Bessel potentials and extension of continuous
functions on compact sets
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1. Introduction

Let K be a compact subset of R™. H. Wallin [18] proved that if K has classical
a-capacity zero for a certain o, then every f,€ C(K) can be extended to a continuous
function fe W7(R™), where 1=p<we, and / is a positive integer. The number o
depends on m, p and I. He also proved a converse statement. However, his results
give a complete solution to this extension problem only when p=2 [18, Theorem 3,
Theorem 4]. We are going to give a solution to this problem by considering L? (R™),
I <p<eo, a=0, « not necessarily an integer. The case studied by H. Wallin is then
included since L (R™)=W?(R™), when 1<p<oo and o is a positive integer.

We state our main result in an even more general form by considering potentials
relative to general kernels k(r), of LP-functions. For notations and statement of the
theorem, see section 2. See [9] for classical potential theory.

2. Preliminaries and statement of the theorem

We consider R” with Euclidean norm. All sets are sets of points in R™. Compact
and open sets are denoted by K and V respectively.

The spaces C(K), C=(V), and C;°(V) are defined in the usual way.

The Lebesgue measure of a set E is dencted by mE and integration with respect
to Lebesgue measure is written fgdx. The spaces L?(E), 1=p<e<o, with norm
[+ e gy are defined in the usual way. When E=R" we write L” and | - || ,. The class
of positive elements in LP(E) is denoted by L% (E). As a general rule, a sub in-
dex + denotes positive elements. The conjugate of p 1s g=p/p—1.

The class 4, consists of all sets which are measurable for all non-negative
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Radon measures in R™. When E€4,, ¥ (E) denotes the class of complete, non-
negative Radon measures p, which are concentrated on E and satisfy

hully = total variation of p < ce.

For a>0and 1 =p< oo, LZ(R™) with norm || - [, , is the space of Bessel potentials
of order o of LP-functions. The space W2(R™), with norm |- |, ,,is the usual Sobolev

space. See [3] for details.
A kernel k(r) is a non-negative, non-increasing, and lower semi-continuous

function k: (0, «)—~[0, <). In order to exclude trivialities we assume that,
@ fiea k(D dy <,
(D) [0 (EDD)Ydy <o,

(iii) k(r) £ 0.
Also in all cases considered by us we have

@) fiyen (D) = o=,

See [17, Lemma 2].

The k-potential of a non-negative function f or measure p is defined by con-
volution and written k% f and k% u respectively.

We now define two capacities, cf. N. G. Meyers [11]. Let k be a kernel and
let 1<p<oo. The G, ,-capacity of an arbitrary set. E is defined by

G, p(E) = inf | 17,

where the infimum is taken over all f€ L% satisfying (k /) (x)= f k(jx—y))-f(ndy=1
for every x€E. We call such functions f test functions for Cy ,(E).
For E€A,, we define
cx,p(E) = sup |l

where the supremum is taken over all u€%” (E) for which [k#puf,=1. Such a
measure g is called a test measure for ¢ ,(E).

The ¢, ,-capacity, which is a kind. of dual capacity, satisfies Cy, p(A)-——(ck, p(A))”
for every analytic set 4 [11, Theorem 14f. All analytic sets are C, ,-capacitable
[11, Theorem §].

Capacities of this type have been studied by many authors [1, 2, 7, 11, 13, 14,
16, 17, 20].

We are now in a position to state our main result.

~ Theorem 1. Suppcse that 1 <p=<co and that k is a kernel satisfying the condi-
tions (i)—(iv) of section 2. Then Cy ,(K)=0 is a necessary and sufficient condition
for every function fy¢ C(K) to be the restriction to K of a continuous k-potential



Bessel potentials and extension of continuous functions on compact sets 265

S=kxv, where ve L. Furthermore, the above statement remains true if we also require
the norm |v|, to be arbitrarily small.

Theorem 1 remains true for p=1 if we replace the C, ,-capacity by the classical
k-capacity [18, p. 56] and if the conditions (i)—(iv) of section 2 are replaced by the
conditions (a)—(c) in [18, pp. 56—57]. This was proved by H. Wallin {18, Theorem 1
and Theorem 2]. See also S. Ya. Havinson [§].

The solution of the extension problem described in the introduction is contained
in Theorem 1. To prove this, we note that for 1 <p-=<oco, a=>0, and «-p=m, the
Bessel kernel G, (r) [3, p. 220] satisfies the conditions (i)—(iv) of section 2 [3, p. 224],
and that the space of potentials G,* v, where v€L?, is precisely the space L?(R™).
When k(r)=G,(r), a>0, the capacities Cp, ,and ¢ , are denoted by B, , and b, ,
and are called Bessel capacities. If « is an integer we have LZ(R™)=WZF(R™) [3,
Theorem 11: 1] and Theorem 1 gives a complete solution of the extension problem
studied by H. Wallin [18, Theorem 3 and Theorem 4]. The case when k(r)=G,(r)
and o - p>m was excluded from Theorem 1. However, this case is trivial since every
function in L?(R™) satisfies (when redefined on a set of Lebesgue measure zero) a
Hoélder condition. See [17, Proposition 3]. ‘

A relation which holds except for a set of C; ,-capacity or ¢, ,-capacity zero
is said to hold C, ,-a.e. and ¢, ,-a.e. respectively.

Now we define the concepts of capacitary distributions and potentials.

A function f€L% such that (kxf)(x)=1 C, ,-a.e. on E, and | f|5=C, ,(E)
is called a C, ,-capacitary distribution for E. The potential k*f is called a C, -
capacitary potential for E. Let E€ A, then any test measure g for ¢, p(E) satisfying
Nully=c, ,(E), is called a c,, ,-capacitary distribution for E and kxyu is called a
¢, p-capacitary potential for E. v

Existence and properties of capacitary distributions and potentials was proved
by N. G. Meyers [11]. See also V. G. Maz’ja and V. P. Havin [13, 14] and Yu. G. Re-
Setnyak [16, Theorem 3.1]. Every compact set K satisfying C, ,(K) << has capac-
itary distributions. In particular this holds for the Bessel capacity B, ,, a=0.

3. Some lemmas

We begin with a generalization of the classical boundedness principle tor poten-
tials of measures. (See for example [9, p. 72]).

Lemma 1. (D. R. Adams and N. G. Meyers [1]). Let k, and ks be two kernels
and let p be a non-negative Radon measure. Let u(x)=ky * (ko * p)/?=1(x), for | <p < oo

Then
sup u{x) = M- sup u(x)

XERM - xEsupp u
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where M depends on m and p only.

See also [13, Theorem 1].
The distance between a point x and a set E is denoted by dist (x, E).

Lemma 2. Let k be a kernel satisfying the conditions ({y—(iv) of section 2. Let
l<p< oo and let K be a compact set such that C, ,(K)=0. For any positive numbers
€ and n, there is a function v€Cy(R™) such that the continuous potential f=k xv
satisfies

S) =1, for all x belonging to some neighbourhood of K,

0=f(x)=M, for every x¢R™, where M depends on m and p only.

J)=e-M(a), for all points x such that dist (x, K)>a, for all a=y,

Iol, < &

Here M (@) is a positive number depending on m, p, k and a.

Lemma 2 was proved with k(r)=G,(r), including differentiability properties,
in [17, Lemma 3]. We sketch the proof given there. For any 6 >0, Kj; is the set of
points x such that dist (x, K)=4. The set K; has capacitary distributions v; and
U5 such that

v5(x) = ck,p(Ka)-(k*/la)—"%—l (x), ae. [11].
The C,, ,-capacitary potential f;=k % v, satisfies
fix)=1, G ,ae on K;,
j:,(xj = 1, everywhere on supp s,
lesll, = (Ck,p(Ka))l/p = ¢, ,(Ks) = |-

Now Lemma 1 gives that
f3(x) = M, for every x€R™,

where M depends on m and p only. We finish the proof of Lemma 2 by regularizing
f5 and choosing § small enough.

A proof of the sufficiency part of Theorem 1 using Lemma 2 and a method
used by H. Wallin [18, Theorem 1] was given in [17] and is omitted here.

The following lemma is known in the linear case, J. Deny and J. L. Lions [6,
p. 353] (see H. Wallin [18, Lemma 6} and J. Deny [5, Theorem 5] for a proof), and
in the non-linear case, V. G. Maz’ja, V. P. Havin [14, Lemma 5.8]. Our proof differs
from [14] and uses an idea of H. Wallin [18].

Lemma 3. Let k be a kernel and let p be a real number, 1 <p< <o, Let g;, i=1, 2,
be functions with the following property: For every ¢>0 there is a Borel set E such
that the restrictions of g, and g, to R™\ E are continuous and C,, ,(E)<¢. Assume
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that the set of those points where g,(x)~g,(x) is a Borel set. If furthermore g,(x)=
=gy (x) a.e. then g,(x)=g(x), C,,-a.e.

Remark. The lemma is trivial if k& does not satisfy the conditions (i)—(iv) of
section 2.

Proof of Lemma 3. Let E be the Borel set consisting of those points where
£1(x) #g»(x) and assume that ' ,(E)=a=0. We first assume that a is finite. Choose
E,, for 0<g=a, such that the restrictions of g, and g, to R™\ E, are continuous and
Cy,p(Ep)<e. By the subadditivity of C, , we have G, ,(EN\ E)>a—¢. Since Cy,
is an inner capacity, there is a compact set K such that KCEN E; and C; (K)>
>a—¢. The set K has ¢, ,-capacitary distribution y satisfying

lulf = G, p (K.

We can find a non-negative function ¢ € Cy°(R™) which is supported by the unit ball
and has L'-norm equal to one. Put ¢,(x)=n"-¢(nx), and g,=p*¢,, n=1,2, ....
Then u, is a test measure for the set

{x€R™; dist (x, K) = n~}\\E,
since yu,, is absolutely continuous with respect to the Lebesgue measure and mE=0,
n=1, 2, .... This yields, with K,={x€R™; dist (x, K)=n"1},
(Ce. o KN\EN? = ¢4, , (K \E) = |lptalls = [ty = (G, y K))? > (@ —)M/?
and thus
G o(K,\NE)\E) > (a—&)—& >0,
if ¢ is small enough. Then (K,\ E)\ E,#0, for every n=1, 2, .... Choose points
X%, €(K,\NE)\ E, and y,€K satisfying |x,—y,|=n"1,n=1, 2, .... Since K is compact
we may assume that lim,_ _ y,=y, y€K. Then lim,_  x,=y, and

lg1(3) —2: (0] = 181(M) — g1 (x| + g1 (X)) — 2 (x| + g2 () — & (W, m=1,2,....
\ 3.1

The middle term in the right-hand member of (3.1) equals zero. The remaining
terms tend to zero when # tends to infinity, by continuity. We conclude that g, (3)=
=g, (), which is a contradiction.

Some obvious modifications are necessary when Cy ,(E)=-c-. The lemma is
proved.

The following lemma is analogous to [18, Lemma 3].

Lemma 4. Let p be a real number, 1 <p<oo, and k a kernel satisfying

[ k(y)rdy = . (32)

Suppose that K is a compact set having positive Cy ,-capacity. Further, suppose that
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t* is a non-negative and non-decreasing function defined for r=0 such that t*(r)=0
whenever =0 and lim,_, t*(r)=¢*(0)=0.

Then there exists a function f,€ C(K) having the following property: If the posi-
tive number & is chosen small enough there exist, for every Borel set E satisfying
Cy,,(E)=<e, points x; and x, in K\ E such that x,#x, and |x,—Xx,| is arbitrarily
small and

Ifo(xD) —fo(xa)l = £ (1x1 — xal). (3.3)

H. Wallin proved this for the classical a-capacity [18, Lemma 3]. Since (3.2)
implies that all finite sets have C ,-capacity zero, Lemma 4 can be proved analo-
gously. The proof is therefore omitted.

4. Proof of Theorem 1

As remarked in section 3 we only prove the necessity of the condition G, ,(K)=0
in Theorem 1.

Let k be a kernel satistying the conditions (i)—(iv) of section 2 and let 1 <p< oo,
Recall that, assuming Cy,,(K) >0, we must prove that there exists a function f,€ C(K)
which is not the restriction to K of a continuous potential f=k xv, v€L?.

The idea of the proof is analogous to the proof of [18, Theorem 4].

We are going to prove that there exists a strictly positive kernel k; satisfying the
conditions (i)—(iv) of section 2, such that

Cu,p(K) = 0, 4.1)
and
lriir% k(r)- (k1 (r))‘1 = 0. 4.2)

The ¢, ,-capacitary distribution u for K satisfies || ulli=(C, p(K))l/” =>0. N. G. Meyers
[11, Lemma 9] proved that there exists a kernel &, such that (4.2) holds and k; % p€ L%
It is easy to see that this kernel k; can be modified to satisfy the conditions (i)—(iv)
of section 2. Then p is a test measure for ¢, ,(K) since ky ¥ €L and p 0, which
implies that (4.1) holds. Compare [4, Theorem 2] for the case of classical a-capacity.

Next we find a modulus of continuity for the potentials kv, v€L”.

This modulus of continuity is independent of v. More precisely: There exists a
non-negative function #(r), defined for r=0, satisfying lim, ., #(r)=£(0)=0 and a
positive number M, such that

(k% 0) (x1) — (k% 0) (xp)| = M -1 (%1 — X)), (4.3)

for all points x; and x, with |x;|=R, and (k,*|v])(x)=a, i=1,2. The function
t depends on m, p, k, and k,. The number M depends on m, p, a, Rand v {17, p. 47}.
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A basic fact is that

p
Ci.p({x€R™; (kxp)(x) = a}) = [HU—J"-] , 4.9
for any v€ L? and a=0 [11, Theorem 2].
The proof of the necessity part of Theorem 1 is now easily completed in the
following way:
Let K satisfy C; ,(K)=0 and choose a kernel k, such that (4.1) and (4.2) hold.
Then we construct the function ¢ in (4.3) and choose a function ¢* satisfying the

assumptions of Lemma 4 and
lim £ (r) - (1) ™ = e 4.5)

The function constructed in Lemma 4 is denoted by f,. Now suppose that there
exists a continuous potential k % v, v€ L?, such that

So(x) = (k*v)(x), for every x€K.

Combining (4.3), (4.4), and (4.5) with (3 3) leads to a contradiction. Thereby I'heo-
rem | is proved.

5. Further results

We define two capacities introduced by V. G. Maz’ja [12] and studied by many
others [2, 10, 16, 17, 19, 20].

Let B=B(0, R) be a fixed open ball. For any positive integer / and a real num-
ber p, 1=p=< oo, we define the I'; ,-capacity of KC B by

I'; ,(K) = inf|f];, 2

where the infimum is taken over all f€C;°(B) which satisfy f(x)=1, for every x¢ K.
Similarly we define
N; ,(K) = inf |f|; ,,

where the infimum is taken over all f€ Cy°(B) such that 0=f(x)=1 for every x¢R™
and f(x)=1, for every xcK.

The following important result follows from the properties of the capacitary
distributions for the Bessel capacity and a method used by W. Littman [10, p. 865]:

Let | be a positive integer and let 1 <p<-oo, and p-I=m. Then the capacities

N, ,» I, and By, are equivalent for compact sets.

An even more general result was proved by D. R. Adams, John C. Polking
[2, Theorem Al.
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Remark. H. Wallin proved the equivalence between I'; , and B, , in [20, Theo-
rem 1] and studied the connectlon between I'; ,-capacity and classical a-capacity
in [19].

Now we consider the case p=1 with the extended function belonging to W} (R™),
where [ is a positive integer. This case is not completely solved.

A sufficient condition for every f,€ C(K) to be extendable to a continuous
function f having arbitrarily small norm in W} (R™) is that N,;(K)=0. A necessary
condition is given by I';;(K)=0 [17, Theorem 8 and Proposition 4]. We know that
N, and I, ; are equivalent for compact-sets when /=1 [10, p. 861]. It is an open
question if this holds also when [ is an integer greater than one.

There exists a compact set K R? such that every f,€ C(K) has an extension
in WX(R®)NC(R? but it is in general not possible to make the norm in Wj(R?)
of the extended function arbitrarily small {18, p. 58]. This contrasts to Theorem 1
where the two properties:

(a) Every f,¢ C(K) is the restriction to K of a continuous potential k * v, v€L?,

(b) Property (a) holds and [v], can be made arbitrarily small, are equivalent.
Finally we state a consequence of the Open Mapping Theorem.

Theorem 2. Suppose that a=0, 1=p—< o and that K is such that every f,€ C(K)
can be extended to a continuous function f belonging to L2 (R™) (WP (R™)). Then there
is a positive number M such that every f,€ C(K) can be extended to a continuous func-
tion f satisfying

I fua,p =M- igg lf(x)L

(fle,p = 2 - sup [F@)-
The number M is independent of f.

For a proof see [17, Theorem 9]. When psl, the Z.2(R™)-case of Theorem 2
is-contained in Theorem 1.
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