
Some lacunary conditions for Fourier Stieltjes 
transforms 

Robert  E. Dressler and Louis Pigno 

Let T denote the circle group, Z the ring of integers and M(T) the usual con- 
volution algebra of  measures on T. The Fourier--Stieltjes coefficients /~(n) of  the 
measure ~ E M (T) are defined by 

1 / ' ~  
ft (n) = --~ J _ n e - ino d# (0) (rt E Z). 

Denote by M, (T) those p E M(T)  which are absolutely continuous with respect 
to Lebesgue measure on T, M0(T ) those pEM(T)  such that p vanishes at infinity, 
and Ms(T ) the set of  i tEM(T) which are singular, i.e., concentrated on sets of  Lebes- 
gue measure zero. 

An increasing sequence (nk)~ ~ with nkEZ + (the positive integers) is said to 
satisfy the gap condition (Fp), if  there is a p E Z  + such that 

lim (nk + p -- nk) = co. 
k ~  

Using a theorem of Mahler which is based on a p-adic version of  the T h u e - -  
Siegel theorem, we prove in Section 1 that finite unions of  sets of  the form 

Sj  = { r J : r C Z  +} ( j  = 2 ,3  . . . .  ) 

satisfy (F1). I t  then follows f rom an extension of  a theorem of  Wallen that if/~E M(T)  
( i=  1, 2) and supp ~ c  Z -  U E where E is any finite union of  sets Sj then I/AI �9 1#21E 
EM,(T). Here f~t~l is (of course) the usual total variation measure. 

In section 2 we investigate a weaker lacuna ry condition than (Fp) which we 
now define: 

A subset E c Z  + is said to satisfy the condition (~)  if  for every increasing 

sequence nl, n2 ... E E 
Z + (31im_(E-nj) is finite. 

Our mare result is that if E satisfyes (~)  and if supp / ~ c Z - U E  then pEM0(T). 
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w 1. Convolution products and gap conditions 

A subset ~ c Z  is called a Riesz set if # E M ( T ) a n d  supp /~c~=~pEM~(T). 
The F. and M. Riesz theorem states that both Z + and Z -  are Riesz sets. 

A subset S c Z  is said to have property (M), if  for any Riesz set N the union 
of N with S is again a Riesz set. Any strong Riesz set S has property (M), see [1] 
and [4] for examples. Furthermore, it is known that any Sidon set has property 
(M); see [7] and [8]. Whether or not sets E c Z  + which satisfy the gap condition 
(Fn) for some p possess property (M) is an open question. What  we do know is 
the following extension of a theorem of Wallen [10]: 

Theorem 1. Let  p i E M ( T )  ( i=1,  2, . . . , p + l )  with p E Z  +. Let E satisfy (F~) 
and suppose supp ~qi c Z -  U E for  all i. Then 

1/11 * )t2l * ... * I#,, * IP,+l] E M,  (T). 

Proof. The Theorem is a simple variant on that of  Theorem 2 of  [6]. The proof  
is obtained by iterating the method of  proof  of  Theorem 2 of  [6]. We leave the details 
to the reader, 

Henceforth we shall refer to (F1) as the Faber-gap condition. We make the 
following observation: 

I f  E : E I U . . .  U E p : { n l < n 2 < . . . }  where each E1 satisfies the Faber-gap condi- 
tion, then we have n k + r - - n k ~ .  Suppose not and say nk ,+p- -nk<C for some 
constant  C and some infinite subsequence of  E. Then there is an Ei0 such that for 
infinitely many n~, we have that at least two members of  E~o are in the set {nk,, 
nk,+l, . . . ,  nk,+p}. I f  n~, is the first member  of  Eio in this set and m~, is the second, 

p �9 
then m k = n ~ l < C ,  which contradicts Eio satisfying the Faber-gap condition. 

On the other hand, if  E =  {nl<n2<. . .}  satisfies nk+p--nk~oo for some p then 
E = E ~ U . . . U E ~ ,  where E i = { n k : k i - i  (modp)} and each Ei clearly satisfies the 
Faber-gap condition. 

In view of  the preceding our next result is therefore somewhat surprising. 

Theorem 2. Let  E by any finite union o f  the sets S j ,  then E satisfies the Faber- 
gap condition. 

Proof. Let k~, kz,  . . . ,  kn be distinct integers greater than 1. Let Ki=Sk = 
= {rk' : r E Z § } for i = l , 2 . . . . .  n. Put 

E = [~ Ki = { S I < S 2 < . - . } .  
i = 1  

We prove that E satisfies the Faber-gap condition. 



Some lacunary conditions for Fourier--Stieltjes transforms 75 

Given x E Z  + we claim there is an a0 such that if SnEE and Sn>=ao then Sp+ 1 -  

-Sp>X.  By a theorem of Mahler [3] it follows that if (z, w)<=x, abr g~_2, and 
h=>3 (or h_->2 and g_->3) then there is an integer N g'h such that the largest prime 
divisor of azg-bw h is greater than x if max {Izl, Iwl}>N g'h. Also there is an integer 
c such that if q2 => c then q2 + x < (q + 1) 2. 

Let (ki, kj) run through the collection of all ordered pairs where k i > 2  or kj >2.  

We thus generate a collection of forms 

zk~ _ Wkj 

and corresponding to these forms we obtain the numbers Nk"kL 
Let k0 = max {kl, ..., k,} and let 

al = max {(Nk"kOko}. 
Finally let a o = m a x  {c, ai}. 

Now, if s~=>a0, say SVTI=I kl and sp=f kj. Suppose ki>2 or  kj>2. I f  % + 1 -  
-sp=x'<=x, we will derive a contradiction. Set d = ( / , f ) .  Since lk~--fkJ=X" we have 

d x" and so d<=x. Then 

f = Stp/kj >_ a~/k~ > ((Nk,, kj)ko)l/k J >= Nk,, kj. 

It  then follows that the greatest prime divisor of  x" is greater than x, which is a 

contradiction. 
Finally, i f  k l = 2 = k j ,  then since sp>=c we have sp+X<Sp+ 1 which completes 

the proof. 

Remark. A refinement of  the proof  of  Theorem 2 allows us to replace the set 
Sk,(k~>2 ) by any set 13 c~=1 {ark':rEZ +} (cEZ+). Also, we may replace the set S~ 
by any of the sets {ar~:rEZ +} (aEZ+). However, the theory of the Pell equation 

forbids us f rom replacing S~ by any of the sets I.J~=t {ar2:rEZ +} (c=>2). 

w 2. A iacunary condition 

I f  (as in [10]) one is mainly intersted in deducing that the transform of  a measure 
vanishes at infinity we can require a weaker lacunary property than (Fp): 

A subset E of Z § is said to satisfy the condition (~') if for all sequences n l <  

<n2< . . .  EE, the set 

Z+ ~) (mU= 1 k=mS(E--nk)}isfinite" 

Observe that  the above definition makes sense in Z ~ where Z ~ is considered as an 
ordered group dual to T ~. Also, it follows easily f rom the definition that if  a set 
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E satisfies conditions (~),  then E cannot  contain any set A §  where A a n d  B 
are bo th  infinite sets. Before presenting our  main  Theorem, we give some examples: 

(a) Any  set satisfying the gap condit ion (Fp) satisfies the lacunary condit ion 
(~).  To see this let E satisfy (Fp) and let m l < m 2 < . . ,  be any subsequence o f  E. 

Suppose there are infinitely many  x's  such that  x + m k E E  for  all sufficiently large 

k. Let  Xl, ..., xp be the first p values o f  x. Then there is a to such that  if  k>~to then 

x i t m k E E  , where i = 1 ,  2, . . . , p  and k E Z  +. For  k>--to, put  mk--n jk .  Then njk+p<<- 

<~njk+x p whence njk+p--nj<--xp. Since there are infinitely m a n y  njk we see that 
njk + p -  nj~-4~ ~ which is the desired contradiction. 

(b) Any  Sidon set satisfies (Fp) for some p( [5 ,p .  194]); hence any Sidon set 
satisfies condit ion (~).  

(c) In this example we outline a construct ion o f  a set o f  positive integers which 
has proper ty  (~ )  and yet is not  a finite union o f  sets with the Faber-gap property. 

Thus proper ty  (~ )  is strictly weaker than the property nk+p--nk --,-~o for  some p. 
Choose  a suitably " th in"  subsequence o f  the sequence o f  powers o f  3 and 

call it A 0 -  {al < a2 < . . .} .  Next  construct  the sequence A a =- A 0 CJ {a2, + 3 : n E Z + }. 
Next construct  A2 = A1 J {a3,, + 32} U {as, + 33}. In  general, 

At : At--1 ~) {a,~,+ 3 t'} . . . .  u {apT-4-3t'+t-1} 

where Pt is the t r prime and t" : 1 J - ~ S l l i .  

Let 

A -- L_JA t . 
t - -O  

Clearly, for any p, there is a constant  c such that A contains infinitely many  

members  nk with nk+o--nk<c.  Thus,  A is not a finite union o f  sets with the Faber-  

gap condition. On  the other  hand, if A0 is chosen " th in"  enough,  the fact that  no 
integer can have two representations of  the form ~ i m l  __ 3J' leads to the conclusion 

that  for  any subsequence {n~ <: n2... } o f  A there are only finitely m a n y  integers x E Z + 
with the proper ty  that  x + nk JS an element o f  A for all sufficiently large k. In fact. 
the construct ion guarantees that  the set o f  such x ' s  is empty unless a tail o f  the 

sequence {nk} is chosen from one of  the sets {app:nEZ +} U ( A t ~ A t - 1 ) ,  in which 
case there can be at mos t  t such x's.  

Theorem 3. Let  E sati.~v ( ~ )  and suppose t~ E M ( T )  and supp ft c Z -  0 E. Then 

# E M0(T). 

ProoJ~ Suppose not. Then thele is an increasing sequence n~-<n2< ... EE  and 
an e > 0  such that  

(1) p (n~  I ~> ~ > 0. 

We shall force a contradic t ion:  
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Put  d v j = e - %  ~ dl~. Then without  loss of  generality we may assume 

(2) vj ~ vEM~(T) w e a k - .  

The fact that v E Ms (T) is a consequence of  the Helson translat ion lemma [9, p. 66]. 

F r o m  (1) and  (2) we conclude that  

(3) ~(0) ~ 0. 

On the other hand  condi t ion (~ )  in combina t ion  with the F. and  M. Riesz 

theorem implies that  9 ( 0 ) - 0 .  This contradicts  (3) and  so since ~ vanishes at 

�9 ' ~ oo" it follows from [2] that  # ~ Mo (T). 

Finally,  we observe that the same proof  with simple modificat ions holds in 

T ~ regardless of  the order chosen for Z 2. 

Our  study of  condi t ion  (~ )  was motivated by conversat ions with S. Saeki 

to whom we express our  thanks.  
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