A p-extremal length and p-capacity equality
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1. Introduction

Let G be a domain in the compactified euclidean n-space R"=R"U {e}, let
E and F be disjoint non-empty compact sets in the closure of G. We associate two
numbers with this geometric configuration as follows. Let M,(E, F, G) be the p-
modulus (reciprocal of the p-extremal length) of the family of curves connecting
E and Fin G. Let cap, (E, F, G) be the p-capacity of E and F relative to G, defined
as the infimum of the numbers [ [Vu(x)|? dm(x) where u is an ACL function in
G with boundary values 0 and 1 on F and F, respectively. We show in this paper
that cap, (E, F, G)=M,(E, F, G) whenever E and F do not intersect G. This gen-
eralizes Ziemer’s [7] result where he makes the assumption that either £ or F con-
tains the complement of an open n-ball.

We also obtain a continuity theorem (Theorem 5.9) for the p-modulus and
a theorem (Theorem 4.15) on the kinds of densities that can be used in computing
the p-modulus.

2. Notation

For n=2 we denote by R" the one point compactification of R", euclidean
n-space: R*=R"U {=}. All topological considerations in this paper refer to the
metric space (R®, q) where g is the chordal metric on R” defined by stereographic
projection. If AC R then 4 and @4 denote the closure and boundary of 4, respect-
ively. If b€R" and BC R" then q(b, B) denotes the chordal distance of 5 from B.

If x€R* we let |x| denote the usual euclidean norm of x. B*(x, r) denotes the
open n-ball with center x and radius r. We write B"(1)=B"(0, 1). If x¢R" and ACR"
we let d(x, A) denote the euclidean distance of x from A.

Lebesgue n-measure on R™is denoted by m, or by m if there is no chance for
confusion. We let Q,=m, (B"(1)).
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3. The p-modulus and p-capacity

3.1. Definition. Let I’ be a collection of curves in R". We let #(I') denote the
set of Borel functions g¢:R"—[0, =] satisfying the condition that for every locally
rectifiable y€I' we have [, ods=1. #(I') is called the set of admissible densities
for I'. For p€(l, =) the p-modulus of I', denoted by M, (I'), is defined as

M,(I) = inf [, o”dm,

where the infimum is taken over all g€ _# (I'). For the basic facts about the p-modulus,
see [5, Chap. 1]. The p-extremal length of I' is defined as the reciprocal of the p-
modulus of I

3.2. Definition. Let G be a domain in R” and let E and F be compact, disjoint,
non-empty sets in G. Let I'(E, F, G) denote the set of curves connecting E and F
in G. More precisely, if y€I'(E, F, G) then y:I-G is a continuous mapping where
I is an open interval and y(Z) N E and y (/)N F are both non-empty. We write M, (E,
F, G) for the p-modulus of I'(E, F, G). Let o/ (E, F, G) denote the set of real val-
ued functions u such that (1) u is continuous on EU FUG, (2) u(x)=0 if x¢E and
u(x)=1 if x€ F, and (3) u restricted to G— {w} is ACL. For the definition and basic
facts about ACL functions see [5, Chap. 3]. If pe(l, =) we define the p-capacity
of E and F relative to G, denoted by cap, (E, F, G), by

cap,(E, F, G) = inffG [Vul? dm,

where the infimum is taken over all uc.</(E, F, G).
The p-capacity has the following continuity property.

3.3. Theorem. Let E;DE;D... and F,D F,D... be disjoint sequences of non-
empty compact sets in the closure of a domain G. Let E=\{_, E;, F=\;2, F;. Then
lim cap,(E;, F;, G) = cap, (E, F, G).

i>oo
Proof. Since 4 (E;, F;, G)T A (Eyyq, Fiyr, GYC L (E, F, G) for all i, it follows
that cap, (E;, F;, G) is monotone decreasing in i and therefore
lim cap, (E;, F;, G) = cap,(E, F, G).
j>oco
For the reverse inequality, choose wu¢</(E, F, G) and &€(0,1/2). Define
Si(—oo, «)~[0, 1] by
0 if x=e¢
) =1(0-2) 1 (x—1+e)+1 if g<x<1-¢
1 if x=1-—s
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Let #'=fou. Since f is Lipschitz continuous on (—eo, =) with Lipschitz constant
(1—2¢)7, it follows that «’ is ACL on G—{=} and |Vu'|=(1—2¢)"1|Vu| a..
in G.

Let 4 and B be open sets in R" such that {x€ EU FUG:u(x)<e}=(EU FUG)
N4 and {x€cEUFUG:u(x)>1—¢}=(EU FUG)NB. For large i we have E,CA
and F;C B and, for such 7, we can extend u’ continuously to E;U F;UG by setting
u'=0 on dGN(E;—E) and u'=1 on dGN(F;— F). Therefore u’ ¢ A (E;, F;, G) for
large i. This implies that for large i we have

1
; A - /|p e 4
cap, (E;, F;, G) “/‘G [Vu'|Pdm = =207 /;; [VulP dm.
Hence

lim cap, (E;, F;, G) = (_1—12W /G-|Vu]1’ dm.

Since uc s/ (E, F, G) and ¢ (0, 1/2) are arbitrary, we get the reverse inequality,
as desired.

4. Complete Families of Densities

4.1. Definition. Let I' be a collection of curves in R™. Let #c ¢ (I'). We say
4 is p-complete if ,
M,(I) = inf [, 0» dm

where the infimum is taken over all g€ 4.

4.2. Example. Let = ¢ (I') be the collection of g€ # (I') such that ¢ is lower
semicontinuous. It follows from the Vitali-Caratheodory theorem [4, Thm. 2.24]
that & is p-complete for all p€(1, o).

4.3. Lemma. Let ¢:R"—~[0, ] be a Borel function and assume @¢€L?(R"),
PE(L, ). Let r:R*—[0, oo] satisfy |r(xp)—r(x))|=|x,—x,| for all x,, x,€ R". Define
T, R0, =] by

T, (x) = QL fma) o(x+r(x)y)dm, ().

Then T, , has the following properties.
(1) Ifr(xy)=0 then
1
T, .(xy) = —— dm oo,
00 = s fB iy POV O) <

) If ¢ is lower semicontinuous then so is T, or-
(3) If r(xo)=0 then T, , is continuous at x,.
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(@) If ¢ is finite and continuous on a domain G in R" and if 0=r(x)<d(x, R"—G)
then T, , is finite and continuous on G.

(5) | ,(x)r(x)”/” |=C for some constant C<[0, =) and all x€R". The constant
C depends on Q.

(6) Let k=sup |r(xs)—r(xy)]||xs—x;| ™" where the supremum is taken over all
X1, X€R", Xy #Xy. Then || T, ||, =(1 — k)|l |, where || |l is the usual L?(R") norm
and the right hand side of the inequality is infinite in case k=1.

Proof. (1) follows from the change of variables y'=x,+r(x,)y and Hélders
inequality. To prove (2), let x,€ R" be arbitrary and suppose {x;}7.., is a sequence
in R* tending to x,. Fatou’s lemma and the lower semicontinuity of ¢ imply

lim inf T, (x;) = lim ianL @ (x;+r(x)y)dm(y)
B

Jjee Jjee n @

v

1 .. :
=5 lim inf @ (x; 4+ r(x;) y) dm ()
n () jooo

1
= ?‘/ @ (Xo+1(x0)y) dm (¥) = T, ,(xo).
n (1)

This shows that T, , is lower semicontinuous. To prove (3), we observe that since
r is continuous, r(x)=0 for all x in some neighborhood of x, and therefore, by (1),

1
Ty r(x) = o) f e e (y)dm(y)

for all x in some neighborhood of x,. The right hand side of the above formula
is continuous in x and therefore, T, , is continuous at x,. We proceed to prove
(4). We observe that if x¢G then x+r(x)yEG for any y€ R* with |y|=1. Fix x,€G
and let B be a closed ball with center x, and lying in G. Then B'={x":x"=x+r(x)y,
X€B, |y|=1}is a compact subset of G. Since ¢ is uniformly continuous on B’, given
e>0 there exists a §>0 such that |o(x})—@(x])|<e if x], x;€ B” and |x;—x;|<4.
Let x,€B with [x;—xo|<8/2. Then |(x;+r(x)y)—(Xo+r(x,)y)| <0 for any [y|=1.
Hence,

1
‘qu,r(xl) - T(p,r(x0)| = N /B"(I) |€0(x1+"(x1)y)—<P(x0+"(x0)Y)I dm(y) < e.

Hence, T,,, is continuous on G. To prove (5) we need only consider x¢R" such
that r(x)>0 For such x we have

o (y)dm(y).

1
T, (%) = ———
or(¥) Q.r(x) / B (x, 1 (x))
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Applying Hélder’s inequality with exponents p and p/(p—1), we get

1 Up

=0 ’ n(p—p)lp,

- Tor) = 5ty [ / prcercey O (y)] [Q,r(x)1]

ence, |
T, (X)r(yr = C = Q\r [fR" o” dm]”" = o,

as desired. We proceed to prove (6).
v | 1 )
175,113 :/ T3, (x) dm (x) =f l—Q—f ¢(X+r(X)y)dm(Y)] dm (x).
Rn r L& J By
After applying Holder’s inequality to the inner integral and simplifying, we get

I1T,,-115

fIA

Qin /R" fB”(n @ (x +r(x)y) dm (y) dm(x).

Interchanging the order of integration gives

fiA

51— f f @ (x +r(x)y) dm (x) dm(y). 4.4)
e J Br) J Re

Define, for y€B*(1),6,:R*"~R" by 0,(x)=x+r(x)y. It easily follows that 0, is
injective and hence, by a theorem in topology, 6, (R") is a domain. Since 6, is Lipschitz
continuous, it follows [6, Thm. 1, Cor. 2] that the change of variables formula for
multiple integrals holds with 6, as the mapping function. Therefore

1T, 15

o, @7 dm(x) = [, 9700, (0 15(x) dm (x) (4.5)
where p; is the volume derivative [5, Def. 24. 1] of the homeomorphism 6,. Since
son _gio m{0,(B"(x,1)))
B0 = lim == m s ae X,

the estimates
m(0,(B"(x, 1)) = Q"{;x' ir;fl B |0y.(x’) —0,x)|}"
and -
10,(x)—=0,(x)| = (1 = k) |x" — x|

yield u;(x)é(l—k)" a.e. x in R". This result and (4.4) and (4.5) give

1
1T, 5 = Q_,,(l—_—k_)"/n(l) /R" PP (x)dm (x)dm (y) = (1 ~k)""| |5,

as desired.

For the remainder of this paper, G will denote a domain in R", E and F will
be compact, disjoint non-empty sets in G. We write I'=I'(E, F,G). We let
d:R"—+[0, ) be the function defined by d(x)=d(x, (R"—G)UEU F)—{=}) and
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we let 1.s.c.(R") be the extended real valued lower semicontinuous functions defined
on R".

4.6. Lemma. Let o/ C #(I') be the set of o€ #(I) satisfying (1) g€ls.c.(R)
NLP(RY, (2) g is continuous on G—(EU FU {o}), and (3) o(x)-d(x)"? is bounded
above for x€R". Then of is a p-complete family.

Proof. It suffices to prove that M=inf f zn 07 (x) dm(x)=M,(I') where the
infimum is taken over all gc&/. Choose ¢€ ¢ (I') N L?(R")NLs.c. (R*). Let £€(0, 1)
and let g=T, ;. Suppose y€I is locally rectifiable. We may assume, by reparametriz-
ing y, that y:(a, b)~G where a, b€[—oo, ] and that the length of y|[#;, 2] is equal
to t,—1, for all #;, £,€(a, b). Note that y restricted to closed subintervals of (a, b)
is absolutely continuous.

Let v,:(a, b)~G, yeB*(1), be the curve defined by y,(1)=y(t)+ed(y(?))y-.
Choose ecy(a, b)E. Let ¢t;€(a, b), j=1,2, ..., be such that y(z;)—~e as j—>oo. If
e>oo then clearly y,(f;)—~e as j—co. If e=oo then, for fixed ¢'€(q, b), the triangle
inequality and the fact that d is Lipschitz continuous with Lipschitz constant 1
imply [y,(t)— 2, =(1—8)|y()—y ()| and therefore, y,(t)—>cc=e as j-reo.
Hence v, (a, b) N E0. Similarly, y,(a, b) N F50. Therefore y,cI'. Also, y, restricted
to closed subintervals of (a, b) is absolutely continuous. An easy estimate shows
[7,()]=1+¢ a.e.on(a, b).

We have

b b
/vgds =/a g(y®)dt = ?;—/a/B”(D@(v(t)wtsd(v(t))y) dm(y)dt

1 b o
- ?z:fwl) fa e (v, )y, Oy (@)~ dt dm ()

1 1
= (1+s)9,,fn(1)/yy9d“°dm(y)= [y
This result and lemma 4.3 show (1+¢g)geo/ < #(I'). Hence,

M= (1+87[gl2 = (1 +27|T, .

From lemma 4.3 (6) we get

B U s
M:m/R"Q (x)dm(x)

Since £€(0, 1) and € (I NLP(R")NLs.c(R") are arbitrary, we get M=M, ('),
as desired.

4.7. -Definition. For re(0,1) we define E(r)={x€¢R":q(x, E)=r} and F(r)=
={x€R":q(x, F)=r}. Let ¢:R"~[0, =] be a Borel function. We define L(g, r) as
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the infimum of the integrals f , ods where 7 is a locally rectiﬁable curve in G connect-
ing E(r) and F(r). Since L(g, r) is non-decreasing for decreasing r, we can define

L(g) = lim L(g, r).
r-0

4.8. Note. We observe that L(g)=1 if and only if for every ¢€(0, 1) there exists.
a 6€(0, 1) such that f ,» 0 ds=1—z¢ for every locally rectifiable curve y in G connect-
ing E(r) and F(r) with r=4.

4.9, Lemma. Suppose there exists a p-complete family B, #(I') such that
L(o)=1 for every g€ B,. Then the family B ¢ (') consisting of all o€ #(I') such
that (1) g€l.s.c(RYNL?(R") and (2) @ is continuous on G—{=} is p-complete.

Proof. Let %, be the set of o€ ¢ (I') such that gcls.c. (RN L?(R" and L(g)=1.
It follows from the Vitali-Caratheodory theorem [4, Thm. 2.24] that %, is p-complete.

Let 9€%, and e€(0, 1). Let 6 be as in 4.8 and choose §"€(0, 1) such that if”
x€E—{eo} (resp., F—{}) and y€R", |x—y|<d’ then ycE(d) (resp., F(5)). Let
r:R"-[0,1] be defined by r(x)=e&d" min (1, d(x, R*—G)). Let g=T,,. Suppose
y€I is locally rectifiable and assume that y:(e, b)~G is parametrized as in the-
proof of 4.6. Let y,:(a, b)—~G, y€B"(1), be the curve defined by y,(r)=7y()+
+r(y(2))y. It follows, using the same method as in the proof of 4.6, that y, connects.
E(6) and F(5). A computation similar to the one in the proof of 4.6 yields

1 1—¢
: ds = ——— ds d = .
/yg g (1+8)Qn/”(1)/vyg s dm () l+e

The above and lemma 4.3 show (1+¢g)(1—g)~tg€. Let M=inffR,. 07 (x) dm(x)-
where the infimum is taken over all g€4. Then, by lemma 4.3,

_Q+4ep - (A+eP o — (1+¢)? »
M = (l—ﬁ)p ”g”p —_ (1—8)p ”Tq,r”p = (l_a)p‘(l_s)n ”Q”p

Since g€ %, and ¢€(0, 1) are arbitrary and since %, is p-complete, it follows from:
the above that M=M,(I'). This completes the proof since the reverse inequality-
is trivial.

4.10. Lemma. Suppose (EUF)N0G=0. Let g:R*—[0, =] be a Borel function
and assume ¢|G—(EU FU {s}) is finite valued and continuous. Let £€(0, ). Then
there exists a locally rectifiable curve y€I' such that

fygds = L(g)+e.

Proof. We may assume that L(g)<<o. Let {g};>, be a sequence of positive:
numbers such that > g<¢/8. Let {r};>., be a strictly monotone decreasing.
sequence of positive numbers such that (1) Lim, . r,=0 and (2) E(r,) N F(r,)=0,.
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E(rd), F(r) < G, and = §dE(r,), dF(r) for k=1,2,.... It follows that JE(r) N E=0,
OF(ry) N F=0 for k=1,2,.... Let I', be the curves in G connecting E(r,} and F(r,),
k=1,2,.... Choose y,€I; such that vy, is locally rectifiable and

f QdSé’L(Q,rk)+—g§L(Q)+%. (@.11)
b5

Let x;; (resp., y;;), defined for j<k, the be last (resp., first) point of y, in E(r;) (resp.,
F (rj)). We have x;;€0E(r j) and y,;€0F(r;). By considering successive subsequences
.and then a diagonal sequence and then relabeling the sequences, we may assume
Xy —>x;€0E(r;) and y;—~y,€0F(r;) as k—e. Let V;CG—(EUFU {=}) (resp.,
W;cG—(EU FU {«})) be an open euclidean ball with center x; (resp., ¥;) such
that [ gds<g; where the integral is taken over any line segment lying in ¥; (resp.,
W)), j=1,2,.... This can be done since ¢ is continuous on G—(EU FU {=}) and
hence, locally bounded there.

Let ¥; (resp., ;) be the set of rectifiable curves a:[a, ] -G such that a(a)€V’;
(resp., a(@)€W;) and a(d)EV;_, (resp., a(B)EW,;_y), j=2,3, .... Let A be the set
of rectifiable curves «:{a, b] -G such that a(a)€¥V; and a(b)€ W,. For any positive
-integer k there exists a curve in the sequence {y;}~,, say yiq, such that x;u ;€V;
and Yy, €W, for j=1,2,..., k. This implies that y,,, has distinct subcurves in
Y, ¥y, ..., ¥y Dy, Dy, ..., &, A. Hence, for every positive integer & we have,
using (4.11),

inf/gds+2’jf=2 inffgds+2”;=2 inf/gds f/ ods = L(Q)+—.
b4 ye€¥; J v ¥ Yitk) 2

y€d yEDy
Since k is arbitrary, we get
inffgds—l—Zf:z inffgds+27;2 infodSéL(Q)‘l“Ew 4.12)
y€EA J v yE¥;J ¥ yED;J ¥ 2

«Choose 8¢ A such that

/st<inf/st+81. (4.132)
[/} €4 J y
Choose 7;€¥;, 0;¢®P;, j=2,3, ..., such that
f ods < ’inffgds—l—aj (4.13b)
T yEW;J 7

.and

/ ods < i?ifgds+8j' (4.13¢c)
L5 re®; 7
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Let «; (resp., B;) be the line segment in V; (resp., W;) connecting the endpoints
of 7; and 1,4, (resp., 0; and 6;,,), j=2,3, .... Let o (resp., B;) be the line segment
in V; (resp., W,) connecting the endpoints of 7, and 6 (resp., o, and ). We have

/ ods < &, f ods < g, j=1,2, ... (4.13d)
Let y<I' be the locally rectifiable curve y=...75057,0, 08,03 0,05.... We have, by
(4.12) and (4.13)

/st:Z‘f:l/ gds+2;°=1fﬁ st+/ gds+2;°:2/ st+27_2/ ods
b3 aj F] 2] T; LA

oo T oo o oo &
= Dt t Dt et Dt 2 s 8j+L(Q)+7 = L)+,
as desired.

4.14. Lemma. Suppose (EU F)N0G=0. Let B #(I') be the set of oc #(I)
such that (1) ¢€ls.c. (R)NLP(R") and (2) ¢ is continuous on G- {e=}. Then % is
p-complete.

Proof. Lemma 4.10 shows that L(p)=1 for every ¢ in the p-complete family
&/ defined in lemma 4.6. Hence, this family .« satisfies the hypotheses of lemma
4.9. Therefore, 4 is p-complete.

4,15, Theorem. Suppose (E\UU F)NIG=0. Let € ¢ (I') be the set of o€ #(I')
such that (1) p€ls.c(R"NLP(R", (2) ¢ is continuous on G—{==}, (3) @(x)-d(x)"'”
is bounded above for x€R", and (4) L(g)=1. Then ¥ is a p-complete family.

Proof. Choose ¢ in the p-complete family # of lemma 4.14 and let ¢€(0, 1).
Let g=T, .. It follows exactly as in the proof of lemma 4.6 that f ,8ds=(1+¢8)71
for every locally rectifiable curve y€I'. An application of lemma 4.3 and lemma
4.10 shows (148)ge%. Let M=inf f w07 (x) dm(x) where the infimum is taken
over all g€%. We have, by lemma 4.3, ‘

b=t =

lolls = / @ () dm ().
Since g€ % and ¢€(0, 1) are arbitrary and 4 is p-complete, it follows that M =M (I').
Since the reverse inequality is trivial, we are done.

4.16. Comments. (1) Part 2 of lemma 4.6 was proved independently by Aseev
[1], Ohtsuka {3, Thm. 2.8], and the author. Lemma 4.10 is modeled after [3, lemma
2.9].
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5. Relations hetween the p-modulus and p-capacity

5.1 Definition. Let y :[a, b]—~R" be a rectifiable curve in R" and let y,:[0, L]—-R"
be the arc length parametrization of y. Let f be an ACL function defined in a neigh-
borhood of y([a, b)) =y,([0, L]). We say f is absolutely continuous on 7 if

[ 8a = ror0-rer,0

for all ¢€[0, L). The integrand is the inner product of dy,/dt and Vf=the gradient
of f. We wuse the convention that Jf/x;=0 at points x where df/dx; is not defined.
The above definition differs slightly from [5, Def. 5.2] in that we require a little
more than the absolute continuity of fo7y,.

5.2. Lemma. M, (I')=cap,(E, F, G).

Proof. Let uc o (E, F, GY(NLP(G). Let 'y be the locally rectifiable curves y€I’
for which u is absolutely continuous on every rectifiable subcurve of 7. Define
¢:R"~[0, ] by

Vu(x)l if x€G—{}
e(x) = ; .
0 if xeR"—G.
Suppose y€I'y, and y:(a, b)—~G is parametrized as in the proof of lemma 4.6. If
a<t,<ty,<b then

b t, 2]
/ygds:fa 0o (t) dt %/t |Vu(y ()| dt = ’_/; Vu(v(t))."_i;idt

= |uoy(ty) —uoy(ty)|.

Since ¢, and #, are arbitrary, the above implies f , 0ds=1. Hence, g€ ¢ (I'y). There-
fore

M,(T) = [0 () dm(x) = [ IVu()|? dm (x).
By a theorem of Fuglede [5, Thm. 28.2] we have M,(I')=M,(I'y). Therefore,
M,(I) = [ [Vu(x)P dm (x).
Since ucs/ (E, F, G)NL?(G) is arbitrary, we get the desired result.

5.3. Lemma. Let U be a domain in R", let g: U~[0, =) be continuous and suppose

K is a non-empty bounded compact set with KCU. Define f:U~[0, ) by f(x)=

=inf f s 8 ds where the infimum is taken over all rectifiable curves f3:[a, b]—U with
B(@) €K and B(B)=x. Then, (1) if the closed line segment [x,, x5 lies in U then

|f(xa) /x|l = max g(x)|x,—xi (54)

X €[xy, X,]
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and (2) if f:U~[0, =) satisfies (5.4) then f is differentiable a.e. in U and |Vf(x)| = g(x)
ae. in U.

Proof. Let f be a rectifiable curve connecting K and x,. Then

f(xz)éfgds—l—/ gds §fgds-|— max  g(x)|xs— X
B [y, x4]

x€[xq, %51

Since B is arbitrary, we get

flxo) = f(x))+ max g(x)[x;—xy|-

x €[xy, X5l
In a similar way, we get

o) = )+ max g (x)lxs—xi-

x€fxy, x5
This proves (5.4). e
If f satisfies (5.4) then f is locally Lipschitz continuous in U and therefore,
by the theorem of Rademacher and Stepanov [5, Thm. 29.1], f is differentiable
a.e. in U. Suppose now that x,€ U is a point of differentiability of f. Then f(x,+ k)
—f(x)=Vf(xy) - A+ [h|e(h) where h€ R and lim g(h)=0 as A—0. For small #€(0, 1)
let h=1Vf(x,)/|Vf(x;)|. Substituting in the above formula gives |V/(x,)+&(h)
=MaX, ¢ x+m §X). If we let 10 we get [Vf(xg)|=g(x), as desired.

5.5. Theorem. Suppose (EUF)N9G=0. Then M,(I')=cap, (E, F, G).
Proof. It suffices, by lemma 5.2, to prove
cap,(E, F, G) = M,(I'). (5.6)

We assume, without any loss of generality, that E is bounded and we let ¥ #(I')
be as in theorem 4.15. The proof is divided into four cases.

Case 1. Suppose <¢G. Let 0¢% and define u:G—[0,=) by u(x)
=min (1, inf f p 0 ds) where the infimum is taken over all rectifiable curves § in G
connecting E and x. It follows, using lemma 5.3, that uc/(E, F, G) and |Vu|=yp
a.e. in G. Therefore

cap, (E, F, G) = ./G \VulP dm = [ ¢ 0"

Since ¢€% is arbitrary and € is p-complete, we get (5.6).

Case 2. Suppose «€G and o€ F. Choose ¢¢% and £€(0, 1). Since L(g)=1
we can choose a small r€(0,1) so f ,eds=1—¢ for every locally rectifiable
curve y in G connecting E(r) and F(r). Define u:G—{<}—[0,) by u(x)
=min (1, (1—&)~*inf f, ¢ ds)where the infimum is taken over all rectifiable curves
B in G connecting E(r) and x. Since u is identically 1 in a deleted neighborhood
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of =, we see that u extends continuously to all of G. It follows, using lemma 5.3,
that uc &/ (E, F, G) and [Vu|=(1-g) ¢ a.e. in G. Therefore,

cap,(E, F, G) = fG [Vulp dm = (1 —8)“1’/ LoPdm.
Since p€% and §€(0, 1) are arbitrary and ¥ is p-complete, we get (5.6).

Case 3. Suppose «<€G, ¢ F and 1=<p=n. Choose ¢¢€%. Since ((R"—G)
UEU F)— {c} lies inside some ball, it follows that |x|=constant-d(x) for large

|x]. Therefore,
e(x) = Clx|~"/» SN

for some constant C€(0, =) and all large |x|, say |x|>ry. Define v:G— {oo}~[0, =)
by v(x)=inf f s 0ds where the infimum is taken over all rectifiable curves f
connecting E and x. We proceed to show that v(e) can be defined continuously.
Set v(ec)=1nf f s ods where the infimum is taken over all continuous f such that
B:[a, b]>G with B(@)€E, f(b)=< and B|la, t] is rectifiable for all ¢ [a, b). Choose
any x,£R" so that the curve [x,, o] lies in G, where [x,, «](£)=1x,, £€[1, o].
Let y by any rectifiable’ curve in G connecting E and x,. Let § the curve obtained
by connecting the curves y and [x,, «]. Then

v (o) éfﬂgds = fy9d5+f[xo,m10d5-

Clearly [, ods isfiniteand |, _, ¢ ds is finite by the estimate (5.7) and the fact that
1<=n/p. Hence v(=) is finite. Choose r€(r,, =) large enough so that the complement
in R" of B"(0, r) lies in G and ECB"(0,r). Let x,€ G—{eo} and |xy|>r.

Suppose f is a rectifiable curve in G connecting E and x,. We have

v(eo) = prdS*f"f[xo,m]QdS éfﬁgd&I—C/rwt‘"/Pdt.
Since the above is true for all such f, we get
v(e)—v(x)) = ¢ [~ 17" dt, (5.82)

Suppose now that f is a curve connecting £ and « and is of the type used in defining
v(oc). Let 7 be a curve which is part of a great circle on the sphere {x€ R": [x|=x,[}
and which connects x, and y, where y, is some point on the curve B. Let ff; be a
subcurve of § connecting E and y,. We have

v(xg) = fﬁle”fr@dS = fﬂgds+ftgds.
Also,
C
ﬁQdS = E‘n—/l;-length (1) = 27C |x |t "2,
Hence

v(xo) = [, 0ds +2nC|x """ = [, ods+2mCrr =P,
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Since the above is true for all § connecting £ and -, we have
v (%) — v(o0) = 2nCH /P, (5.8b)

Relations (5.8) show v is continuous at e.
Define u:G—~[0, ) by u(x)=min (1, v(x)). Then it follows, using lemma 5.3,.
that uc o/ (E, F, G) and |Vu|=p a:e. in G. Therefore

cap,(E, F,G) = fG |Vulp dm = f . oP dm.
Since ¢€% is arbitrary and 4 is p-complete, we get (5.6).
Case 4. Suppose < ¢G, « ¢ F and p=n. Define 0 :R*~[0, 1] by

I/e if |x|=e

0(x) :{l/dxl loglx)) if x| = e

It is straightforward to verify that 0¢ L? (R") and f o 0(x]) d [x|=e-. Choose g €% and
e€(0,1). Let ¢’=g+el. Define u:G—{c}~[0, ) by u(x)=min (1,inf [, ¢’ ds)
where the infimum is taken over all rectifiable f in G connecting E and x. Choose
r€(0, =) so that EC B*(0, 7). If |x,|=r and if § connects E and x, then

/s Q'ds = 6 f,0ds=¢ [ 0(x)dx.

It follows that if |x,| is large then [, ¢’ ds=1. Therefore, u extends continuously
to u:G—[0, ). We get, using lemma 5.3, that uc.o/(FE, F, G) and [Vu|=g¢  a.e.
in G. Hence,

cap,(E, F, G) = fG \Vul? dm = f . (0 +e0)r dm.

Since ¢€% and ¢€(0, 1) are arbitrary and ¥ is p-complete, we get (5.6).
We use the previous theorem to prove a continuity theorem for the modulus.

5.9, Theorem. Suppose E;DE,>... and F,> F,>... are disjoint sequences of
non-empty compact sets in a domain G. Then

Lim M, (E;, F;, G) = M,,[n E, N F G].

Proof. The theorem follows immediately from theorems 5.5 and 3.3.

5.10. Comment. The reader may wish to compare the proof of 5.6 with Ziemer’s
proof [7]. Ziemer defines a function u derived from a density ¢ in a way that is
similar to the one in this paper. Ziemer’s technique will not work for the situation.
considered in this paper since the “limiting curve” of [7, lemma 3.3] need not
necessarily lie in G. The present proof “works” because thereis a p-complete family
of densities ¢ with L(g)=1.
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