer-Naim [11] are special cases of the classes that we consider here. 

We begin by establishing some of the properties of the class HP(V, 1)). By a 
simple adaptation of  some results of Hunt and Wheeden [8], we develop a form of 
Fatou's theorem. Let F be a truncated cone with vertex in 0D. We say that F is 
non-tangential at yEc~D if there exists a truncated cone F '  such that F-~{y}c 
cF ' \ {y}cD.  The function f has a non-tangential limit at yEOD if limx_~y,x~rf(x) 
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exists for every non-tangential cone F with vertex y (the limit need not be unique). 
The non-tangential set QcOD is the set of vertices of non-tangential cones in D. 
The restricted non-tangential set Q'cQ is the set of  y(Q for which there exists a 
truncated cone in ~D with vertex y. IffE H p (V, D), 1 Np < ~o, t h e n f  has non-tangential 
limit values in Q" except for a set of harmonic measure zero. 

A domain D is said to be a Lipsehitz domain if for each yED, there exist a neigh- 
borhood Ny-and a function b such that (after perhaps a rotation): 

(i) NnOD = Nn{(x ,X);  xl = b(X)}, where X =  ( x 2 , . . . , x , ) E R  "-1, 

(fi) N n D  -- Un{(x ,  X);  xl > b(X)}, 

(iii) Ib(X)-b(X')l ~- cIX-X'I .  

We show, for fEH~(V, D), l < p < ~ ,  and D a Lipschitz domain, that the limit 
values determine a function which is in L p with respect to harmonic measure in D, 
and that f can be approximated in norm by functions harmonic in a neighborhood 
of  D. 

Of  special interest (and in fact the motivation for this approach) is the case 
where D e C "  and V is plurisubharmonic. One would then like to prove under suit- 
able assumptions that fEJ~ ~ can be approximated by functions holomorphic in 
a neighborhood of D. We will come back to that problem in another publication. 

If D c C " ,  we define the Nevantinna class N(V, D) to be the set of holom0rphic 
functions such that A(1, ~, log+tf l )  is bounded. This includes ~P(V,  D) for all p. 
We show that for fEN(V, D), f has non-tangential limit values in Q" except perhaps 
for a set of harmonic measure zero. 

I f f  is a meromorphic function in D and D is a domain of holomorphy, then 
f=g[h where both g and h are holomorphic and relatively prime at each point 
of  D. Following Nevanlinna (cf. Hayman [4], or Taylor [16] for a presentation 
closer to this context), we define the characteristic o f f  by 

T(f ,  e ) =  f x ,  sup (log Igl, log IbJ)AV"z,. 

I f  2 is an increasing convex funct ion of  r, we say that f is of  finite 2-type if there 
exist constants A and B such that T( f ,  e)<-A exp 2 ( - B  log e). I f  A V has compact 
support, this definition is independent of  theehoice  o f  g and h and depends only 
on log + l f l  and the poles o f f  Using techniques of  Sk0da [14], we show that if D 
is Lipschitz and )~ non-constant and if H2(D, Z)=0 ,  t h e n f i s  of finite 2-type in "D if  
and only if it is the quotient of  two holomorphic functions of  finite 2-type. 

These  results were in pa r t  announced in [3]. The proof  that was announced 
there that in a domain with C 2 boundary, any function of  bounded type is the quotient  
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of two holomorphic functions of bounded type, was incorrect, so this is still an 
open question. We conjecture that this is true in strongly pseudoconvex domains. 
Since originally announcing these results, we have come across the work of  Lumer- 
Naim [11] which contains a portion of them. Nonetheless, we feel that the spirit 
here is sufficiently different to merit the development from this point of view. 

1. Preliminaries 

We now proceed to develop some of the basic properties of  the class HP(V, D). 
These will in general be simple applications of Green's formula and Gauss' formula. 

Let eECo(R" ), 0<-a<_-I where c~ depends only on Ilxll and fe(x)d2=l,  where 
d2 is R" Lebesgue measure. We set %(x)=O-"e(x/Q). If  S(x) is subharmonic in D, 
then S o ( x ) = S , % = f S ( x - y ) % ( y ) d 2 ( y  ) is a C ~ subharmonic function in D~----- 
= {x~D; d(x, CD)>0}. It follows from the properties of subharmonic functions 
that So(x)~S(x), So(x ) is decreasing as Q~0 and lim0_~0 So(x)=S(x), the con- 
vergence being uniform on compact subsets if S(x) is continuous. 

Lemma 1. I f  s(x) is a positive subharmonic function in D, then f Ko s(x)A V"x, 
increases as 8~0 and. 

(3) li~m o fx~ s(x)AV~z, = fD s(x)AVz"-- fz) As(x)V(x)'c,. 

Thus, fE HP(V, 1)) (resp. ~gv(V, 1))) if and only if 

(4) If  fAY% -fo A [flpVv, = l imA(p,  e , f )  < ~ .  
8 ~ 0  

Proof. Let {fi,,} be a decreasing sequence of C ~ functions with compact support 
in D which converges to ZK~, the characteristic function of  K~. Let K~,~ = 

= { x ; V Q ( x ) < = - e } ~ K s  and set T~, 0 = 0 K ` ,  o. Then S ( e ) = f ~ s A V ' % =  

= limm.= fD (rims) AVe%' so given 6 > 0, there exists M0 such that for all ra _-> M0, 

fo(flms)AV~% <= S(~)+5/3.  I f  we set s~ =- s ,~n ,  then for ~/o suff• small, 

m V~'rn = ms)AV~zn+5/3 for all m = > Mo and all r/<- r/o. Let us now 
fix ~/ and m. Then 

For 0 sufficiently small, 
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can be made as small as we like. By Sard's Theorem [12], the set of  ~ for which T~,Q 
is not a C ~ manifold is o f  measure zero in R, so by varying ~ slightly if necessary, 
we may assume that T,,~ is a C ~ manifold. By Green's  formula, we have (where 
is the exterior normal to T~,~) 

fo ~ (~s . ) [5  ~ + ~] d~ = 

= fi~o.o (~.s,)A [V~ +.1 d,t +f~:o.o s,,%d,~--fKo., ~sjV~ + 8] aX. 

K o Letting 0 -* 0 and setting D, = ([-Jo ,, o), we get 

f A CSms.)[V'+ ~] a~ = f~/~s.~V..  -f~o A~.[V+,] ca. 

I f  we now let t / ~  0 and m ~ co, we see that  

s(~) = f ,  s a w . - f ,  as(V+,),.. 

which increases as ~ --, 0 and proves (3). Applying this to the subharmonic function 

If]", we get (4). Q.E.D. 

Remark I. A V cannot have empty support  in D, since in that case V would 
be harmonic in D and hence identically zero. 

Remark 2. I t  is useful to have the bounded functions in HP(V, D). Thus, we 
will always assume (without stating it explicitly) that fDAVv,<r 

Lemma 2. Given fEH"(V, D) and a compact set K c D ,  there exists a constant 
C(K,p) such that [f{~-C(K,p){lf{lp on K. Hence HP(V, D) is a Banach space. 

Proof Let Ko be a compact  set so large that  there exists a ball B(r, xo) CC Ko 

with fn(,/a.~o)AV%>=Co>O. Then by (4), there exists a point YoEB(r]3, Xo) such 

that If(Yo)l'<=M/Co, where M=HfII~. Let ~3 be a unit vector in R", co,_ 1 the meas- 
ure on the unit sphere and f2,_1 its total measure. Then, by Gauss '  formula 

I r,/,__L_I 
~.-1 f [f(2r~/3+Y~176176 = "] o tn-1 (f,x+,o,_~, AIfl"%) dt ~- C'[Ifllg 

by (4). Let f0(x) be the harmonic function in B(2r/3, Yo) which has values If(x)[ p 
on the boundary ofB(2r/3, Yo). Then)C0(x) --> If(x)[" in B(2r/3, Yo), and by the Poisson 
integral formula, there exists a constant C" such that lf(x)lP<-C" II flim in B(r/3, Yo). 
Let K '  be any compact  connected set containing KuKo and let B~, i = 1  . . . .  , N  
be an open covering of  K" by open balls Bi=B(ri/2, xi) each of  which is relatively 
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compact in D. Then every B i can be attached to B(r]3, Yo) by a chain Bij with 
Bio=B(r/3, yo), Biu=B i, BicTBi~§162 By adding a finite number of balls, if 
necessary, we may assume that xij+~ is contained in B(%/2, xis). By reasoning as 
above, we show successively that there exist constants Cj such that ]flP<-Cjllfl]~ 
for x~B(ris/2, x~). Thus there exists a constant C i such that IflP<=Cillfll~ in B,, 
which completes the proof. Q.E.D. 

2. Harmonic  and related measures 

I f  E is a Borel measurable set in OD and XE is its characteristic function, we say 
that the subharmonic function s(x) is a lower function for ZE if  1-~ , .y~0 D S(X')<= 
<=XE(Y). The supremum of  all lower functions for XE is a harmonic function hE(x). 
Each point x~D thus determines a Borel measure v~ on 019 given by the formula 
vx(E)=hE(X). Since O<=he(x) <= l, he.(x)EHI(V, D). We introduce the Borel measure 
# on OD given b y / ~  (E) = []he (x)l[1 = f o  hE (x)A Vz,. Clearly p ,~ vx for all x. Further- 

more, by Lemma 2, there exists a constant c~ (depending on x) such that v~(E)<- 
<=c:,#(E). For fixed xED, if  G~(y)=[dp/dv~], the Radon- -Nikodym derivative of  
# with respect to v, then Gx(y)~=cx (a.e.). 

L e m m a  3. Let f be harmonic in D and continuous in D. Then 

IlfllW --- f oo [fl p d# = fad If(Y)[ vGx(y) dvx(y). 

Proof Let h(x) = fad [f]Vdvx be the harmonic function with boundary values 
l f ]  p. Then h(x) >= If(x)l  p in D. Since D is a regular domain for the solution of  the 
Dirichlet problem, given 6 > O, there exists e > 0 such that 0 <- h(x) - I f (x) l  p <= 6 
for g(z) > - . .  Thus f~o(h(x)-[f(x)l ' )AV% <- 6fgoAV% <-- C6 for some cons- 

tant C, and so Ilf(x)][g = Ilh(x)lll = f o h(y)Gx(y) dye(y) = fop h(y) d~(y). 
Q.E.D. 

Lemma 4. Let 111 and V~ be two continuous subharmonic functions in D which 
satisfy (1). We assume that Hv(V1, D) has norm 1[" ]1~) and Hv(V~, D) has norm 
I1" [](p 2). I f  AV1 has compact support, then there exists a constant c such that ]lf[]~a)_ <- 
<=cllfll~ ), so He(V~, D)cHP(V~,D).  

Proof. Let supp A V~ ~ K o c c  D and let eo be so small that Ko c c  {x; V~ (x) <_- -- ~} 
for ~ e o .  Given e ' > 0 ,  we choose 8 > 0  so small that a < a o  and D~.= 
= {x; V~(x) < - e ' } c c { x ;  V~(x) < --~} = D, ~. Let h(x) be the harmonic function 
in D~ which has boundary values I f  Iv. Then h(x) >= ]fly in D~ so 

f ,~, tfl,m v( , .  <= fD:. h(x) AV( z,<= f ol, h(x) aV~<=c, supK o h(x). 



70 Lawrence Gruman 

As in the proof  of  Lemma 2, there exists a c2 (depending only on K0) such 
that supKoh(x)<= c2fD~h(x)AV2 % for e sufficiently small. But by Lemma 3, 

f o, h(x)AV~vn = f ,: IUIpAV2"% <= (llfll~2))" so 

f D~ IU[pAVle% ~ elc2(llfl[~2)) ". 
~ t  

Since 8' was arbitrary, this proves the lemma. Q.E.D. 

We now form a special class of subharmonic functions which will be useful in 
what follows. Let fl(x) be a positive C = function with compact support in D, and 
let sp (x )=- fFIx -Yl l~ -n~(y)d~(y) ,  which is subharmonic and C = in R" and har- 
monic in a neighborhood of OD. Let h a (x) be the harmonic function in D which has 
boundary values sp(x) on 0D. We set V;(x)=-ht3(x)+sp(x) in D. By Lemma 4, 
the space H(V~, D) is independent of the choice of ft. (This remains true even if fl 
is a more general measure with compact support.) 

Let A = {Dr}~ be a nested sequence of  domains in D each regular for the solu- 
tion of  the Dirichlet problem such that t_)Dr=D. If  supp fl(x)CC D1 and v(] ) is 
the harmonic measure with respect to D~, then there exists a constant e' (independent 
of ?) such that G~(y)= [d#(r)/dv~ )] <-e" (almost everywhere) by Harnack's principle. 
As in the proof  of  Lemma 2, there exists a e~0 which is also independent of  ? such 
that 0 <  e~o <- [d#C~)/dv~)]. Thus, if B p is the space of harmonic functions f such that 
fao~ [flPdv? ) is uniformly bounded in ?, then B p is isomorphic to HP(Vp, D). 
Thus, those classes studied by Lumer-Naim [11] and by Aronszajn and Smith [1] 
are included in the above Hardy classes. This also shows that B p is independent of 
the sequence D r . 

3. Non-tangential limits 

We say that S is an oriented non-tangential region in D if S =  w F, ,  where 
F~ is a non-tangential cone and all the F,  have similar size and orientation. I f  all 
of  the vertices of the F,  are contained in a set E which is sufficiently small (depending 
on the size of  the F,), S is a starlike Lipschitz domain (cf. [8]), and hence S is a 
regular domain for the solution of the Dirichlet problem. 

Remark 3. We can assume without loss of  generality that supp A V n  S r  for 
if not, we choose a C = function q(x) with compact support in S and set V,(x)= 
=-fllx-ap-"n(a)d~(a).  Then, if h~(x) is the harmonic function in D with bound- 
ary values V,(x) and V~(x)= V,(x)-h,(x), the norm for HP(V+ V~, D) is the sum 
of the norms of H~(V, D) and HP(V~, D) by (4), and by Lemma 4, these norms are 
equivalent, so the Banach spaces are isomorphic. 
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We now assume that supp A Vc~ Sr Since V is continuous, there exists a 
harmonic function h(x) in S such that h ( x ) =  V(x) on OS. Let V~'(x)= V(x)'-h(x) 

p t and consider H (Vs S). 

Lemm8 5. I f  fEHP(V, D), then fE HP(V], S). I f  v" is the harmonic measure in 
S, then f has limit values almost everywhere which, for p > 1, define a function f on 
OS which is in LP(Iz'), where #" is the measure on OS determined by A V, Furthermore, 
#'(E) <= # (E) for E c  OS c~ cgD. 

Proof We assume that 0 is the star-center of  S. Let Sr={rx; xs r<-l. 
Then S, is a regular domain for the solution of the Dirichlet problem. We set hr(x) 
to be the harmonic function in S, with boundary values V(x) and V~(x) = V(x)-h,(x).  
Then it follows f rom (4) thatfEHl(V,,  S,) for r-<l  and, if we let I] fl[(p r) he the norm 

in HP(V,, St), then II fJJ(p~) increases and lim~_.l j fHCp r~= JJ flip- 
Let f+(x)=sup(O,f(x)) which is subharmonic and satisfies f r y  + (x)AV"'c,<= 

<=fK. [f(x)lAV"z, �9 If  k,(x) is the harmonic function on S with boundary values 

f+(rx), then k,(x)>-0 in S and as in the proof  of  Lemma 2, we can show that k,(x) 
has uniformly bounded Ll(dv'o) norm on OS. We can now apply mutatis mutandis 
the reasoning of Hunt and Wheeden [8, w 4, Lemma 1]. We have f(rx)<=f+(rx)<= 
< : :  p i - fos kr (y) dvx (y). The measures k~ (y) dv~ (y) are uniformly bounded (for x fixed), 

so there is a sequence r , ~  1 such that k~(y)dvx(y) converges weakly to a positive 
Borel measure ax. The sequence r, depends on x, but we assume that for all x, r, 
is a subsequence of the sequence used for 0. I f  T is any open subset of  OS, then 

f r  dax ( y ) -  sup los g(Y) &rx (Y), where the supremum is taken over all continuous 

functions with O<=g(y)<-Zr(y). For  such g, los g(y)&rx(Y) <- {ess SUpT [dv'/dvo] } 
fTd~o(y), and applying the same reasoning as in [8], we conclude that f +  (and 

hence f )  is bounded above non-tangentially v'-almost everywhere on OS, and hence 
has non-tangential limits v '-almost everywhere in OS. 

Let f~(x)=f(rx) and V~'(x)= V,(x/r) in S. Then f(rx) is of  uniformly bounded 
norm in LP(dvo), p > l ,  and so converges to a function fELV(dvo). Let /~, be the 

i 
measure on OS determined by A V;. Then Gr(y)=[dpr/dvoJ is uniformly bounded 
in norm in L a (v0), so we can choose a sequence { G J  which converges weakly to a 
measure o- on OS, and since for any non-negative continuous function g(y) on OS 
which determines a harmonic function hs(x)=fg(y)dv~(y), fos g(y)da(y)= 
=lim~-~fho(x)AV~,=fho(x)AV~,=fosg(y)dp'(y ), we have o-=p" independent 

of  the sequence chosen. Thus [Ifl lp=lim~ll[f~ll~)=lim~_~flf ,  l~G,(y)dvo(y) > 
so f ~  L ' (~ ' ) .  Let { f,,} be a Cauchy sequence of continuous functions 

in LP(I ~') with l imi t~  Then 
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Finally, if E c O S n O D  is a measurable set and if h e is its harmonic measure in D, 
then h E, its harmonic measure in S, satisfies h'~<-hn in S and hence fohrAVz.= 

L '  >= h~ A V%. Q.E.D. 

As in [8], we have the global result: 

Theorem 1. Let fEHP(V, D). Then f has non-tangential limits v-almost every- 
where in the restricted non-tangential set Q�9 

Theorem 2. I f  fEN(V,  D), then f has non-tangential limits v-almost everywhere 
in the restricted non-tangential set Q'. 

Proof. If  fEN(V,  D), then fEN(V~,, S) for any starlike Lipschitz domain con- 
tained in S. Reasoning as in Lemma 5, we see that log If] is bounded above non- 
tangentially for v-almost all yEOS, so this holds for Re f and I m f ,  which are har- 
monic. We then use [8] again to arrive at the conclusion. Q.E.D. 

It  is not necessary for the limit to be the same for every cone with common 
vertex even on a set of positive harmonic measure. Thus, in general, we cannot 
recuperate in a simple fashion the function fEHP(V, D), p > l ,  from its boundary 
values except in certain geometrically simple cases, such as Lipschitz domains. (See 
Lumer-Naim [11] where the function is recuperated in a systematic though rather 
complex manner.) 

In what follows, we shall always assume that D is a bounded Lipschitz domain. 
It  is clear from the definition that we can cover D by a finite number of starlike 
Lipschitz domains S,=D with star-centers Pi. 

Lemma 6. Let E C C O S i n D  for some i. Then for Q=E and x E D n ~ S  s, there 
exists a constant c such that hQ (x)<--chQ (Pi). 

Proof. Let K(x, x', y)= [dvx/dv~]. Then it follows as in [8, w 3, Lemma 5], that 
limx_as~n D K(x, P j , y ) = 0  uniformly for xESj ,  yEE. There, D is supposed to be 
starlike, but since the arguments are essentially local, with minor modifications, 
this result can be adapted to the present context. Then, by Harnack's principle, 
there exists a constant c2 such that K(x, P~, y)<=c~, from which the lemma follows. 

Q.E.D. 

Theorem 3. Let D be a bounded Lipschitz domain. Then i f  fE H p (V, D), 1 <p < 0% 
and i f  f (y) are its non-tangential limit values (which exist almost everywhere}, then 
fE LP(~), Il fll~= f lflPdt~ and f ~Df(y)dvx(y)=f(x). 

Proof. We assume without loss of  generality that s u p p A V n S ~ O  for all i. 
As in Lemma 5, fEHP(V~, Si). Let Ei=OD n Si, which we suppose open in 0D. 
It follows from Lemmas 5 and 6 that there exist constants c r and  c~ such that 

(5) c~G~(y) <- Go(y) ~- elGi(y) for yE E~, 
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where Gi (y) = [d#;/dve;] where #; is the measure determined on OSi by A V, v~., the 
harmonic measure at Pi in Si, and Go(y) = [d#/dv~o] on 0D, for some fixed x0E D. 

By Lemma 5, f has non-tangential limit values f(y) on St such that (llfll(p0) p = 
= f IflPd#~, so by (5), f(y)E Ln~). Let f .  be a continuous function on 0O such 
that f lf,-fl~d~ < 1In and let h.(x) be the harmonic function in D with 
boundary values l f . - f f .  Then f h,(x)d# = f h,(x)AV,, < 1In. Since hn(x) >= 

=>l . f . - f l  p in D, 1/n>fh.(x)AVr.~=fDlf.--fl 'AVT.--foAlf, ,--flPVz,,  so 
I l f . - f [ I .  -* 0, and since IIf.llg = f i l l " +  by Lemma 2, ll/llg = lim,.=flf, l"+= 
= f Ifl'd~. Q.E.D. 

Theorem 4. Let fEHP(V, D), l<p<oo for a Lipschitz domain D. Then given 
e>0,  there exists f harmonic in a neighborhood ~ such that [If-fllp<e. 

Proof. It is clear from Theorem 3 that we can assume t h a t f i s  continuous on D. 
We shall find f harmonic in a neighborhood of B such that supD [ f - f l < e .  We can 
assume without loss of generality that there exists a starlike Lipschitz domain So 
with star-center P0 such that O<-f<=M and d(supp fnOD, CS0n~D)>0. There 
exist a finite number N of starlike Lipschitz domains Si with star-centers P~ such that 

(i) Ui (OSl n OD) =OD, 

(ii) min i d(OS i n OD~, supp f n  OD) >0. 

We let 

N 
s~ = {Pi+0+~)(x-P,); xcS,} and D ~ = Du U s~ 

i=O 

for small 6. 
Let f be the harmonic function in D 6 such that f has boundary values f(y) for 

(y-Po)/(1 +fi)+PoEOSo and 0 elsewhere. 
Let sE~D ~. Then there exists a cone F and a truncated version Fs such that 

Fs=GD ~. We assume without loss of generality that F is oriented along the positive 
xl-axis and s is the origin. 

Let C~ be the cylinder of radius ~/ about the xz-axis. Let B~=C,n CF~n 
n {x; x~_- > -y} .  Let D,=ODnB, and let A=supD.f(y), B=in fo f ( y  ). L e t f  be the 
harmonic function in B, with limit values A in 0F~ n C, and M in the rest of 0B, 
and let _f be the harmonic function in B, with boundary values B in OF~ n C~ and 0 
on the rest of OB(q, ~). Then f<-f=f in D n B, if y is sufficiently small. For ~/suffi- 
ciently small, A -- B <  e/3. There exists ~ > 0  such that I f (x ) -  A[ < e/3 and I f ( x ) -  BI < 
<8/3 for xEDr, I x - s l < ~  uniformly in 6, so [f(x)-f(s)l<e for Ix-sl<~. These 

estimates are uniform in s and 6. Q.E.D. 
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4. Meromorpllic functions 

We assume in this section t h a t D  is pseudoconvex and that H2(D, Z ) = 0  (cf. 
H6rmander: [6]). For f meromorphic in D, we define the characteristic o f f  in the 
following way. Let V; be defined:in D as after Lemma 4, i.e., A V~* has compact 
support in D; and let s (z )=max (log [gl, l o g  Ihl) where f=g/h ,  g and h being two 
holomorphic functions in D relatively prime at .each point. Then s(x) is plurisub- 
harmonic in D, (cf. Lelong [9]). We define 

rcf, = fK, = fD fooAs(z)V;~ 

This is independent (up to a constant) of the choice o fg  and h since A V~ has compact 
support in D. Writing sup (log ]g I, log Ih[)=log + I f l  +log  Ih[ and noting that A log Ih[ 
is a measure of the zeros of h (hence the poles o f f )  (cf. Lelong [9]), we see that this 
definition depends only on log + [fl and the poles o f f  We have the relationships 
[4, 16]: 

O) T ( f +  g, 8) <= T(f ,  8) + T(g, 8) + 0 (1), 

(ii) T(fg,  8) <= T(/; 8) + T(g, 8) + O(1), 

(iii) T(1/f, a) <= T(f ,  8)+O(1). 

Let 2 be an increasing convex function of r. We say that f ,  meromorphic in D, is 
of  finite 2 type if 

T(f ,  8) <_- A exp 2 ( - - B l o g  8) 

for some constants A and B. We begin by proving the following: 

Lemma 7. l f  D has C z boundary, then there exist constants ca and c2 such that 
cld(z) <--V;(z)<-c2d(z)  (where d(z)=d(z, CD)). I f  D is Lipschitz, then there exist 

I t constants cl, c z and t o such that 

cld(z)'D ~ -- Va*(z ) ~ czd(z)l/'o. 

Proof Suppose D has a C 2 boundary. Since V;(z) is  harmonic in a neigh- 
borhood of 01), if we let B(y, r) be the ball of  radius r which is internally tangent 
to 0D at y (which is possible for small r), then V~ is harmonic in B(y,  r) (for small r) 
and continuous on its closure. Since V;(z)<= - 8  o for some constant 80>0 for d (z )>  
>r/2, it now follows from the Poisson integral formula for the ball that cld(z) ~_ 
<= ~ V;(z) for some constant c1>0. That -V~(z)<=c2d(z) follows from standard 
estimates of the Poisson kernel on D (cf. [1]). 
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Let yEOD, D a Lipschitz domain, and let Fy be a truncated cone in D with 
vertex y. Let Py be those points in D on the axis of Fy. We assume for convenience 
that y is the origin. Choose as on Fy and let B 1 be the ball centered at as and inscribed 
in Fy. We assume that Ilal[] is sufficiently small so that V; is harmonic in Bt. There 
exists a constant s0 >0  and a measurable set E~ c OBt such that -Vp* =>s0 on E~ and 
m(EO>--eom(OBO (m can be the Lebesgue measure on the ball or the Hausdorff 
( 2 n - l )  dimensional measure). Let a2=kat for k < l  sufficiently large so that B2, 
the ball centered at as and inscribed in Fy, has the property that for E2= {kz; zEE~}, 
E2cOB2c~B~. Then, by the Poisson integral formula, there exists a constant e o 
such that - *>  ' V~ =e0e 0 for xEE2 We construct a sequence a,=k"al by induction 
such that -V~(a)>=(Coeo)"eo for k"-la~<=a<=k"aa . Since these estimates are locally 
uniform, we have proved the first half of the inequality. 

Now let F~ be a truncated cone contained in the complement of D with axis 
Pr" We again assume y to be the origin. If  B, is the ball centered at y of radius r[2", 
then for r sufficiently small, V; is harmonic in B.nD. Let e=supnln o (--V;).  I f  
h~ is the harmonic function in B~ which has boundary values e on OB(y, r)n CFy 
and 0 on OB(y, r) n Fy, then hi ~ - Vp* in B(y, a) n D and there exists a constant 
k < l  such that -V;(z)<=ke for zEB2nD. Proceeding by induction, we let h,(z) 
be the harmonic function in B, with boundary values k"~ on OB, n Fy and 0 on 
OB, nFy. Then h,,(z)>=-V~(z) in B, nD and so -V~(z)<=k"+l~ on B,+I. Thus, 
for aEPy, r/2"<=a<=r]2 "+~, -V;(z)<=k"e. Since this estimate is locally uniform in y, 
this proves the lemma. Q.E.D. 

Remark 4. If  D has a C2-boundary defined by some function ~o(z), Vq~(z)r 
in a neighborhood of D, and if we define T'(f, ~)=fo~s(z)dS, where f2~= 
={z; ~0 (z) <_- " e}, then it is clear from Lemmas 4 and 7 that the classes of mero- 
morphic functions of  finite h-type are the same as those defined by T ( f  ~). 

If  a holomorphic function h is of finite h-type, then 

fx~ log + Ih[ A Vp ~* ~ fK~ log ]hi d V~"* = f/r log lh[ d V~ Vn - fx~ A log Ih[ V f  v, 
so  

(6) --fzc~ A log [h I V f  z, ~ A exp 2 (--B log e). 

We shall show that if D is a Lipschitz domain and h is non-constant, then if h is 
any function which satisfies (6), h has the same zero set as a holomorphic function 
of finite h-type. This will imply that any meromorphic function of finite h-type can 
be written as a quotient of holomorphic functions of finite h-type. To do this, we will 
closely follow Skoda [14]. 
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Lemma 8. Let D be a bounded starlike domain with the origin as star-center 
and let D, = {rz; zE D}. Suppose that there exist constants A and B such that a(r) = 
= f o. A log IhlT,<=.4 exp 2(--B log (1--r)). Then there exists a holomorphic function 
hi in D o f  finite h-type which has the same zeros as h (i.e. h/hl~O, hl/h~O in D). 

Proof. Let %(z) be defined as in w 1. Then VQ=log Ih[ *% is plurisubharmonic 
in D, for Q sufficiently small. Let 0~=0 ~ VJOzjO~k. Then 

fo  lo~ld;. <- fo  O~jdh+ fo  Og~dh ~_ fD aZodh 

(of. [14]), and by choosing Q sufficiently small, we have f o  IO~k[dh<= 
<=A' exp 2( - -Blog  ( l - r ) ) .  Let og~ o. Then do~~ so there exists a 1-form 
v ~ such that idvQ=co~ v Q splits into two terms v~ o o o v2--v,, v~ of complex degree 
(1, 0) and v~ ~ of complex degree (0, 1) such that - o o o 0v~=0vi---0. We can write v~ and 
v~ explicitly 

-- 27-=1 [Z;=,  fx tO~,(tz)dt] d~.j, 

n -- 1 

V~ = / - a j = l  

Thus, using the notation of H6rmander [6], where we let cp (z) be the plurisubhar- 
monic function 2( - - toB log d(z)), fD~ Iql ~ exp (-2~(z))dh<a' for i=1,  2, and A' 
is independent of Q. Thus, by H6rmander [7], we can find functions Ul ~ and u~ such that 
0u~ = v~ e and 0u~ = v~ and such that 

f o. [u~l~ exp ( -  2cp(z))dh < C f D" [v~12 exp (-- 2q~(z))dh, i = 1, 2, 

and C is independent of Q and r. Then H =  Re (u~ + u~) satisfies iOOH= co Q. We choose 
a sequence r , ~  1 (so that 0 ,~0)  and repeat the above process for each r,. Then the 
H~ are locally bounded uniformly, so we can choose a subsequence r,j such that 
H~j converges to a pluriharmonic function S on D=supp  (A log Ihl). Since S is 
locally bounded above on some neighborhood of every zEsupp (A log Ih[), S extends 
uniquely to a plurisubharmonic function in D [cf. Lelong [10]), and iO-OS:iaO log [hl 
in the sense of distributions. Then, as in Skoda [14], we can find a holomorphic func- 
tion ha in D such that A log [hal =A log [hi and 

f D II~ lh*ll~ exp ( -  2~~ dh < oo. 

Thus (cf. 17]), there exists a B'  such that l og+ lh , [< Aexph ( -B ' l ogd ( z ) ) ,  so 
for zeOK~, log + [hl(Z)l<=A exp h ( - B ' ;  log e), by Lemma 7. Q.E.D. 

Theorem 5. Let D be a bounded Lipschitz domain o f  holomorphy such that 
H2(D, Z)=0.  Then i f  f is meromorphic and of  finite 2-type in D, f is the quotient of  
two holomorphic functions o f  finite h-type. 
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Proof. We cover B with a finite number of balls B j ,  j =  1, ..., N, such that 
0) Dj =B j  n D is starlike, D~ c~ Dj is simply connected, 

(ii) if zED, then there exists a Bj such that d(z, CB1)>r/ (where r/is independent 
of z). 

We assume, without loss of  generality that supp A V~* is relatively compact 
in each Dj. If  we let kj be the harmonic function in Dj with boundary values V; 
and set V~= V ; - k j ,  then f is of finite ;t-type with respect to Vj in Dj for each j. 
Assume f = g / h  in D. Then, by Lemma 8, there exists a function h~ holomorphic in 
Dj with the same zeros as h in Dj such that hj is of finite ;t-type in Dj (with respect 
to Vj). We now solve the second problem of Cousin with bounds. Let 9j(z) be a 
partition of unity subordinate to Bj. Define gkj=log hk--log hj in Dk c~ Dj. Then if 

~j (Z) = Z k  q)kgjk, ~ = ~]~j is a globally defined (0, 1) form and fo 16 t , exp ( -  2tp (z)) d;t < 

<0% where q~(z)=; t ( -Btologd(z) ) .  Since D is a domain of holomorphy, we can 
find a function ~ (z) such that 0~ = 6 and flr (z)l s exp (-2 0 (z))a;t < ~. Then ~ -  ?j =z~ 
is defined and holomorphic in Dj. Since H2(D, Z)=0 ,  we can add constants 2rffmj 
to zj (mj an integer) such that for z~=2zimj+zj ,  h '=hj  exp (-z~.) defines a global 
holomorphic function in D, and h' is of finite ;t-type. 

I f  f is of  finite ;t-type, l / f  is also of  finite ;t-type, so we can find g '  holomorphic 
in D of  finite ;t type with the same zeros as g. Then k=h ' f /g"  is of  finite ;t-type and 
has no zeros or poles, and g"=g 'k  is of  finite ;t-type. But f=g"]h' .  Q.E.D. 
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