On the convergence almost everywhere
of double Fourier series
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Let
Smnf(x) = 2;:; m 2;’= nCul et (kx +1x,)

denote the partial sums of the Fourier series of a function f€ L'(T?) where T =[0, 2x].
It was proved by C. Fefferman [4], P. Sjolin [7] and N. R. Tevzadze {8] that if p=1
and f¢LP(T?), then lim,_, S,,f(x) exists almost everywhere. The method of Fef-
ferman and Tevzadze also shows. that if (m,);>, and (»,);>, are non-decreasing sequ-
ences of integers which tend to infinity and f€L*(T%), then lm,__ S, , f(X)
exists almost everywhere.

Fefferman [5] also constructed a counterexample which shows that there exists a
continuous function f with period 27 in each variable such that lim,, , .. S,./(x)
exists nowhere. In [7] Sj6lin proved that if

2, nlCmal? (log (in (], [n]) +2))* < <, )

then lim S, f (x, ¥) exists almost everywhere. Frem (1) convergence conditions

m, n—>eco

involving the modulus of continuity of / can be obtained. For continuous functions
f with period 2r in each variable we set

o(f;0) = 5P | fx)—f().

It is then known that if
o(f; 8) = O((log 5‘1)—1‘5), o0, )

for some =0, then (1) holds (see Bahbuh [1]). On the other hand it can be proved
by use of Fefferman’s counterexample that there exists an f with w(f;d)=
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=0((log 1/8)7%), such that lim
Bahbuh and Nikishin [2]).
The purpose of this paper-is to investigate the convergence of S, f for func-
tions satisfying conditions of the type w(f;8)=0((log1/5)"%), where O<a=<1.
We need the following notation. If /€ L2(T?) we extend f to a function on R?
with period 27 in each variable and set

S,.. F(x) does not exist almost everywhere (see

m,n->co

Af(x, ) = f(1+ 11, Xo 4 L) —f (1, Xg 1) —f (%1 + 11, %) +/ (%1, X2),

xeTE, =1,

o’ (f; 6) = ’fll;p‘5 1471 (-, )ll=cr2)
and -
wz(f; 9) = ltslig 147 (. Dllaers -

We shall prove the following theorem.

Theorem 1. Assume 0 <o <1 and let (myy and ()7 be non-decreasing sequ-
ences of positive integers with im,_, ., my = limy_, .. 1 = .
Set
I = {(m, )€ Z*; max (jm—my, |n—ny]) = eleeminend} A3)
and T = U;_, I'x. Then the following holds.
@ If f€L*(T? and

[o @3(f; 8287 (log §~1)*~1d6 < oo, @
then 1iMy, 4. o (n,myer Smnf(X) exists almost everywhere.
(ii) There exists an f¢C(T?) with period 2r in each variable and
@’ (f3 6) = O((logd=1)"%), & -0, (5)

such that 1imy, ,. o (nmer Smnf (%) does not exist almost everywhere.

The result in (ii) shows that the exponent 22 —1 in (4) cannot be replaced by a
smaller number.
We first prove the following lemma.

Lemma. If O<a=1 and fcL*(T?), then

Z’m,n lcmn[2 (log (min (lml’ Inl) + 2))20: < oo (6)
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if and only if
Sz ([12 147 Cx, )P dx) ¢ =2 (log [t] )2 dt < oo Q)

Proof. 1t follows from Parseval’s relation that the inner integral in (7) equals
4n 3 1Cpl? €™ —12[é™2—1]2 and to prove the lemma it is sufficient to prove that

Ci(log my*® = /l!lél e — 1[*le™=— 112[t| ~*(log |¢f| ~)**~*dt = C,(logm)™  (8)
for 3=m=n, where C, and C, are positive constants. The integral in (8) is larger than

1/2 (fl/z I1|-2(log Itl"l)z"ldtg] dt, = ¢ 1/2 (frlllz t5%(log tz‘l)z"‘ldtz) dt, =

im 1/m

1/2

-
=¢ 1/m

tTiog T V¥~ 1dt, = ¢ (log m)?2,

where ¢ denotes positive constants. Thus the left inequality in (8) is proved. To prove
the remaining inequality we observe that the integral in (8) is majorized by

C [ [ 12 Qog l¢| =)= 2dty iy + Cme? [ [1% #11¢]~2 (log Jf| =)~ drydts +
+CmPr [ [ 3131 ~* (log [t )%~ dty diy = L+ L+ I
We have

L =C /-2 (tog [t~ Y)2~1dt = C [1_ 5~ (log 6-Y)* 1ds = C (log m)™.

1Um=lt|=1 1/m

For 1/2 <a =1 we have

I =Cm? f;”" £ (log t7y= 2 ([ 12 |t ~2 dty) iy = cm? [J" ¢, (log g7 1y 1dt,y =

1/n

= C(logm)*~1,
and for 0 <a=1/2

L= Cm® [{7([12 -2 dty) dey = Cm® [{" 1y dty = C.
Finally
I = Crn2 [ [ tit,(log |f| =)™~ 1ty dts,

and for a = 1/2 we obtain

L = C(m® [ ty(log 7%~ 2dty) (n* [o 1, dbs) = C(log m)*~*.
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For o =1/2 we get
L=C(m® [ ndn)(r® [} tadts) = C,

0
which completes the proof of the lemma.

Proof of Theorem 1.
(i) Xf D,(u) denotes the Dirichlet kernel then |D,(u)— D, (u)|=2xn/|u| and also
Dy (w)—D,,(w)|=n|k—m|. It follows that

1Sig(x) — S, g(x)] = Clog (k—m|+2)g"(x), x€T, ®

where S,g and S,,g are partial sums of the Fourier series of a function g€ L'(T)
and g* denotes the Hardy—Littlewood maximal function of g. For fcL'(T?) we
define

M, f(x) = sup ﬁf‘” [f(ty, xo) dty, x€T?,

x €@

where @ denotes subintervals of T,
St f(x) = sup IfT Dy (xy—11)f (11, X2) dt1| , x€T%

and M, and Sy in the same way with the variables interchanged.
If (m, m)cl, we write

Soun S () = Sy [ (%) = Sy [ (%) — Sy /(%) + oy, f (%) = S, S (%)
and invoking (9) we obtain
1S S (%) = S f ()] = Clog (In—m| +2) M, ST f(x) + Clog (Im— my| +2) M, S5 f (x).

From the definition of I’ it follows that the right hand side in the above inequality
is majorized by

C(log (min (my, m) +2))* (Mp ST f(x) + M1S3 f(x)).
We therefore have

1S S O =[S S )] + C(log (min (m, 1)+ 2))*(M ST f(x) + My S5 £ ().
Defining

N 1S S )]
Tr/09 = 2 log (min (m, m) + 2

Tr f(x) = sup S S OOl + C (MY f (x) + M S5 £ ().

we obtain
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1t is proved in Fefferman [4] and Tevzadze [8] that the L2 norm of the first term on
the right hand side is majorized by C| f|, and it follows from the L2 inequality
for the Hardy—Littlewood maximal function in one variable that M; and M,
are bounded on L2(T2). Also S} and S;* are bounded on L*(T?) since the maximal
partial sum operator in one variable is bounded on L?(T) according to the results
of L. Carleson [3] and R. A. Hunt [6]. Hence 7} is bounded on L2(T?).

Now let f€L2(T? have Fourier coefficients ¢,, and assume that (6) holds.
We set

Sl‘f(x) = 8up [Smnf(x)l
(m,m)er

and let g denote the function in L%(T? which has Fourier coeflicients
cmn(log (min (Jm|, [n])+2))*. Performing a partial summation as in the proof of
Theorem 7.2 in Sjélin [7], pp. 85—86, we obtain

Srf(x) = C(Pg(x)+ Trg(x)),

where P is a bounded operator on L?(T?). Hence
ISrfll: = Cligls = C(X lcyml* (log (min (|m], |n]) +2))*)>.

it follows that lim,, ,oee, (m,mer Smnf(X) €xists almost everywhere for each f with
Fourier coefficients satisfying (6) and hence by the lemma for each f satisfying (7).
To complete the proof of (i) we observe that (7) holds if wy(f; J) satisfies (4).

(ii) Choose @< C>(R) so that ¢ (r)=1 for 1/20=¢=27—1/20, and ¢ (¢t)=0 for
t close to 0 and 27, and set ki, (x)=é&**1%20(x;) ¢ (x,) for x€T2 and A=10. Set
Q={x€T?; 1/10=x,, x,=2n—1/10}. Fefferman [5] has proved that

,S[Axgl, [l:q]h). (x)l =c lOg }“a x€ Qa (1'0)

where ¢ is a positive constant. The function %, can be used to construct the counter-
examples mentioned in the introduction. To prove (i) we shall use a function obtained
by multiplying #, with a character. We set u,=(m,, n),

1 .
/'{k —— e(logmin (m,, 1))
10
and

2e(x) = e**hy (x), x€T,

k=1,2,3,.... Also set p® = (my, —ny), p? = (—my, m) and p® = (—my, —m).
We have
Z”l“‘ﬂﬂém, |lg— pai=n gk(l)ed-x = em.xSmn(e_m.xgk) (X), ”EZZ, (11)



6 Per Sjolin

where g,(I) denotes the Fourier coefficients of g,. We now take x€Q, m=[4;x,],
n=[Ax,] and p=p, O, 1@ and p® in (11) and add the corresponding four
equalities. We then obtain

Smk+m, nk+'ngk(x) =+ Smk—m—l,nk—n—lgk(x) - Smk+m-"k“"_1gk(x) - Sm"_mgl’nk.mgk(x) -
= iﬂk'xsmnhlk (x) + 23:1 eiu,(‘j)~x Smn (ei(”k.—u’(‘j))‘xhlk) (X) (12)
We have

e — ] = min (my,, m)) = B2V, j=1,2,3,

and it follows from a partial integration in the integral defining Fourier coeffi-
cients that

H (eI, YO (O] = Chye™ 0B L = m, |l = n.
cnce
|Soun (P15 N ()] = Cpe~ 0B s €, j=1,2,3,

From this estimate and (10) it follows that for k=k, the right hand side of (12)
has absolute value larger than ¢ log 4, and hence at least one of the terms on the
left hand side has absolute value larger than clog 1., where ¢ denotes positive
constants. We have chosen m and »n so that the indices of the partial sums on the
left hand side of (12) belong to I', and hence we have proved that for x€Q and
k=>k, there exists g,=g;(x)€I, such that S,, 8x(x)|=clog 4, where ¢>0.

We now choose an increasing sequence of integers (k;);_, so that k; >k, and

ISmngs,~ 8l = 275, j=1,2,..,i=1, (m, T,
and |
min (my,, ny,) = @8 ™My mo D (13)

for i=2,3,4, .... This can be done since S,,,g; tends to g, uniformly for each k.
We set f= Z’;’:l C;8k,» where ¢;=(log lkj)‘l, and shall prove that f has the desired
properties.

It is clear that w’(gy; 6)=C min (m,, n,)é and choosing i as the least integer

such that

1/ .
e(log 10/1ki) = l/b,

we obtain

&' (f30) = 2i,¢;0 (8, 0) = CZ';;llcjmin (M, s m)0+C 27 c; =
=Cé 23; (log 2, j)“le(log a1 Cey =

= C3(log Ay, ) e -1 C(log 4,) ™%
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From the choice of i it follows that the last term on the right hand side is less than
C (log 1/8)™* and it also follows that

)

Using this inequality it is easy to prove that the first term can be majorized in the
same way and hence o’(f; 0)=C (log 1/6)™*.
We let x€Q and &, =, (x) and write

Sue S ) = L) = (S, 86 () — 26, (9) + Z574 ¢5(S 8, () — &, (D) +
+ 2 i Cj(Sgkigk,-(x) - gkj(x)) = A1 +A4,+4;.
From the above estimates it follows that

|4y = cc;log by, = ¢, ¢ =0,

4] = (i—1)277,
and we also have

oo

|4s = 2;;:4,1 ¢j "Sekigkj"gkj”w = C(log max (my,, ) i1 Ci 8l =
= C(log max (my,, m.))*c; 41

(13) yields
log 104,,,, = (log max (my,, m))?,

and hence A4, tends to zero as i tends to infinity. Also 4, tends to zero and we con-

clude that
ISak'.f(x) —f)l=c=0

for x€Q and i large. Hence there exists a set of positive measure on which
lim S, f(x) does not exist. The proof is complete.

m,n—ee, (m,n)} €T
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