One-sided minima of indefinite binary
quadratic forms and one-sided diophantine
approximations
Ake Lindgren

1. Introduction
Let
M fx, y) = ax*+bxy+cy?
be an indefinite binary quadratic form with real coefficients. We shall be concerned
with the set of possible values of

@ . (f) = inf—f—%)—,

the infimum being taken over integers x, y for which f(x, ¥)=0. Here d=5b%*—4ac
is the discriminant of f. This is an analogue of the ordinary Markov spectrum, which
is the set of possible values of 1/m(f), where m(f)=inf | f(x, y)|/Vd.

It is sometimes convenient to consider

3 A (f) =m (f)>
We always have A, (f)=1 (see Cassels [1], Ch. IT). Dumir [4] proved that we have
no A, in the open interval (96/25, 4). This is a special case of the following theorem:

Theorem 1. There is no A, in the open interval

2 2
k+1 - : s k+l ’ k=1,2,3,....
k K2 (k24 2k + 2)* k

The next theorem implies that in a certain sense Theorem 1 cannot be improved.

Theorem 2. Let

(%, ) = %+ BP+k+2 oy — K+k+2
6 V) = X T o2 ) T k(e 2k+2)”

and

— 2

k 1
v (x, y) = x>+ P A
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Then
k+1) 4
’1+(“")‘[ k ]“k2(1c2+2k+2)2
and
k+1)?
Ay (0) = [T) .

Remarks. In this work we have studied the one-sided Markov spectrum. It
is defined as the set of possible values of 1/m., (f) and will be denoted by B. It is not
difficult to prove that B is a closed subset of [1, <] and in [6] it is proved that B
contains all real numbers x satisfying
V5+1

x=V2+ 5

Hence B is completely described by the complementary open set

Q= [1, Y2+ ‘G;’] ]\B

which is a union of pairwise disjoint open intervals {f;, I,, I3, ...}. Each interval
I; is called a gap in the one-sided Markov spectrum.

Theorem 1 and 2 prove together that there exist infinitely many gaps. How-
ever, the gaps listed in Theorem 1 are not all. For example, the interval (24)/2/23, 31/21)
constitutes a gap not listed in Theorem 1.

The problem to give a complete list of gaps seems to be very difficult. In Theo-
rem 3 below we give a general characterization of the one-sided Markov spectrum
in terms of sequences of positive integers.

2. Basic lemmata

Hightower [5] dealt with the similar symmetric problem of m(f), and I shall
need a few lemmata, which he used. Cf. [5] for the proofs.

Lemma 1. Let f(x, y)=ax?+bxy+cy? be an indefinite form with m.(f)=0.
Then there is a form g(x, y)=x*+pxy—qy* such that

a) 4, (f) =24,(2) = P*+4q,
pO=p=1,

©) ;g{g(x, » =1
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Lemma 2. If for every (b, ¢) in a<b*+4c<f, 0=b=1, we have

inf (x®+bxy—cy*) <1 (x and y are integers),
x2+bxy—cy2>0

then there is no A, in the open interval (u, f).

Lemma 2 follows immediately from Lemma 1.

Definition. We denote by T'(x, y) the points in the (b, ¢)-plane for which 0<x24-
+bxy—cy?<1. (Equivalently expressed

2_1 2
L

With this notation we get immediately from Lemma 2:

Lemma 3. There is no A, in (x; B) if and only if the 2-dimensional region o.<b?+
+4c<p, 0= bél in the (b, ¢)-plane can be covered by finitely or infinitely many
strips T(x,y).

Definition. D=D(b, &)=b*+4c.

3. A diagram

The diagram of Figure 1 with a few strips 7(x, y) will be of great help in under-
standing the proof of Theorem 1.

By looking at the diagram and performing a few simple calculations we note
the following facts:

a) (b, o)=(1—1/k, 1/k) is on the border of T'(—1,1), T, k—1) and T(1, k)
if k=2,3,4, ....

b) D(1—1/k, 1/K)=1+1/k).

¢) The region 96/25<D<4 is covered by T'(1, 1), T(—3, 2) and (not necessary)
T(1, 2). That part which lies between 7'(1, 1) and 7T'(1, 2) is in 7(—3, 2).

d) The region 56/25<D<9/4 is covered by T(-1,1),T1,2), T(-17,6), T, 3)
and T'(—5, 4). That part which lies between T'(1, 2) and T'(1, 3) is covered by T'(—7, 6)
and the part between T'(1, 3) and T'(1, 4) by T(-35, 4).
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" * b
Figure 1

4. Main lemma
What we have expressed in c¢) and d) above can be generalized. In fact we have
the following lemma, which is the essential part of the proof of Theorem 1.
Lemma 4. That part of the region
k+1)° 4 . E+17
[ k ]_kz(k2+2k+2)2 =D=b +4c<[‘"k_‘]’ o=b=1,
which lies between T(1, m) and T(1, m+1) (i.e. below T(1, m) and above T(1, m+1))
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is covered by T(—(I+1),1), where

@

- [k(’”“) k=1, ksms=2%k-1.

m+1-k|’

([ ] denotes the integral part.)

Proof of Lemma 4. Let the points 4 and B have coordinates (b, c,) and
by, cg) respectively as defined in Figure 2. It is easy to see that the proof will be
complete if we can show that

2
and
k+1) 4
= = b} = —
(6) l)(lg) - l)(bB’ CB) - B'*“‘CB = [ % ] ]t26k2.+_21:_k,2)2 .
T(1,m)

T(1,me1)

T(-1-1, 1)

Figure 2

By the definition of T'(x, y) we easily get

NIRRT 1+1)* 1+1
? c“[’nTlTJ+m_+Tb"[_l“]" 7 ba
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Thus we have

which gives

141 1
®) b=
And so by (7)

1+l
©) AT T D
By (4

_ k(m+1)

Hence by (8), (9) and (10)’

R S I A T I
D(A)“[ ] “m+1]~+4'1(m+1) *[ ] m+1)_

1V omel-k 1) [k—#lz
——[1 T'I- ml J [1+-k(m+1)+m+1]_ |
Thus we have (5).

In the same way

1 J+12—1 I+1
(11) Cp =—I;'1—bB = 72 — i

and 50 lb,=m(I+2)—m(I+1)b,, which gives

ba,

o m(+2)  m(+2)
(12) by = m(+0)+1  Im+)+m’
By (4)
(13) 1= km+1)—-m+k

m+1-—k
Using this we get from (12)

_ m_ (m+DhH(+2) m m+2 ]<
(14) by = m+1 Im+1)+m  m+1 +l(m+1)+m =
="M (1, m+2 _ km®+m*42m
T m+1 [ km+1D)—m+k ]_ km? +2km+2k
e (A Ddm
m+1—
Hence by (11)
1 km+m+2
13 UL T+ Zkm 1 2
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By (14) and (15)
(km? +m2—l—2m)2+4(km+m—|—2)(km2+2km+2k)

D(B) = b+ 4cp = Gom? + 2kem + k)
Thus
{k+1 2—1) By = [k+1 (km® + m? -+ 2m)* + 4 (fem + m + 2) (km® + 2km + 2k) _
k B =17 (km? + 2km + 2k)?

(16)
_[ 2(m+1—k) ]
“lkm*+2m+2))

Consider the function A(x)=(x+1—k)/(x*+2x+2) in the closed interval
[k, 2k—1], where k=0, We easily get
*F+2x+2)—(x+1-K)2x+2) _ 2k(x+1)—(x+1*+1 -
(x*+2x+2)2 (x*+2x+2)*

Thus h(x) = h(k) = 1/(K*+2k+2) if k=x=2k—1.
Hence from (16)

k+1) 2m+1—k)y ) 4
17 [TJ fD(B):[k(m2+2m+2)] PR+ 2k 12

so we get (6) as well and the proof is complete.

B(x) =

e

'5. An admissible point

As we could see from the proof there is equality in the second step of (17)
if and only if m=k. In this case there is equality in (13), (14), (15) and (16) too, i.e.

Rbk+2  KRak+2 ]

Cs:0) = | E2k 42’ T2k +2)

By Theorem 2 this is an admissible point, i.e. it is not contained in any strip T(x, y).

6. A remark

It is easy to see that we need consider m only between k and 2k—1 in Lemma 4.
If for instance (b, c) is situated below T'(1, 2k), then we- have

1 2 |k+1 4
= B2 2 o _ .
D, c) b +4csl +4. T 1+k { T ] BTk T
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If on the other hand, (b, c) lies above T(l, k) and T(—1, 1) we have

(1)1 (k1)
D, c) = [1—?] +4.? = [_7(,_] .

With this remark we might regard Theorem 1 as having been fully proved.

7. Proof of the second part of Theorem 2
We have

k-1 1 1
u(x, y) = x2+Txy —7c-y2 =(x+y) (x-;y].

We may suppose that xéo.
a) x=0. Then we have

1
50, y) = -‘k‘y2 =0

b) x=0. Then v,(x, y) is a function of y of the second degree, that vanishes
for y=—x and y=kx. v, is positive if and only if —x<y<kx. Thus v, takes its
smallest positive value for integral y when y=—x+1 and y=kx—1. Hence if
ve(x, »)=>=0 we also have
x—1

k

=x=1.

(X, ) = voe(x, —x+1) =v.(x, kx—1) = x+

Thus we see that
int; v(x, ) =1.
Dk>

So by (2) m, (v) = k/(k+1) and by (3) 4, (@) = (1+1/k™

8. A lattice corresponding to f(x,y)

To be able to prove the first part of Theorem 2, we need to point out a few
things. The indefinite binary quadratic form f(x, y)=ax®+bxy+cy*? is equivalent
to a so called reduced form

(18) fo(x,9) = ay(x— 9o ) (x =60 ),

where @>0and —1<0,<0. We suppose that ¢, and 0, are irrational, and have the
regular continued fraction expansions ¢,=[go, 81, 83, ---] and —0,=[0,g_1, 83, ...]-
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Every reduced form equivalent to f is of the form

fi06y) = ai(x—0;9)(x—0;),

where

19 ©; = [gis &iv15 Giv2s -]
and

(20) 'ei = [03 &gi-15 8i-2> ]'

We may say that to f corresponds a unique doubly infinite sequence

{3 8-2:8-1>805 815825 -}
of positive integers. f and f;, being equivalent, have th‘e' same discriminant. Thus

d = b?—dac = a}(p;—0,)*

Vd Vd
21 | = = —,
1) la »;—0; Vi

where 9; = [gi, Zis1s - 1+[0s gi-15 Givzs -]

These are all well-known facts, see e.g. Dickson [3], Ch. 7.

Further, the absolute infimum of the numbers representable by f is equal to
inf; |@;|. But we can say more than this, namely

or

inf f(x, y) = inf g,
f=>0 a;>0

2 sup f(x, y) = sup a;.
f<0 a;<0
The numbers ag; are alternately positive and negative. Thus if we suppose a>0,
(22) is equivalent to
inf f(x,y) = infa,;
f=>0 i

(23)
iugf(x, ¥) = Sup di1-

We can see this by considering the fact that to every binary quadratic form
corréesponds a 2-dimensional lattice, see e.g. Delone—Faddeev [2], Suppl. 1. To
the form fi(x, y)=a;,(x—¢;y)(x—0,y) corresponds the lattice A, with lattice points
(&, m), where :

¢ =a(x—0,y)
(24) { ( »)

n=3(x-9y),
af=a; and x and y take all integral values. The pair of vectors, (x, f) and
(—ab;, —Bo,), constitutes a basis of the lattice. Performing the transformation
{x=&x+y

@s) o
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we get by using (19) and (20)
Ji(%,3) = fira (¥, ).

Since (by ordinary matrix representation)

o
e e R e S P (W
B —BoJly) B —poJ1 OJ ) Bi—o) BIV) | B sV
Dita

the transformation (25) means passing over to the new basis (—(%/0;+1), —(B/®;+1)
and («, B). According to the general theory ([3], Ch. 7), the lattice points (—a8;,
—Bo), (¢, B) and (—(@/0;+1), —(B/9:+y) lie on the hyperbolas &n=a;_,, {n=a
and &n=a;,, respectively. This process can be continued in both directions to
yield a doubly infinite sequence of so called relative minima ...4, B, C, ... (see
Figure 3 and cf. [2], Suppl. 1). As there is no lattice point inside the triangle OAC,
there is no such point in the infinite sector between the lines 04 and OC, that yields
a better (smaller) value of &z, than the points 4 and C. An infinity of such sectors
fill the first quadrant.

Figure 3

So in order to find infy, o e 4 €7 it is sufficient to consider only the positive g;.
By (24) f;(x, y)=E&n and so we have the first part of (23). The second part is completely
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similar. Finally (21) and (23) give

inf £, ) = yd/ Sup 7
(26) ~
;ug JSx, ) =— ﬁ/s?p Yai+1-

(This is almost equivalent to what Robinson [8], §3 has sHoWh.)

9. A lemma

If f=ax®+bxy-+cy? has rational coefficients, we can formulate the above in a
lemma, which is of some interest in itself.

Lemma 5. Let & be an irrational root of the equation ax®-+bx+c=0, where a,
b and c are rational. Let e=[a,, ..., a,,; by, ..., by;] be the periodic regular continued
Jfraction expansion of ¢. (The length of the period can always be made even by taking
the primitive period twice if necessary.) Then there are two- integers i and jJ,
1=i, j=2n, such that if
St

‘t_ == [al, ..‘- > am, bl’ veey bk]
k

are the convergents of ¢, then
inf £ 9) = £(51,1)

and
?_qu)f(x’ J’) =f(sj; tj)'
Furthermore,
Vigr=MAX (o5 Yiogs Yivrs Vigss o) I 1=i<2n
and .
71 = max(yl’ Vas coes ’Y2n—1) l.f i= 2n’
where ’

Yk = [bk’ ) bZn, b15 --~,bk—1]‘|"[0, bk——ly sees bl”b2ns cees bk]

if 1<k=2n and similarly for vy,. Analogously Viva=max (., Y1, Vjr1s o) ele.;
i and.j are not both even or both odd. '

We only have to note that there is an equivalent reduced form, whose root (i.e.
@, in (18)) has a purely periodic continued fraction expansion. The corresponding
doubly infinite sequence is also purely periodic (cf. Perron [7], § 23).

Hightower [5] used the symmetric version of this lemma, however accidently
erroncously stated.



298 A. Lindgren

10. Concluding the proof of Theorem 2

We are now able to prove the first part of Theorem 2, by proving that
inf, o %.(x, ¥)=1. (¢, 1)=0 has the root

VP 4k 2P — 4 — (K + k> +2K)
&= 2k (kF*+ 2k +2)

By Lemma 5 inf, _o u,(x, y)=u(s, t), where s/t=[0, k]=1/k. (We understand of
course that (s, #)=1.) Thus

=[0,% 1, k(k+ 1), 1].

uin>fouk(x, »=ul,k)=1

and the proof of Theorem 2 is complete.

11. Lattice points on the axises

From (2), (3) and (26) we get

Vi, (f) = SUP 72
and '
Vi, =f) = Slilp Y2i41-
This was the case when @, and 6, in (18) were irrational. What if we have

27 f(x:y) = a(x—oy)(x—0y),

where ¢ or 0 or both are rational?

Let us suppose that @=r/s is rational, where (r, s)=1. If a=0 in (1) there is
always an equivalent form g with a0, so we can assume that we have fin the form
(27). There are integers ¢ and u such that

28 rt4su=1.
From (27) and (28) we get

frx"+uy’, sx’ —ty") = -:— (57X’ + suy’ —rsx’ + rty’) (rx’ +uy’ — s0x’ + t6y") =

— a(r—So) e t6+u 2 I P Y
— ¥ [x—my]—ay(x—ey).

r—s8=0 because 0=¢ by d=a?(p—0)2=0, since f is indefinite. Hence if we write
@ h(x,y) = y(x—0"y)
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we have A, (f)=A,(#) or A (f)=A.(—h) according to a’ being positive or negative.
Let the regular continued fraction expansion of 8" be

(30) 0" = [go, 81, &> ---].

The lattice corresponding to (29) has the basis (0, 1), (1, —6”) (cf. (24) and Figure 4).

lr R
e
\\\\*\
\\
—
\\x\\\\
+8,(-6"+g,) ———-——--1——--———————--'——':>TB ¢
T : < 7
EIET T B T A
b3
|
| »
1 |
x
|
. | ®
|
J |
3 . ||
I
Figure 4
‘We have
1 -1

(31) h(g0’1)= 1'(g0_6/)=""[0’g19g2:---]2
and

B [gls 82 ] YI
, 1 ' 1
(32) h(gegi+1,8) = g1(@m+1-0'g) = 1 =
‘ Y2

[g2, 3> ]‘f‘z

(see e.g. Perron 7], § 14). ;

(31) and (32) correspond to the points 4 and B of Figure 4. Let the coordinates
be (¢4,n,) and (&g, np) réspectively. From the construction of 4 and B we have
4=1, —1<=y <0, {p=g, and O<nz<—n, (if g, is not the last partial quotient
of 8”). We easily see (by elementary geometry) that there are no points of the lattice
that give smalier positive values of ¢n than B, or larger negative values than 4,
with smaller =y,
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; If 0" is irrational we can form an infinite chain of relative minima, in this case
as in § 8. Thus in the same way we get

inf A(x, y) =
k>0 () Sup Yo
3

33 .

sup h(x, y) = ————
h<13 ) SUP Y2i+1
I

where y.=[g;, gr 1, -] +0, Zeys ---» &) (Note that £ has discriminant d=1.)
(We also see that liMy, yeo, 50 A (X, ¥) =1/l y2 etc., cf. [8], §3.)
The relations (33) are true also if 6’ is rational but not integral. Then the lattice
corresponding to (29) has points on the £-axis. (30) now takes the form

0 = [go> &15 - » 8k—1> &kl-

We can always achieve g,=1.

The chain- of successive relative minima runs as-above up to the last but one,
i.e. we get a basis 4, B of the lattice such that 4A+g,B=A4+B=J is on the &-axis.
Since 4 and B are relative mintima, the rectangles CAGH and CDBH (see Figure 5)
are void of lattice points (cf. [2], Suppl. 1). By the symmetry and periodicity of the
lattice, CEFH has not any lattice points in its interior either.

A
____—A_ D___E e
¢ T T *
BN |
RN |
! (AN 1
[
o b \Js ¢t
b Wi -
[ // ]
N
{ b/ |
| !// !
g LY L R o e
G B F
Figure 5

So there are no lattice points between the lines AG and EF, or between the lines
DB and EF, that give smaller absolute values of /# than A or B respectively. There
are no such points to the right of EF either, since if we extend the lines CE and HF
to the right there are only points on the &-axis between these lines. So we have (33)
in this case too.

Finally if 6’ is integral we easily see that infj . , #(x, ¥)=1 and sup, ., h(x, y) =—1,
so we have in this case A, (h)=1,(—h)=1.
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We make a summary in the following theorem.
Theorem 3. The set B of possible values of V4. (f) is the set of possiblé values of
Sup; ye;, Where yi=[gi, gx+1> -] +[0, 8x—1, -..]. The sequence
G={.,881 88 -}
of positive integers may be finite, singly infinite or doubly infinite.

We easily see that to every sequence G, there corresponds a quadratic form 4,
such that (33) holds in the same way as above. ‘

Examples. a) G={k,1}. Then y,=k+1 and y,=1+1/k. This gives A, =
=(1+1/k)? as a possible value. So we have a different proof of the second part of
Theorem 2.

b) G={..., 1, k, 1, k(k+1), 1, k, 1, ...}. Suitable placing of indices yields
B _ k+1)2 4
s1i1py2i—[l,k,l,k(k+1)]+[0,k(k+1)7laka 1]“1/[ % ) RBEt2kL2E

12. One-sided diophantine approximation

Let A4 be the set of possible values of

max (SUp Yzi» 4SUP Yai-1)

and A’ the set of possible values of

max (‘.1_132 Yai> @ Tﬁg Vei+1)

i+
where a is an arbitrary positive number and 7, is defined as before from the doubly
infinite sequence G={..., g_1, o, &1, &2» ...} Of positive integers.

Tornheim [9] has shown that 42 4”.
Let B be the set of Theorem 3 and B’ the set of values of Tim, _, 7y;.

Theorem 4. B=5B’.
Proof. We use the notations G ={..., g_1, 80> 1> &2> -+ }»

q G = { »8~15 80> &1> 84> }’ Y = (8> Gers - 1[0, Gi1s -]
an
yl,c = [gl:, g’:+19 ']+[03 gl:—-19' ]
a) BC B
Suppose sup; ys=7; for some k. If G is doubly infinite we choose

G'={.., 81, 82> 8i-1> k> 8k+15 Ek+2> 2> Bk—ts -+ 3 Bk+4> 3> Gk—gs -+ 3 kror &s oo}
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If G is finite, i.e. y=[gks .- 5 Ge+nl +[0; &k—15 ---» &k-nl, We can always make n and
m even since [..., &, 1]=[..., A+1]. Then we choose

G ={ s Gioms > 8kans Ls hems > itns 25 kems -+ » Gktms 3r -+ -

If G is singly infinite we mix these two procedures in the obvious way. It is easy to
see that in all three cases
}}E Vor = Vie

If on the other hand sup; y5,=Iim,_ _ y,;, then there is nothing to prove.

b) B'SB. \

Let b=Iim,_ _ 7,;. Thus there is a subsequence 7ai,~b. Then there is a sub-
sequence such that all g,; are equal, say to gy~ If go#b we cannot have 8ai,—17
and g, ;0. Thus there is a subsequence, such that, say all 8ai,+1 are equal.
Denote this number by g;. Then there is also a subsequence such that all ot +2
are equal, say to g,. If this process can be continued in both directions, we will have
sup; 7;=b. If at some place in the process of finding subsequences we have
821, +2m=8am and 82i_+am+1~> >0, then we choose G'={..., g, & -.., 82,,)- With the
same situation at the left tail we choose for G’ the corresponding finite sequence. In
all cases we get sup; y,;=b. ;

The proof will now be complete by noting that we can have lim, ., yy=-o,
and hence also sup; y,;= .
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