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1. Introduction 

A series of Stieltjes is a (formal) power series f ( z ) = ~ ~  e.(-z)" where 
e.=fo t"de(t) for some real, bounded, nondecreasing function e(t) assuming infini- 
tely many values on t~0.  These functions were first studied by Stieltjes who proved 
that the moment problem on [0, ~[ associated with" {e.}~= 0 is determinate if and 
only if the corresponding continued fractions expansion off(z)  converges except on 
the negative real axis. (Stieltjes [10].) This theorem is also of significance for the 
theory of Pad4 approximation (Pad4 [8]), 

Definition. The rational function P,(z)/Qm(z ) is called the [n, m] Pad6 approxi- 
mant to the formal power seriesf(z) if P~ and Qm are polynomials of degree at most 
n and m, respectively, Qm~O and the formal product Om "f--Pn only contains terms 
of degree greater than n +m. In the sequel the [n, m] Pad6 approximant to f i s  denoted 
fin, mJ (z). 

If f(z) is a series of Stieltjes then the 2n:th convergent of the corresponding 
continued fractions expansion is just f[n-1, n] (z) and thus Stieltjes' theorem gives 
a condition assuring that 

&(t) 
f[n-- 1, n](z) ~ g(z) = f o 1 + 

except on the negative real axis. The convergence of {f[n-  1, n](z)} o and the deter- 
minacy of the moment problem are also connected with the convergence problem 
of the Gauss--Jacobi quadrature procedure for the measure de. This connection is 
indicated by the fact that f [n-  1, n] (z) is exactly the n: th order Gaussian quadrature 
approximation to g(z) defined above (see e.g. Perron [9] p. 200--201). 
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Following Stieltjes, many authors have discussed conditions on {c,} o ensuring 
that f [ n - l , n ] ( z )~g ( z ) .  We mention here Carleman [4], who proved that 
~ o  (1/c,) 1/2": ~ is sufficient. I f f ( z )  has a positive radius of  convergence R, a( t )  

is constant for t > l / R  a n d f ( z ) = f  lmd~(t) / ( l+zt) .  In this case Carleman's con- 

dition is clearly fulfilled and f [ n - 1 ,  n] (z)-~f(z). It is also possible in this case to 
estimate the rate of  convergence; Gragg [6] has proved for z not  in the interval 
I - - ] -  ~,, - R ]  

C(z) 2. If(z)  - f [ n -  1, n](z)[ --< 1 + 

where C(z) is bounded in any compact set disjoint from L 
The theory presented here was inspired by a variety of  problems and the results 

on Padd approximation are without exception implicit in the respective work. It 
therefore seems worth while to give a coherent presentation of the theory in the 
language of  Padd approximation. Parts of such a program have been carried out 
by Baker [3] using determinant theory and recently by Allen et al [1, 2] using the 
Schwinger variational principle and the theory of  generalized matrix inverses. In 
this paper we present a unified and complete approach to the subject based on the 
presumably more well-known theory of  orthogonal polynomials. Most of  the results 
are well-known and we have not been able in all cases to trace them to their first 
appearance. I n  these cases we give reference to some easily available source. 

2. Main results 

In this section we state the main results of  the paper. Proofs are given in the 
following sections. 

We first collect the necessary algebraic properties of  the Padd approximant. 

Theorem 1. Let f(z) be a series of  Stieltjes, i.e. f ( z ) -=~=oC, ( - z ) "  where 
e , = f  o t"de(t ) for some real bounded, nondeereasing funetion c~(t) taking infinitely 
many values on t>=O. Let P,(z) be the n:th orthogonal polynomial with respect to dc~ 
and y, the leading coefficient o f  P.. Put g (z) =f2 de (t)/(l + zt ), z (~ R_ = {z t z <= 0}. 

Then 

(a) f[n--  1, n](z) = z~= l  1 +cz~,z 
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where 
numbers. 

{cq.}7=1 are the zeros of  P.(z) and {2~.}i"_-1 the corresponding Christoffel 

(b) g ( z ) - f [ n -  1, nl(z) = - -  

(c) f[n--  1, nl(z)--f[n, n+ 1](z) = - -  

f o  P" (t) d~ (t) _ 1 ~o p z (t) d~ (t) 
l + z t  e,~[ l l f  ~ l+zt ' o 

1, z ]  

z~R_ .  

~.+1 1 

, +ll l J 
As mentioned above (a) can be found in Perron [9], as can (c) (p. 193) and the 

first error expression in (b) (p. 194). The simple but useful reformulation that gives 
the last equality in Co) seems to be new. 

(a) has a corollary worth noting: 

Corollary 1. The poles of f in,  n + 1] (z) are all simple and located on the negative 
real axis. Between any two neighbouring poles lies one pole of  f i n "  1, n] (z) and also 
one zero of  fin, n+l](z) .  

The basic eonvergence theorem is the following due to Stieltjes [10] and Carle- 
man [4]. 

Theorem 2. Under the conditions of Theorem 1, { f i n - 1 ,  n] (z)}~~ converges to a 
holomorphic function uniformly on compact sets disjoint from R_. I f  ~=o(1/c,)X/2"= oo 
the limit function is g(z). 

When the radius of convergence is positive we can estimate the rate of con- 
vergence by means of the following theorem. 

Theorem 3. Suppose f(z) is a series of  Stieltjes with radius of  convergence R>0 .  
Let Ida[ be the total mass of  d~, d( . ,  .) denote the distance function and 

1 - ~/1 + z / R  
9(z ) - -  1+ 1+1/]- -~,  z r  

where ~[ denotes the principal branch of the square root. Then for z r I 

I f(z)--f[n--  1, n] (z)[ 
IdoL-le(z)L ~"-~ 

. .  ,{_ 1 [0. 

Remark 1. The function C(z) in Gragg's theorem is not the same as in Theo- 
rem 3. A comparison between the two results shows that neither of the error bounds 
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obtained is generally superior to the other. Theorem 3 gives a smaller bound for z 
close to zero while Gragg's result is better for z near the cut. 

That the geometric degree of  convergence implied by Theorem 3 cannot in general 
be improved is shown by the following theorem which seems to be new (the partic- 
ular case R =  1, e ( t ) = t  is in Gragg [6]). 

Theorem 4. Suppose that R > 0  and that d~ is" absolutely continuous with respect 
to Lebesgue measure. Put h ( 0 ) = e ' ( l + c o s  O)/2R. Isin 0l, Suppose also that 

f _ ~  ]log h (0)[ d 0 <  co. Let ~o (z) have the same meaning as in Theorem 3. Then for z ~ 1 

(1 + g(z ) - - f [n - -  1, n](z) =- R r " q)(z)Z"" 

where 

D(z) = exp {--~ f ~ log h(O) l + ze-~~ } -~ 1 -  ze -*~ dO and e,(z) -~. O as n ~ co, 

uniformly on compact sets disjoint from L 

Remark 2. Theorems 1--4 are true with obvious modifications of statements 
and proofs if the lower limit 0 in the integrals defining c, is replaced by any number 
a > - ~  (for ~p(z) in Theorems 3 and 4 should be taken that conformal mapping 
of  { z [ - 1 / z l  [a, I/R]} into the interior of  the unit circle which maps 0 to 0 and is 
real for real z). 

When f ( z )  is a series of Stieltjes simple relations exist between f i n - I ,  n](z) 
and fin-F j, n] (z), j=>0. These relations permit extension of  most of the above results 
to other sequences { f [n§  n]}~= 0 of  Pad6 approximants. These extensions are 
discussed in Baker [3]. For the sake of  completeness we collect the results in the 
following theorem. 

Theorem 5. Let f ( z )  be a series o f  Stieltjes and let j > - 1 .  Then 
(a) Corollary 1 and Theorem 2 are still valid /f  f [ n - 1 ,  n](z) is replaced by 

f i n  +j, n] (z) throughout. 
(b) I f  R > 0  then 

I f ( z ) - - f [n+j ,  n](z)[ <_-- C~(z)" I 1-+ r  2. 

where Cj(z) is bounded in any compact set disjoint from L 
(c) The following inequalities hoM for z > 0: 

(i) ( - 1 ) J + l ( f [ n + j +  1, n+  1 ] - f [ n + j ,  n]) > O, 

(ii) ( -  l )~+l ( f [n+j+  1, n--  1 ] - f [ n + j ,  n]) < O. 

0ii) ( - -1)J+l(g-- f[n+L n]) > 0. 
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3. Auxiliary results on orthogonal polynomials 

In the proof  of  Theorems 1--5 we shall make extensive use of known properties 
of  orthogonal polynomials. We collect some necessary estimates in the following 
lemma. 

Lemma 1. Let ~(t) be a real, bounded, nondecreasing function taking infinite!v 
many values on [0, l/R]. Put 

1 - Vl  - 1 / m  
T (z) = z ~ [0, l/R]. 

1 + 1/R  

Then with the notation of  Theorem 1--4 we have 

(a) IP,(z)l ~= R .  Idol -~/2 .d(z, [0, l /R]).  IT(z) "-~ + T(z)-("-l)l  

(b) i f  f~_= Ilog h(O)l dO < oo then 

P . ( z ) = ( ~ .  l + r . ( z )  
D ( T  (z)). T (z)" 

where r,(z) ~ 0 uniformly on any closed set disjoint from [0, l/R]. Furthermore, 
?k+l/?k-~ 4R as k ~ oo. 

Proof. (b) is a classical result by Szeg5 (see Szeg5 [11] pp. 297 and 309). (a) is 
just a more informative version of Theorem III, 7.1 in Freud [5], Just keeping track 
of the various constants appearing in Freud's proof gives the statement of  the lemma~ 

Remark. We note here that the function ~0 (z) of Theorems 3 and 4 is defined 
so that ~p (z)= T ( -1 /z ) .  

4. Proof of  Theorem 1 

(a) is a consequence of the fact that the Gauss--Jacobi  quadrature formula 
" ~ f f d ~  for polynomials of degree <=2n- 1. Thus O.(d ; f ) = ~ i = l  '~i.'f(ein) is exact 

I } I  zt, n, 1 ~ , z n - l r  z t . l i ~  ~,-- J [ = O, d~; ~ = a~ da; z-,i=o , -  , - ~ j  

---- z-,i=o~2"-xt,--zV, �9 Q.(dc~; t~) + z 2" �9 Q. da; ~ = z.,i=0s'2"-i ci(-z)~ + O(z2"), Z ---~ O. 
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Since Q.(da; 1/(1 +zt)) is a rational function of type ( n -  1, n) and interpolates to 
f of order 2 n -  1 at the origin it is the [ n -  1, n] Pad6 approximant (this proof is also 
given in Allen et al [1]). 

(b) We prove the first error formula. Put f [n- l ,n](z )=R._l (z ) /Q.(z ) ,  
Q . ( z )=~=of l k z  k. From (a) we conclude that P . ( t ) = k . . t " . Q . ( - 1 / t ) =  
=k.~k=Oflk(--1)k. t  "-k for some constant k..  Now R._~ must have the same 
Taylor coefficients as Q . . f  in the first n slots: 

s'n-lzV V~ S'n-l z v. ~ . f o (__t)v-k do~(t)= R.-I(z)  = ~-~=o "l-~k=0(--1)~-k'C~--k'flk = x-~v=0 2k=Oflk 

~ 2 k = O  L- 'v=k/"k  " " ~,=o~=o~'~"(-t)'-~d~(t) f~ " -~v" -~ '~  z, (-t)~ ~d~(t)= 

n n - - k  
_ ~. . / ' ~  Z ~ = o / ~ ( - t )  oh(t) 
- fg 2 =oa .z  1 --(--zt)n-kd~(t ) = Q . ( z l . g ( z l - z "  a o 

1 + z t  1 +zt 

Thus 

g(z)-- R._i(z)/Q.(z) = - -  fo P. (t) d~ (t) 
1 +zt 

That the second error formula is valid follows immediately from the first and the 
observation that S( t )=(P. ( t ) -P . ( -1 / z ) ) / (1  +zt) is a polynomial of degree n - 1  

in t and thus f o  P.( t ) .  S(t)da(t)=O. 
(c) follows from (b) and the Christoffel--Darboux summation formula 

~ak=oPi(t).P~(w)__ Yk Pk+a(t)ek(W)--Pk(t)Pk+l(w) 
7k+i t - -w 

Integrating both sides with respect to da (t) and dividing by (Tk/Vk +1) Pk (W). Pk+a (W) 
yields 

Y k + l  1 _ 1 f'~ Pk+l(t)dct(t) 
n e~(w).P~+l(w) e~+~(w) Jo t - w  

1 f ~  P~(t) d~(t) 
e~ (w) J o  t -  w 

Now put w = - - l / z  to get the desired conclusion. 
As to the corollary the assertion concerning the poles is just a reformulation of 

the corresponding well-known property of the zeros of orthogonal polynomials 
(see Szeg6 [11], section 3.3). The interlacing property of the zeros is a consequence 
of the fact that all 2i.>0. 
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5. Proof of  Theorem 2 

We first prove that the sequence { f [n -  I, n] (z)} 1 is uniformly bounded in any 
compact set F disjoint from R_. 

max ~'~=1 <= max max �9 ~ i=12 i . .  
=~F l+O~inZ =~F ,>--_0 l l + t z l  

Put r = max~r I. Now if t < 1/2r and zCF [1/(l+tz)[ < 2 and if t :~ 1/2r 

Itl" -T+zl 
Thus 

/ m~ If[n- 1, nl(z)l ~ m a x  2, d(R_, F) 

I f  we can prove that { f i n -  1, n] (z)} converges at a set of points having a limit point 
in the interior of  the complement of R_ we can apply Vitali's theorem (Titchmarsh 
[12], p. 168) to conclude that the sequence converges uniformly on compact sets 
disjoint from R_. But for z > 0  it follows from Theorem 1 (b) and (c) that 
f i n - l ,  n](z)<f[n, n+l](z)<g(z). Thus for these z the sequence converges being 
a bounded, increasing sequence of real numbers. For the second part of the theo- 
rem, suppose .~--o  (~-+1/~.) 1/~= ~ and fix Zo>0. Put Wo = -1/Zo. Schwarz' inequality 
yields 

I ~)n ) ~n Pn (Wo) fin +1 (w0) " Z  ( -  Pn (Wo) en +l(wo))/ �9 

From the first par t  of the theorem and Theorem 1 (c) follows that the first series to 
the right converges, which forces ~ P.(wo)P.+l(Wo) = ~ .  Now -P.(wo)P.+l(wo) 
<= 1/2 (P. (w0) 2 + P. + 1 (w0) 2) implies ~ P, (w0) z = o~. From Theorem 1 (b) we get 

P, (t) dc~ (t) 
P.(wo). (g(zo) - f [ n -  1, n](Zo)) -= f o + zot 

which defines the nth Fourier coefficient of 1/(l+zot ). Next we invoke Bessel's 
inequality: 

d~(t) 
Z P~ (Wo). (g(zo) - f [ n -  I, n] (z0)) 2 ~ f o  (1 + z0 t) ~ < co. 

From this inequality and the fact that _~YP.2(Wo)= oo we conclude that at least a 
subsequence of {f[n-1,  n] (z0)}~= 0 converges to g(Zo). Since this holds for any zo>0 
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and we know that the whole sequence converges to a holomorphic function except 
on the negative real axis we must have f [ n - l , n ] ( z ) - ~ g ( z )  for zCR_.  

It remains to prove that ~ (1/c,)1/2"---oo implies ,~ (y~+~/7,)v2- - oo. We first 

note that 1/7. = f o  PP,( t )d~(t)  <= 1/cz -~  by Schwarz' inequality. We also need Carle- 
man's inequality (Carleman [4]; see also Hardy, Litflewood, Polya [8], p. 249): I f  
u,>=O, n = l , 2 ,  ... then 

2 ; 1  (/'/1 " 112 . . . .  " U.) 11" <= e Z~=I u.. 
Hence 

[ ~n ]1/2> 1 eo (~1 ~2 ~" } l l 2 " ' 2 c ,  ol~nlll2n > ( I/Z/'tn 
Z~tY--~-~) = e Z " = x t - ~ 0 " ~ - i  . . . .  " r , - 1  - e  1 [-~0) =c~ " 

But ,~ (l/cn) i/z" and ~ (1/c2,) a/~ diverge simultaneously, This holds since c .~  
<= 1/c._ ~ c,+ z by Schwarz' inequality and thus {c.} o is either bounded or increasing 
for large n. In the latter case 

~ 1 ~1/4.+2 ![1)1/4.p-11(2.+1)< [ 1 1 i 1 4 . <  
~ ----2-- ~ < - -  oo if 2 - -  co. 

[c~.+l j  = Z He2.) J ~,c~.) 

This completes the proof of Theorem 2. 

6. Proofs of Theorems 3 and 4 

Theorems 3 and 4 are both established by inserting an estimate of P.(Z) into 
one of  the error formulae of Theorem 1. 

Proof of  Theorem 3. We use Theorem 1 (b) and Lemma 1 (a): 

Ig(z)--f[n -- 1, n](z)I = 

I tvJ! 

Id~i  1 
�9 m a x  - - -  

t E [0, 1/'R] I 1 + tz  [ R2"d2(--'~' [0' "~-])'] ~II[-LI"-I"I'~[/[-LI-("-I) z] , z] [ 

j o  
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Proof of  Theorem 4. From Lemma 1 (b) and Theorem 1 (b) we conclude that 
it is enough to prove that foP](t)do~(t)/(1 +zt) ~ 1/1/1 +z /R uniformly on com- 

pact subsets disjoint from L Theorem 1 (c) implies that 

But Lemma 1 (b) implies that for any e > 0  the inequality 

~)k+l �9 
Vk 

P:f-• 
i, z l  4R~p(z)~(~-")+a [ z  < 4ReM2(k-n)+Xmin [zl 

z E D(M)  

holds uniformly in D ( M ) =  {z[lgo(z)l~M< 1} for large enough n if k>n. Thus 

4RsM 
Ii.( I z)-- y~=. 4 R z - l .  q~(z)~Ck-")+ 1 <= 

min ]z I �9 (1 -- M ~) 
z E D(M) 

and we have that 

4Rrp (z) ~k+l 4R(0 (z) 1 
1 . ( z )  - ~  - Z T = o  - 

uniformly on compact sets disjoint from I since any such set is contained in D(M) 
for some M <  1. 

This completes the proof  of  Theorem 4. 

7. Proof of Theorem 5 

Put f s ( z ) =  ~~ ok+j+ 1 �9 ( - z )  k. Then fs(z) is also a series of Stieltjes since its 
power series coefficients are moments of  the measure #+ldo~(t). Simple calculations 
show that for k_~0 and j = > - I  

f [ n + j  + k, n] = ~ = o  ck(--z)k + (--z)i+l..fs[n W k--1,  n], (1) 

f - - f [ n + k  +j, n] = (--z)J+~(fj- fs[n+k - 1, n]). (2) 
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Using (2) for k = 0  we conclude that (a) and (b) follow immediately from Corollary 1 
and Theorem2 and 3. As to (c), it is enough to prove (i) and (iii) f o r j  = - 1. In this 
ease (i) follows from Theorem 1 (b) and (iii) from Theorem 1 (c). It remains to prove 
(ii) which by means of (2) for k = 0  and k = 2  can be reduced to proving 

f [ n - - 1 ,  n] (z) -- f[n,  n-- 1](z) > 0 for z > 0. 

To this end put  f [ n -  1, n](z) = A._l (z ) /B . (z )  and f[n,  n -  1](z) = C.(z) /D._l(z)  
with B. (0) = D._ 1 (0) = 1. Then 

A n _ l ( Z  ) C n ( z  ) A . _ ~ D . _ ~ - B . C ,  

B, (z) D,~ _ 1 (z) B, D, _ 1 
= O(z~"), z -~0 .  

But An_IDn_I--BnC n is a polynomial of  degree 2n and thus 

k n �9 Z 2n 
f i n  -- 1, n] (z) --f[n, n -- 1] (z) = B. (z) D._l  (z)" 

Since B, and D,_ 1 only have negative zeros this expression does not change sign 
for z >0 .  But f i n - -  1, hi(z)---0 for z ~ o  and we must prove that f in ,  n--  1] (z)~ -oo ,  
i.e. that the leading coefficient of  C, is negative. Put D , _ t ( z ) =  ,Y0 -1 dkz k, d0=l  
and let P, (dfl; t) with leading coefficient 7, (dfl)>0 be the nth orthogonal polynomial 
with respect to dfl=t2de. By reasoning as in the proof  of  Theorem 1 (b) we find that 
the leading coefficient of C,, equals 

/1--1 eo 
Zk=O dk(-1)"-kc"-k  = -- f o ~k=0~"-l"t"k~--~Jr ,a,-1-kt dot(t ) _= 

(--1)" f o  p,_l(dfl; t ) td~(t)  = 7.-1 (dB) (-1)" f o  PLI(d~; t)l d~(t). 7.-1(a#). P._l(d/~; 0) 

Since the last integral is positive and sign P,_l(dfl; 0)----(-1) "-1 we find that the 
leading coefficient of  C, is negative which completes the proof  of  Theorem 5. 

Note added in proof  After submission of this paper an article by G. Freud 
appeared, in which he proves essentially our Theorem 3, stated for Pad6 approxi- 
mants at infinity, using methods very similar to ours. (Reference: FREUD, G., An 
estimate of the error of Pad6 approximants, Acta Math. Sci. Hungar. 25 1974, 
(213--221).) 
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